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Introduction: Parkinson’s disease (PD) is characterized by motor and non-
motor symptoms such as tremors, difficulty in initiating movements,
depression, and cognitive deficits. The pathophysiology of PD involves a
gradual decrease in dopaminergic neurons in the substantia nigra,
increased inflammatory parameters, and augmented oxidative stress in this
region. Several new therapies aim to promote antioxidant and anti-
inflammatory actions, including the use of cannabinoids, particularly
cannabidiol (CBD). CBD is a non-psychotomimetic component of
Cannabis sativa that acts broadly through several mechanisms.

Objective: The objective of this study was to investigate the potential protective
effect of CBD in mice subjected to a low-dose (0.1 mg/kg) repeated reserpine
protocol, which encompasses behavioral and neuronal alterations compatible
with the progressiveness of PD alterations.

Materials and Methods: We used two approaches: (1) concurrent administration
during the development of parkinsonism and (2) pre-administration to explore a
possible preventive action. The effect of CBD (0.5 mg/kg) on reserpine-induced
alterations was investigated on behavioral (catalepsy and vacuous chewing
movements) and neuronal (immunolabeling for tyrosine hydroxylase - TH)
parameters.

Results: Overall, groups that were treated with CBD and reserpine presented
motor alterations later during the protocol compared to the groups that
received only reserpine (except for vacuous chewing evaluation in the
concomitant treatment). Additionally, CBD attenuated reserpine-induced
catalepsy (preventive treatment) and prevented the decrease in TH labeling
in the substantia nigra pars compacta in both concurrent and
preventive protocols.
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Conclusion: Based on these data, we observed a beneficial effect of CBD in motor
and neuronal alterations reserpine-induced progressive parkinsonism, particularly
after preventive treatment.

KEYWORDS

Parkinson’s disease, cannabis, animal model, catalepsy, oral movements, tyrosine
hydroxylase

1 Introduction

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder, affecting approximately 1% of
individuals aged 60 and above (Silva et al., 2024). The disease is
characterized by motor impairments such as resting tremor,
postural instability, akinesia, and bradykinesia. Additionally, non-
motor symptoms are quite common in PD, including depression,
cognitive deficits, sleep disorders, among others (Agnello
et al., 2024).

PD is a progressive and chronic condition with an unclear
etiology. Nevertheless, many factors are known to influence its
development, such as environmental features (pesticides, air
pollution, and others), lifestyle, and genetic alterations (Silva
et al., 2024; Ramirez-Mendoza et al., 2024). These factors could
increase oxidative stress and neuroinflammatory activity, which are
related to the neurodegeneration process (Cunha et al., 2022; Cohen
et al., 2024; Qiao et al., 2024).

Up to date, there is no effective treatment to interrupt the
neurodegeneration, although alternatives have been studied to
prevent or reduce the progression of PD. In recent years, studies
with plant extracts, particularly those with anti-inflammatory and/
or antioxidant properties, has increased (Costa et al., 2022; Urbi
et al., 2022). One of these possibilities is the use of cannabidiol
(CBD) [see Peres, Lima (Peres et al., 2018)].

Two components of approximately 500 components of Cannabis
sativa are the most studied: CBD and Δ9-Tetrahydrocannabinol (THC).
While THC induces psychotomimetic effects, CBD does not show this
action (Crocq, 2020; Pagano et al., 2022). In addition, there is evidence
that CBD can reduce neuroinflammation, oxidative stress, and promote
neuroprotection (Muhammad et al., 2022; Booz, 2011; Chen et al.,
2016). Thus, the use of a compound that does not promote
psychotomimetic effects and has potential for neuroprotection is a
promising possibility (Peres et al., 2018; Duncan et al., 2024).

Treatment with CBD has been shown to improve PD-related
alterations in some studies, including cellular models (Santos et al.,
2015), animal models (Muhammad et al., 2022; Peres et al., 2016;
Patricio et al., 2022; da Cruz Guedes et al., 2023), and human
patients (Consroe et al., 1986; O’Sullivan et al., 2023). Importantly,
treatment with CBD usually does not show potential side effects
(Peres et al., 2018; Omotayo et al., 2024). However, this line of
research is still scarce and controversial. A recent systematic review
grouped some studies that tested cannabinoids in animal models of
parkinsonism. Although most of the studies surveyed reported
positive effects, there were descriptions of no effects or worsening
of some parameters (Alves et al., 2024; Dos-Santos-Pereira et al.,
2016; Celorrio et al., 2017). In addition, a study in humans did not
show improvement in the Unified Parkinson Disease Rating Scale
(UPDRS) scores and BDNF levels after CBD treatment. However,

this same study observed an improvement in the Parkinson’s
Disease Questionnaire (PDQ-39), a measurement of quality-of-
life (Bougea et al., 2020; Chagas et al., 2014).

PD can be studied by simulating the condition in animal models
using various substances, some of which have high toxicity and rapid
induction of cell death. In this respect, repeated administration of
low doses of reserpine induces a slower progression of PD-related
alterations (Leao et al., 2015; Lopes-Silva et al., 2024; Santos et al.,
2013). This pharmacological model promotes the gradual
development of parkinsonian signs and neuronal features, such
as inflammation (Cunha et al., 2022), oxidative stress (Silva-
Martins et al., 2021; Beserra-Filho et al., 2022), and others.
Because of the slow course, this protocol is more likely to detect
long-term effects on disease progression and has been an interesting
approach to study potential neuroprotective treatments (Peres et al.,
2018; Peres et al., 2016; Silva-Martins et al., 2021; Beserra-Filho et al.,
2022; Sarmento-Silva et al., 2014; Brandao et al., 2017; Lins et al.,
2018; Beserra-Filho et al., 2019; Custodio-Silva et al., 2024).

The aim of this study is to investigate possible CBD
neuroprotective effects in the development of parkinsonism
induced by low-dose repeated reserpine, using two approaches:
(1): administering CBD concurrently with the development of
parkinsonism (concomitant treatment), and (2) using CBD as a
preventive treatment before the induction of the parkinsonian
alterations (preventive treatment).

2 Materials and methods

2.1 Animals

Six-month-old male Swiss mice were used in this study (N = 75).
The animals were housed in groups of 5 per cage (30 × 42 × 16 cm)
under controlled airflow, acoustic isolation, and temperature at
22°C ± 1°C with a 12 h light/12 h dark cycle (light on at 7:
30 a.m.). There was free access to water and food. Animals used
in this study were handled according to the Brazilian law for animal
use in research (Law Number 11,794) and all procedures were
approved by the local ethics committee (protocol number
3322080217/2017). One animal was euthanized before the end of
the protocol, due to fight injuries.

2.2 Drug treatment and general procedures

Reserpine (Res, Sigma Chemical Co., United States) was
dissolved in glacial acetic acid (1%) and then diluted to the
correct concentration with distilled water. The vehicle solution
(Veh) consisted of the same amount of acetic acid and water as
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in the reserpine solution. Animals received subcutaneous injections
of Veh or 0.1 mg/kg of reserpine (Res) at a volume of 10 mL/kg
body weight.

Purified cannabidiol (CBD - BSPG-Pharm, Sandwich UK) was
daily prepared, diluted in 1% tween 80 and saline and administered
at dose of 0.5 mg/kg. This dose was chosen based on a previous study
of our group conducted with an acute reserpine protocol (Peres
et al., 2016). CBD solution and the respective vehicle (saline + tween
80) were administered intraperitoneally at a volume of 10 mL/kg of
the animal’s weight.

The CBD/saline treatment was administered daily between
10 a.m. and 12 p.m. The reserpine/vehicle treatment occurred on
alternate days, 30 min after the administration of CBD or saline.
Across the treatment, animals were submitted to the following
procedures: (1): catalepsy test (before the first injection and daily
across treatment); (2); open field 48 h after the 10th and 20th
injection of reserpine, and (3) oral movements after the open field
evaluations. All behavioral tests were conducted prior to any drug
administration. The experimental design is shown in Figure 1.

We conducted two different protocols (1) the administration of
CBD starting with the reserpine protocol (concomitant protocol -
Figure 1A) and (2) initiating the administration of CBD 2 weeks

before the beginning of the reserpine protocol (preventive protocol
- Figure 1B).

2.3 Behavioral evaluation

2.3.1 Catalepsy test
The catalepsy behavior was evaluated by placing the animal’s

forepaws on a horizontal bar positioned 5 cm above the bench
surface, while the hind paws rested on the bench. Once placed in this
position by the experimenter, the animals were allowed to move
freely. The time taken for the animal to withdraw one or both
forepaws from the bar wasmeasured, with amaximum trial duration
of 180 s. Three trials were conducted for each animal on every
observation day, and the results were analyzed based on the mean
value of these trials. This behavior is characterized by the incapacity
of the animal to change position, and it has been associated with
decreased motor function, such as akinesia and bradykinesia
(Sanberg et al., 1988; Gerlach and Riederer, 1996; Gobira
et al., 2013).

The analysis was conducted in phases, each comprising
10 observation days (corresponding to 5 reserpine injections),

FIGURE 1
Experimental design of cannabidiol administration (A) concomitant and (B) preventive protocols relative to repeated reserpine-induced
parkinsonism. The green arrows correspond to experimental days of the protocol; the dark red arrows correspond to alternate day administration of
reserpine; the continuous black arrows correspond to daily CBD administration; and the dashed black arrow corresponds to daily catalepsy tests.
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except for the basal phase, which comprised 1 observation day: day 0
(basal phase, no injection administered), premotor phase (1st to 5th

injection), initial phase (6th to 10th injection), intermediate phase
(11th to 15th injection), and motor phase (16th to 20th injection). The
division of the phases was determined considering equal distribution
of number of reserpine injections and the profile of catalepsy
intensity, as conducted in previous studies of our group (Lima
et al., 2021).

2.3.2 Vacuous chewing test
The animals were placed individually in a wire cage (20 × 20 ×

15 cm). Mirrors were positioned beneath and behind the cage to
enable behavioral observations when the animal was facing away
from the observer. The frequency of vacuous chewing movements
(defined as mouth openings in the vertical plane not directed
towards physical material) was continuously observed for 10 min.
This behavior is characterized by dysfunctional balance between
neurotransmitters involved in motor control and is associated
with resting tremors in PD (Pirker et al., 2023; Salamone
et al., 1998).

2.3.3 Open field test
The open field (OF) was performed in a cylindrical arena of

opaque white polyethylene with a black-painted wooden base (50 cm
high walls and 40 cm diameter base). A camera was positioned above
the apparatus to record the sessions. was used. Each animal was
individually evaluated for 5 min and the distance traveled in the
apparatus (m) was registered by an animal video-tracking software
(Anymaze, Stoelting, United States). The apparatus was cleaned with
a 5% ethanol solution between tests.

2.4 Tissue processing and tyrosine
hydroxylase immunohistochemistry

At the end of the experiments, the animals were pre-
anesthetized with 0.5 mg/kg of Fentanyl and 1 mg/kg of
Acepromazine intramuscularly (IM), as per veterinary guidance.
After 5 min, Ketamine hydrochloride and Xylazine hydrochloride
were administered intraperitoneally at doses of 100 mg/kg and
10 mg/kg, respectively, at volumes of 10 mL/kg.

Once the animals were deeply anesthetized, they were
euthanized by transcardiac perfusion using a 0.1 M phosphate
buffer solution with pH 7.4% and 4% paraformaldehyde. After
craniotomy, the brains were removed and immersed in 4%
paraformaldehyde for 24 h at 4°C. After 24 h, the brains were
transferred to a 30% sucrose solution at 4°C. Each brain was
embedded in Tissue-Tek® (Sakura, Japan) and frozen at −20°C.
Subsequently, the brains were sliced serially in the coronal plane into
40 μm thick sections using a cryostat microtome (Leica, Germany)
at −20°C. The sliced sections were stored in an antifreeze
solution at −20°C.

The tissue samples underwent the immunohistochemical
process using the free-floating protocol. Sections were washed
four times in PBS for 5 min (repeated at each protocol step),
followed by a wash with 0.03% hydrogen peroxide for 20 min.
For tyrosine hydroxylase (TH) detection, sections were incubated
with a polyclonal anti-TH antibody produced in rabbit (Millipore,

USA, 1:3,000) diluted in 0.4% Triton X-100 and PBS with 2%
albumin for 24 h at 4°C.

Afterwards, the sections were incubated with biotinylated IgG
anti-rabbit antibody (Vector Labs, United States, 1:500) diluted in
0.4% Triton X-100 and PBS for 2 h at 4°C. Following this, the tissue
samples were washed with PBS and incubated with avidin-biotin-
peroxidase solution (ABC Elite Kit, Vector Labs, Burlingame,
United States, 1:500) diluted in 0.4% Triton X-100 with NaCl
and PBS for an additional 2 h.

Finally, the reaction was started by adding 3,3-
diaminobenzidine (DAB-Sigma, Aldrich, United States) and
0.01% hydrogen peroxide in 0.1M PBS. After tissue labeling, the
sections were mounted on gelatinized histological slides and
analyzed under a microscope (Nikon Eclipse 80i) coupled with a
camera (MBF biosciences, United States). Images were obtained
from approximately 12 sections (24 images, from both sides) of the
Substantia Nigra pars compacta (SNpc).

To estimate the number of TH+ cells in SNpc, we used ImageJ
(NIH, United States) to select each target cell and count them. We
analyzed 8–12 sections of each animal [4 – 6 slices equally
distributed from −2.70 mm to −3.52 mm from bregma,
according to Paxinos and Franklin (Paxinos and Franklin, 2004)].
The means of all measures were calculated, and the data were
normalized by the mean value of the control group [mean TH+
cell number of each animal/mean of the TH+ of control group (Veh/
Sal)] to evaluate the proportional alterations.

2.5 Data analysis

Data normality and homogeneity of variances were tested by
Shapiro-Wilk and Levene’s tests, respectively. The catalepsy test and
vacuous chewing test were analyzed by two-way repeated measures
ANOVA followed by Sidak’s post hoc. Nonparametric data from
TH+ cells quantification was analyzed by Mann-Whitney U-test in
each group separately.

Results were expressed as mean ± SEM (parametric
analyses–behavioral analyzes), and median with maximum and
minimum values (nonparametric analyses–TH+ cell
immunostaining), and p ≤ 0.05 were considered to reflect
significant differences. In addition, size effect was calculated (η2
partial (η2p) for parametric analyses, and “r” for non-parametric
analyses). All statistical analysis was made using SPSS (IBM, USA)
and the graphics were produced using Prism (GraphPad, USA).

3 Results

3.1 Concomitant administration of CBD with
reserpine protocol

3.1.1 Catalepsy test
This evaluation aimed to investigate the effects of CBD on the

latency to initiate movement. The test consists of placing the front
paws in the bar and quantifying the latency for the animal to remove
one or both paws from the bar. Two-way repeated measures
ANOVA showed significant effects of time [F (4,132) = 44.255,
p < 0.001, η2p = 0.573], reserpine treatment [F (1,33) = 28.723, p <
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0.001, η2p = 0.465] and the interaction between time and
reserpine treatment [F (4,132) = 31.187, p < 0.001, η2p =
0.486]. The Sidak’s post hoc test demonstrated increased
values in reserpine compared to vehicle groups, which
received saline, at the initial, intermediate, and motor phases
(p = 0.038, 0.001 and p < 0.001, respectively). Conversely,
reserpine animals that received concomitant CBD showed
increased catalepsy compared to respective control only at the
intermediate and motor phases (p = 0.002 and p < 0.001,
respectively), demonstrating a delay on the motor deficit
onset. However, we did not observe a significant difference
between Sal and CBD in the reserpine animals, as shown in
Figure 2 (individual data is shown in Supplementary
Material S1).

3.1.2 Vacuous chewing test
This evaluation aimed to investigate the effects of CBD on oral

dyskinesia. The test consists of placing the animal in a cage and
quantifying the purposeless mandibular movements. Two-way
repeated measures ANOVA showed significant effects of time [F
(2,66) = 20.070, p < 0.001, η2p = 0.378], reserpine treatment [F
(1,33) = 28.503, p < 0.001, η2p = 0.463], and the interaction between

time and reserpine treatment [F (2,66) = 17.879, p < 0.001, η2p =
0.351]. The effect of CBD on the reserpine-induced alterations was
not observed. The Sidak’s post hoc test demonstrated that vacuous
chewing was increased in both reserpine groups compared to
respective control groups at the intermediate phase (Sal: p =
0.024, and CBD: p = 0.012), and the motor phase (Sal: p = 0.001,
and CBD: p = 0.002), as shown in Figure 3.

3.1.3 Open field test
This evaluation aimed to observe the effect of CBD on

locomotion in the OF. Two-way repeated measures ANOVA
showed significant effects of time [F (1,33) = 67.286; p < 0.001,
η2p = 0.671], reserpine treatment [F (1,33) = 124.324; p < 0.001,
η2p = 0.790], and CBD [F (1,33) = 6.603; p < 0.015, η2p = 0.15].
However, an effect of CBD in the reserpine induced locomotion
impairment was not observed in the pos hoc analysis. Indeed,
Sidak’s post hoc test revealed a significant effect of reserpine
decreasing the locomotion in the intermediate (Sal: p < 0.001,
and CBD: p < 0.001) and motor (Sal: p < 0.001, and CBD: p <
0.001) phases. The only CBD effect observed was an increase in
locomotion in Veh/CBD compared to Veh/SAL (p = 0.016), as
shown in Table 1.

FIGURE 2
Catalepsy phases across the concomitant protocol. Each phase represents the mean of the assessments conducted under 5 reserpine applications:
Day 0 (previously to reserpine injection), premotor (1st to 10th assessments), initial (11th to 20th assessments), intermediate (21st to 30th assessments), and
motor (31st to 40th assessments). Individual animal data in Supplementary Material S1. * Difference between vehicle (Veh) and reserpine (Res) groups
treated concomitantly with saline (Sal) or cannabidiol (CBD) (ANOVA with repeated measures and Sidak’s test, p ≤ 0.05). Data are expressed as
means ± SEM (n = 10).
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3.1.4 Immunohistochemistry
This evaluation aimed to investigate the effect of CBD on the

status of functioning dopaminergic neurons by immunostaining of
TH+ cells. The analysis of TH+ cell quantification in the SNpc
(Figure 4A) by the Mann-Whitney test showed significant reduction
in cell count of reserpine/saline group compared to vehicle/saline
(U = 14.000, p = 0.040, r = 0.51). Furthermore, the reserpine group
that received CBD showed an increased value compared to
reserpine/saline group (U = 19.000, p = 0.019, r = 0.53).
Representative images of each treatment group are shown
in Figure 4B.

3.2 Preventive administration of CBD with
reserpine protocol

3.2.1 Catalepsy test
The daily administration of preventive CBD promoted a

significant reduction in the latency for the animals to start the
movement and leave the bar. Two-way repeated measures ANOVA
showed significant effects of time of administration [F (5,170) =
13.835, p = 0.001, η2p = 0.289], reserpine treatment [F (1,33) =
11.860, p = 0.002, η2p = 0.259] and the interaction between reserpine
and time of administration [F (5,170) = 11.604, p = 0.001, η2p =

FIGURE 3
Number of vacuous chewing across the concomitant protocol. Circles indicate individual data in each group. *Difference between vehicle (Veh) and
reserpine (Res) groups treated concomitantly with saline (Sal) or cannabidiol (CBD) (ANOVA with repeated measures and Sidak’s test, p ≤ 0.05). Data are
expressed as means ± SEM (n = 10).

TABLE 1 Distance traveled in the open field (m) of concomitant and preventive protocols, at the intermediate phase (48 h after 10th reserpine injection), and
motor phase (48 h after 20th reserpine injection). Data are expressed as means ± SEM (n = 9–10).

Concomitant protocol Preventive protocol

Intermediate phase Motor phase Intermediate phase Motor phase

Veh Sal 15.795 ± 0.786 10.467 ± 0.786 11.643 ± 0.918 10.964 ± 1.235

CBD 20.158 ± 1.335 11.956 ± 1.437# 12.218 ± 1.186 12.073 ± 1.794

Res Sal 6.884 ± 1.236* 2.525 ± 1.070 8.389 ± 1.220* 7.027 ± 1.464*

CBD 9.391 ± 0.902* 2.669 ± 0.592 8.452 ± 1.115* 6.000 ± 0.082*

*Difference between Veh-Res.

#Difference between Sal-CBD (p < 0.05).
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FIGURE 4
Immunohistochemical analyses of the concomitant protocol, including (A) TH+ cell count in the substantia nigra pars compacta, and (B)
representative images from SNpc of each group (objective ×5). Circles indicate individual data in each group. *Difference between vehicle (Veh) and
reserpine (Res), #Differences between saline (Sal) and cannabidiol (CBD) (Mann-Whitney test; p ≤ 0.05). Data are expressed as median with max and
minimum values (n = 9–10), scale bar: 100 µm.
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0.254], as shown in Figure 5 (individual data is shown in
Supplementary Material S2). Sidak’s post hoc revealed a
significant increase in catalepsy behavior in the reserpine group
that receive saline, in initial, intermediate, and motor phases (p =
0.03, 0.003, and 0.005, respectively). Furthermore, it is shown that
the Res/CBD group has ameliorated (decreased) the catalepsy
behavior, when compared to Res/Sal, in the initial (p = 0.029)
and intermediate phases (p = 0.05).

3.2.2 Vacuous chewing test
The preventive CBD administration protected the animals from

the impairment promoted by reserpine, preventing involuntary
mandibular movements. Two-way repeated measures ANOVA
reveal significant effects of time of administration [F (2,68) =
17.772, p < 0.001, η2p = 0.343] and the interaction between
reserpine treatment and time of administration [F (2,68) =
10.523, p < 0.001, η2p = 0.236]. Sidak’s post hoc showed an
increase in vacuous chewing quantity only in reserpine saline
group, in the motor phase (p = 0.013), demonstrating CBD effect
prevented the motor impairment. Nevertheless, we did not observe a
significant difference between Sal and CBD groups that received
reserpine at the motor phase, as shown in Figure 6.

3.2.3 Open field test
Along the protocol the animals were exposed to three moments,

at Day 0 (without reserpine administration), at intermediate phase
(after 10 reserpine injections), and motor phase (after 20 reserpine
injections). Two-way repeated measures ANOVA revealed only

effect of reserpine [F (1,34) = 18.369; p < 0.001, η2p = 0.351].
Sidak’s post hoc test showed a decrease in locomotion in reserpine
animals in intermediate (Sal: p = 0.048; CBD: p = 0.031) and motor
(Sal: p = 0.05; CBD: p = 0.002) phases. We did not observe any
significant effect of CBD on the reserpine animals, as shown
in Table 1.

3.2.4 Immunohistochemistry
The TH+ cell quantification analysis in SNpc (Figure 7A) by

Mann-Whitney test showed a significant decrease in the cell average
in the reserpine group that received saline (U = 13.500, p = 0.01, r =
0.60); and the Res/CBD group showed increased values compared to
Res/saline (U = 21.000, p = 0.028, r = 0.50). Representative images of
each treatment group are shown in Figure 7B.

4 Discussion

This study aimed to investigate a possible protective effect of
cannabidiol (CBD) in progressive reserpine-induced model of
parkinsonism, using two approaches: (1): concomitant treatment
with CBD and reserpine, and (2) pre-treatment with CBD before
reserpine administration. Our results showed that both concomitant
and pre-treatment with CBD have protective effects on reserpine-
induced parkinsonism, as evidenced by improvements in behavior
and TH+ cell count.

Parkinson’s disease can be studied in experimental models by
different approaches. In rodents, these approaches include, among

FIGURE 5
Catalepsy phases across the preventive protocol, each phase represents themean of 5 reserpine applications: pre reserpine and day 0 (previously to
reserpine administration), premotor (1st to 10th assessments), initial (11th to 20th assessments), intermediate (21st to 30th assessments), and motor (31st to
40th assessments). Individual data in Supplementary Material 2. *Difference between vehicle (Veh) and reserpine (Res) groups (ANOVA with repeated
measures and Sidak’s test, p ≤ 0.05), #Difference between saline (Sal) and cannabidiol (CBD). Data are expressed as means ± SEM (n = 9–10).
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others, genetic alterations/mutations (e.g., α-synuclein mutation),
infusion of neurotoxins (e.g., 6-hydroxydopamine – 6-OHDA, and
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–MPTP), and
administration of pharmacological agents (e.g., reserpine). Each
one has limitations and none of them reproduce all the features
of the condition in humans. Genetically determined PD (familial
form) stands for just 5%–10% of the patients (Dovonou et al., 2023).
Although inducing specific dopaminergic degeneration, the use of
neurotoxins also has limitations. For example, 6-OHDA is infused
unilaterally directly in the brain, promoting a quick degeneration in
one of the hemispheres, leading to immediate severe contralateral
motor impairment (Leal et al., 2016; Jagmag et al., 2015). In addition,
studies have shown that MPTP can produce degeneration without
inducing motors impairments (Leal et al., 2016; Jagmag et al., 2015;
Imbriani et al., 2022). The acute administration of reserpine rapidly
induces severe motor impairment (Carlsson et al., 1957; Lorenc-
Koci et al., 1995; Cavalheiro et al., 2022; Volta et al., 2010), but the
repeated long-term administration of a lower dose of this drug
induces a gradual appearance of such impairment. Nevertheless,
unlike the condition in humans, the motor deficit is reversible after
treatment withdraw (Santos et al., 2013), although the decreased
dopaminergic immunostaining persists (Santos et al., 2013; Melo
et al., 2022).

In the present study, we chose to use the chronic protocol with a
low dose of reserpine (Silva et al., 2024; Leao et al., 2015; Leal et al.,
2016; Fernandes et al., 2012) because the progressiveness of motor
alterations is more likely to show long-term effects of potential
neuroprotective treatments (Peres et al., 2018; Peres et al., 2016;
Silva-Martins et al., 2021; Beserra-Filho et al., 2022; Sarmento-Silva

et al., 2014; Brandao et al., 2017; Lins et al., 2018; Beserra-Filho et al.,
2019; Custodio-Silva et al., 2024). This protocol produces gradual
motor impairments in both rats (Silva et al., 2024; Cunha et al., 2022;
Santos et al., 2013; Lima et al., 2021) and mice (Lopes-Silva et al.,
2024; Beserra-Filho et al., 2022; Campelo et al., 2017), and rodents
submitted to this protocol develop non-motor signs (Santos et al.,
2013; Sarmento-Silva et al., 2014; Lima et al., 2021; Campelo et al.,
2017), inflammatory reactions (Cunha et al., 2022), oxidative
impairment (Silva-Martins et al., 2021; Fernandes et al., 2012;
Leao et al., 2017) and neurotransmitter impairments (Cunha
et al., 2022; Lopes-Silva et al., 2024; Santos et al., 2013; Lima
et al., 2021; Campelo et al., 2017) similar to those observed in
PD patients (Silva et al., 2024). Our results showed that the chronic
treatment with reserpine promoted a motor impairment, increasing
the time at catalepsy bar and the vacuous chewing movements, and
decreasing the TH+ cell count, corroborating previous studies in
mice (Lopes-Silva et al., 2024; Silva-Martins et al., 2021; Beserra-
Filho et al., 2022; Campelo et al., 2017; Soares et al., 2021).

Cataleptic behavior is characterized by an inability to change the
position imposed on the animal. An increase in this behavior is
associated with a decrease in motor function (Gerlach and Riederer,
1996). Therefore, catalepsy has been related to parkinsonian
symptoms, such as bradykinesia (Sanberg et al., 1988; Gerlach
and Riederer, 1996). Our results showed that reserpine gradually
increased the duration of catalepsy, indicating that the reserpine
group developed motor impairment. These findings are consistent
with the literature using the same protocol in mice (Lopes-Silva
et al., 2024; Beserra-Filho et al., 2022; Campelo et al., 2017; Soares
et al., 2021). Additionally, CBD administration was able to

FIGURE 6
Number of vacuous chewing across the preventive protocol. Circles indicate individual data in each group. *Difference between vehicle (Veh) and
reserpine (Res) groups treated concomitantly with saline (Sal) or cannabidiol (CBD) groups (ANOVA with repeated measures and Sidak’s test, p ≤ 0.05).
Data are expressed as means ± SEM (n = 9–10).
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significantly delay the development of cataleptic behavior. In the
concomitant protocol, this treatment delayed the onset of catalepsy
by one phase, while the CBD preventive protocol inhibited the
significant increase in catalepsy time in all phases.

Vacuous chewing in rodents reflects an imbalance between
dopaminergic and cholinergic neurons and is associated with
resting tremors (Salamone et al., 1998). This imbalance can be
induced by mechanisms that decrease dopamine activity, such as

FIGURE 7
Immunohistochemical analyses of preventive protocol, including (A) TH+ cell count in the substantia nigra pars compacta, and (B) representative
images from SNpc of each group (objective ×5). Circles indicate individual data in each group. *Difference between vehicle (Veh) and reserpine (Res),
#Differences between saline (Sal) and cannabidiol (CBD) (Mann-Whitney test; p ≤ 0.05). Data are expressed as median with max andminimum values (n =
9–10), scale bar: 100 µm.
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antipsychotic drugs and other dopamine receptor antagonists
(Salamone et al., 1998; Turrone et al., 2002). Reserpine (given
acutely) promotes increased oral movements, which could be
associated with tardive dyskinesia (Silva et al., 2002). At the same
time, in the repeated administration of low doses of reserpine model,
vacuous chewing increases progressively throughout the protocol
(Beserra-Filho et al., 2022; Lima et al., 2021; Soares et al., 2021). Our
results are consistent with these studies, showing that reserpine
increases the frequency of vacuous chewing movements.
Concomitant CBD did not affect the vacuous chewing increase.
However, the significant increase in Res/CBD group was not
observed in preventive protocol. There is evidence that resting
tremors (which are associated with vacuous chewing evaluation)
are related to an impairment in the serotonergic system (Pirker et al.,
2023; Loane et al., 2013). In this respect, there is evidence of a partial
or allosteric modulation of 5HT-1A receptor activation induced by
CBD (Alexander et al., 2025). Furthermore, CBD can block the
acetylcholinesterase enzyme, interfering with the imbalance between
dopamine e acetylcholine, although this mechanism have been
related to the cognitive symptoms in PD (Puopolo et al., 2022).
Finaly, we observed that the effect of CBD was more pronounced in
the catalepsy evaluation than in the oral movements assessment.
Although our data do not provide evidence of the mechanisms
involved in this difference, it is important to mention that catalepsy
and oral movements are associated with different aspects of motor
symptoms in PD, namely, akinesia/bradykinesia and resting tremor
(Sanberg et al., 1988; Gobira et al., 2013; Salamone et al., 1998), and
different symptoms might respond differently to treatments.

The effects of CBD on parkinsonian-related motor impairments
described in the present study corroborate previous findings from
our group (Peres et al., 2016) using a higher dose of reserpine
(1.0 mg/kg) in an acute treatment (2 injections), in which CBD also
promoted beneficial effects on catalepsy and vacuous chewing
evaluations. In this previous study, CBD was inefficient in
ameliorating the decrease in open-field locomotion. In this
respect, we also conducted locomotion evaluation in the open
field, and we did not observe any effect of CBD treatment in the
reserpine group (as demonstrated in Table 1). Nevertheless, an
increase in locomotion in the vehicle-treated CBD group was
observed during the first evaluation of this test. Although this
result corroborate a previous finding with acute CBD
administration (Kasten et al., 2019), some studies did not observe
this increase in OF locomotion induced by CBD (Calapai et al., 2022;
Zieba et al., 2019). The lack of CBD effect in reserpine groups could
be related to the high decrease inmotivation to explore the open field
combined with the motor impairment promoted by reserpine
treatment, as observed by other studies (Silva-Martins et al.,
2021; Beserra-Filho et al., 2022; Lins et al., 2018).

Although conducted with similar treatments and behavioral
assessments, it is worth highlighting some differences between
the aforementioned study and the present one. The acute high-
dose reserpine protocol does not consider the progressive
development of motor alterations, as in the case of the chronic
low-dose scheme. Despite that, the study with the acute protocol did
show the beneficial effects of CBD, but to a lesser extent (only on the
last observation day of the catalepsy test) and without the evaluation
of TH immunostaining. In contrast, the present study showed a new
perspective of CBD effect, showing a reduction in the progression of

the motor impairment which was associated with a prevention of
neuronal damage, in both protocols (concomitant and preventive).

In animal models, the reduced dopaminergic function typical of
PD is usually observed by diminished labeling of tyrosine
hydroxylase (a rate limiting enzyme in dopamine synthesis). This
measure is commonly assessed in different models, such as 6-OHDA
(Matheus et al., 2016; Shao et al., 2024), MPTP (Wang et al., 2024),
and chronic reserpine protocol (Beserra-Filho et al., 2022; Brandao
et al., 2017; Lins et al., 2018; Lima et al., 2021). In accordance, the
reserpine-treated group showed a reduction in TH+ cell count in
substantia nigra, demonstrating the functional impairment of
dopaminergic neurons. Importantly, both the preventive and the
concomitant treatment with CBD were able to hinder the reserpine-
induced reduction in TH+ cells count.

Among several mechanisms of action of CBD is the reduction of
oxidative stress and neuroinflammation. One possible mechanism
involved in oxidative stress reduction is the presence of a hydroxy
group that acts as an antioxidant agent, thereby reducing ROS in the
cytoplasm (Jha et al., 2024). Additionally, CBD increases antioxidant
substances such as superoxide dismutase-3, glutathione-s-
transferase and catalase expression. There is also evidence that
the anti-inflammatory action of this compound is related to the
inhibition of protein aggregation, which is strongly linked to the
pathogenesis of neurodegenerative processes by inducing reactive
inflammation (Jha et al., 2024). Specifically, a study showed that
CBD reduced α-synuclein aggregation in a C. elegans model
(Muhammad et al., 2022). In addition, CBD effects against
neuroinflammation could be related to inhibition of MAPK and
NFκB phosphorylation (Peres et al., 2018; Jha et al., 2024; Kim et al.,
2023), blockage of the inflammasomes activation, reduction of pro-
inflammatory cytokines (Chu et al., 2024), interaction with
adenosine receptors, PPARγ, among others (Chu et al., 2024;
Sunda and Arowolo, 2020). Indeed, as mentioned previously,
inflammatory and oxidant factors can play an important role in
the PD development (Qiao et al., 2024). Further, non-steroidal anti-
inflammatory drugs can reduce the risk and ameliorate the
parkinsonian symptoms (Alrouji et al., 2023; Pereira et al., 2021).
In this respect, the repeated reserpine protocol induces increases in
both oxidative stress and neuroinflammation parameters (Cunha
et al., 2022; Lopes-Silva et al., 2024; Silva-Martins et al., 2021). In a
previous study using this same protocol, the alcoholic monoterpene
myrtenol reduced the oxidative status index in the dorsal striatum,
and this effect was accompanied by amelioration of motor function
in mice (Silva-Martins et al., 2021).

An important neuroprotective effect of CBD was shown in
different parkinsonism rodent animal models induced by 6-
OHDA (Garcia et al., 2011), MPTP (Wang et al., 2022;
Lapmanee et al., 2024), haloperidol (Sonego et al., 2018), acute
reserpine (Peres et al., 2016) as well as in a transgenic model (Zhao
et al., 2022). In these studies, CBD promoted improvements in
motor function, memory recognition, metabolism parameters, TH
levels, dopaminergic and serotonergic activities, as well as reduction
in oxidative stress and inflammatory activity (Garcia et al., 2011;
Wang et al., 2022; Lapmanee et al., 2024; Sonego et al., 2018; Zhao
et al., 2022). More recently, our group also described the
neuroprotective effect of CBD in counteracting reserpine induced
behavioral alterations and neuronal degeneration in Caenorhabditis
elegans (da Cruz Guedes et al., 2023). In another study, based on
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another feature of PD that is mitochondrial dysfunction (Henrich
et al., 2023), CBD increased the lifespan of the animals, and
decreased inflammatory markers (such as GFAP and IBA1).
These effects could be promoted by PPARγ activation
(Puighermanal et al., 2024).

Adding to these robust body of preclinical evidence, our results
show the protective impact of CBD administration on the
progression of parkinsonian behaviors and on the loss of
dopaminergic function in substantia nigra. As mentioned, the
preventive administration of CBD (before the induction of the
behavioral and dopaminergic abnormalities induced by reserpine)
showed more expressive results than concomitant treatment.
Reinforcing the more efficient action of the preventive treatment,
the CBD/Res group in the concomitant protocol ends the treatment
with a catalepsy score similar to the Sal/Res group, which is not the
case for the preventive approach. Nevertheless, in both cases, CBD
prevents the loss of TH-immunostained cells. This apparent
discrepancy could be explained by the fact that the target of CBD
action could be multiple (as discussed below), especially considering
that the chronic reserpine protocol induces other neuronal
alterations beyond the reduction in TH immunostaining, such as
oxidative stress, neuroinflammation, alpha-synuclein expression
and alteration in other neurotransmitter such as serotonin (Leal
et al., 2019). Alternatively, the investigation of TH+ cells across the
protocol, at different timepoints, could contribute to clarifying this
different magnitude of effects. Further investigation is needed to
clarify the mechanisms underlying preventive versus concomitant
CBD actions.

In humans, research investigating the neuroprotective effect of
CBD is incipient, but a recent systematic review shows that CBD
significantly improves parkinsonian symptoms, both acutely and
chronically (Bilbao and Spanagel, 2022; de Fatima Dos Santos
Sampaio et al., 2024). In addition, some pre-clinical studies and
clinical cases demonstrate that a Cannabis oil therapy and/or the
combination of THC and CBD have positive effects on the treatment
of some motor and non-motor symptoms (Peres et al., 2018; de
Fatima Dos Santos Sampaio et al., 2024; Lotan et al., 2014; Balash
et al., 2017; Yenilmez et al., 2021).

The mechanism of action of CBD is multifaceted (Peres et al.,
2018; Alves et al., 2024; Miao et al., 2024). Thus, besides the potential
anti-inflammatory and antioxidant actions, the CBD effects in our
study could be explained by the influence and/or interaction with
other targets, such the modulation of 5-HT1A, promoting an
increase in dopamine liberation. Additionally, a direct action in
post-synaptic neurons, acting as partial agonist for D2 (Seeman,
2016), and/or the heterodimerization between CB2R and
D2 receptors (Alves et al., 2024) can not be ruled out. Finaly,
CBD could decrease hyperexcitation by interacting with
TRPV1 and GPR55 (Alves et al., 2024); or increasing the
synthesis of anti-inflammatory factors by interaction with
PPARγ, as mentioned (Puighermanal et al., 2024).

From a clinical point of view, these results reinforce the
importance of early diagnosis allowing the use of neuroprotective
preventive strategies for the progression of Parkinson’s disease.
Although this is still a limitation for the approach studied here,
our results point to beneficial effects on in the cases of early
diagnosis, suggesting a new possibility to ameliorate PD
symptoms or even slowing down the progression of the disease.

With the global population aging and the consequent increase in
new cases of Parkinson’s disease, there is a growing demand for new
types of pharmacological (Elsworth, 2020; Staats et al., 2023; Zeng
et al., 2023) and non-pharmacological treatments (Bloem et al.,
2021; Palma and Thijs, 2023). Prevention of disease progression by
neuroprotectors arises as a promising strategy (Bloem et al., 2021;
Jankovic and Tan, 2020), and the present study reinforces the
beneficial profile of early administration (preventive) of CBD.

It is important to mention that this study has some limitations.
For example, we only conducted TH+ cells immunostaining at the
end of the protocol. Thus, further experimentation is needed to
evaluate the effectiveness of CBD on the progression of
dopaminergic dysfunction by the inclusion of TH analysis at
different time points across the treatment. In addition, the study
did not include the analysis of a biomarker for PD. Although the
identification of PD biomarkers in patients is still a goal to achieve
(Jimenez-Jimenez et al., 2014; Costa et al., 2015), increased
expression or aggregation of α-synuclein in animal models can be
important evidence of validity (Cannon et al., 2009; Fornai et al.,
2005; Yuan et al., 2015), including in the reserpine progressive
protocol (Beserra-Filho et al., 2022; Leao et al., 2017; Leao et al.,
2021; de Gois et al., 2025).

5 Conclusion

The data presented here demonstrate that CBD can attenuate
the development of reserpine-induced parkinsonism and protect the
loss of dopaminergic neuron in the substantia nigra, with better
outcomes in the preventive protocol. The overall effect of CBD is to
delay the onset of motor deficits, rather than preventing them
entirely. More studies are necessary to understand how CBD
exhibits this neuroprotective effect.
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