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Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer, with
tumor cells readily disseminating to other organs through the bloodstream,
lymphatic system, and nervous system, thereby impacting patients’ survival
rates. PDAC is often associated with perineural invasion (PNI), which not only
facilitates tumor spread but may also lead to symptoms such as pain, further
affecting the patient’s quality of life. PNI is frequently observed in PDAC and has
become an important histopathological marker associated with poor clinical
outcomes. Many studies suggest that a high density of Schwann cells (SCs) is
typically found in areas of PNI in PDAC. What’s more, as the primary glial cells in
the PNS, SCs actively contribute to pancreatic tumour progression by releasing
substances capable of interacting with cancer cells and promoting cancer cells
proliferation andmigration in tumormicroenvironment (TME). Therefore, SCs are
crucial in the interactions between nerves and tumors as the primary glial cells
within PNS. In this review, our objective is to present novel insights and
perspectives for PDAC therapy that targets SCs and related signal pathways to
decrease PNI, thereby reduce pain and prolong survival in cancer patients. We
detail and summarize the multiple mechanisms by which SCs promote PNI in
tumors and thus lead to malignancy.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced
metastatic stage, characterized by its aggressive nature and poor prognosis. In the
advanced stages of PDAC, metastasis primarily occurs through three main pathways:
lymphatic, neural, and hematogenous (vascular) dissemination (Avula et al., 2020). The
sympathetic and parasympathetic nerves, which are part of the peripheral nervous system
(PNS), play a role in controlling the pancreas and pancreatic cancer cells tend to invade the
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nerve bundles within the pancreas. Therefore, a representative
feature of PDAC is neuropathy, primarily manifested by PNI, the
infiltration of cancer cells along neural pathways promotes a series of
biochemical and physical interactions that can stimulate both axonal
sprouting, tumor cell proliferation and provide additional pathways
for cancer to spread (Kanda et al., 2012; Mehta et al., 2022). PNI also
leads to nerve-related abdominal pain in patients and is a major
contributor to the pain associated with PDAC (Liebl et al., 2014).
PNI is recognized as an independent factor that predicts poor
prognosis in patients diagnosed with PDAC (Zhang et al., 2013).
Consequently, PNI significantly contributes to the pathophysiology
of PDAC, profoundly affecting both tumor aggression and cancer-
associated pain (Tu et al., 2023). The current understanding of the
mechanisms underlying PNI is insufficient and effective treatment
options for PDAC are scarce. This situation highlights the urgent
need for further research to unravel the biological processes involved
in PDAC development and progression, and to develop more
effective therapeutic strategies (Grigorescu et al., 2024; Ho et al.,
2020; Malikowski et al., 2020; Adamska et al., 2017).

The primary glial cells in the PNS, known as SCs, originated
from the neural crest. SCs generally exist as immature cells but have
the capacity to differentiate into a range of cell types, including
odontoblasts, melanocytes, autonomic neurons, and enteric glia,
depending on the conditions (Milichko and Dyachuk, 2020).
Subsequently, the immature SCs differentiate into myelinating or
non-myelinating SCs (Taveggia and Feltri, 2022; Sinegubov et al.,
2022). SCs demonstrate a strong affinity for cancer cells and initiate
interactions between nerves and cancer cells. These interactions play
a significant role in critical cancer processes, such as tumor
migration, invasion, immune evasion, and the transmission of
cancer-related pain, including that associated with bone cancers
and breast cancers (Zhang et al., 2023; Hao et al., 2023). However,
studies of SCs in PDAC remain relatively scarce. Furthermore,
despite the aggressive nature of PDAC and the recognised role of
nerve-tumor interactions in its progression, a systematic review
summarising the current knowledge of SCs contributions to PNI in
PDAC is lacking.

In this review, we provide an overview of past research findings
and explore the present knowledge concerning PDAC neuropathy.
We summarized the cellular and molecular mechanisms by which
SCs facilitate PNI and induce pain in PDAC. Additionally, it’s
important for future research directions for improving the
diagnosis, prognosis, and treatment of this highly aggressive and
dreaded disease.

2 Perineural invasion in pancreatic
ductal adenocarcinoma

2.1 Intrapancreatic innervation

The pancreas is regulated by a network of sensory branches
along with sympathetic and parasympathetic nerve fibers. This
network functions as a conduit for transmitting sensations from
the pancreas and conveying additional sensory information (Ding
et al., 2024). Researchers believed that the sympathetic innervation
of the pancreas originates from the dorsal root ganglia, and
sympathetic sends nerve impulses to the pancreas via the

pancreatic plexus, which is involved in functions such as
regulation of exocrine and endocrine secretion, blood flow
regulation, sensation and pain in the pancreas (Li W. et al., 2019;
Nicoletti et al., 2024). The balance between sympathetic and
parasympathetic is crucial for running normal physiological
function of the pancreas, and disturbances in this
neuromodulation can lead to pancreatic diseases, including
PDAC (Kiba, 2004). The development of chronic pancreatitis and
pancreatic cancer in humans, intrapancreatic nerves undergo
hypertrophy, increasing in size, and exhibit a higher density, with
a growing number of nerve fibers (Demir et al., 2015). A study
comparing nerve fibres in 256 patients with PDAC, CP and PDAC
patients had significant hypertrophy of interlobular nerve fibres
compared with who had normal pancreas, and a statistically
significant association was observed between elevated
neuroinvasion and reduced overall survival (OS) in patients with
PDAC (Iwasaki et al., 2019). Pancreatic neuropathy has positive
correlation with neuropathic pain by analyzing pancreatic
pathologies in 546 patients with chronic pancreatitis (CP) and
PDAC (Ceyhan et al., 2009). Current research suggests that
nerves might play a crucial role in the dissemination of PDAC
(Li et al., 2021).

2.2 Clinical epidemiology of PNI in PDAC

According to several clinical studies, increasing the severity of
PNI reduced survival in PDAC patients exclusively (Selvaggi et al.,
2022). Tissues from 422 patients with tumor invasion of the nerve
plexus were analysed, and it was found that cancer cells were present
in the nerve space, and that PNI significantly affected the prognosis
of patients on multivariate analysis. Of the 109 patients with PDAC,
75 (68.8%) were positive for nerve infiltration (Tan et al., 2021).
Multivariate COX regression analysis revealed a correlation between
PNI and lymph node metastasis, pancreatitis, and CA19-9 levels
(P < 0.05). Additionally, PNI has been recognized as a distinct
indicator of poor prognosis in pancreatic cancer (P < 0.05) (Yang
et al., 2017). Other studies also found that tumor invasion of
peripheral nerves was present in 531 (93%) of 571 patients who
underwent surgical resection for therapeutic PDAC, with the
majority of PNI-positive patients showing advanced tumor and
lymph node invasion (Felsenstein et al., 2022). In conclusion,
PNI is typically linked to more aggressive tumors, elevated
recurrence rates, and reduced survival outcomes (Figure 1).
Therefore, there is a greater need to improve our understanding
and research into PNI and related mechanisms in PDAC to pursue
therapeutic strategies.

2.3 In vitro and in vivo models for PNI
in PDAC

Research on PNI in PDAC relies on various in vitro and in vivo
models. However, the limitations of these models significantly
hinder a deeper understanding of the mechanisms underlying
PNI. The simplifications inherent in in vitro models further
restrict mechanistic exploration. Neural-cancer cell co-culture
systems, such as dorsal root ganglia co-cultured with PDAC cells,
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or three-dimensional matrix models can simulate chemotactic
migration, they lack the complexity of multi-component
interactions, including blood vessels and immune cells, which are
essential for capturing the intricacies of the tumor-nerve
microenvironment (Ayala et al., 2001; Ceyhan et al., 2008).
Additionally, molecular intervention studies based on Schwann
cell conditioned media can identify the roles of neurotrophic
factors, but they overlook the regulatory effects of physical cell-
to-cell contact and mechanical signals within the microenvironment
(Pettingill et al., 2008).

In vivomodels, such as the in pancreatic tumor model, simulate
the natural disease progression by injecting PDAC cells into the
mouse pancreas. Although this approach preserves the tumor
microenvironment, including interactions between nerves and
stromal cells, PNI formation is slowand exhibits significant
individual variability, making it challenging to dynamically track
real-time interactions between cancer cells and SCs. The sciatic
nerve invasion model accelerates PNI formation through ectopic
injection, allowing for quantification of cancer cell migration along
the nerve; however, it fails to replicate the specific local pancreatic
microenvironment, leading to a disconnect in mechanistic studies
(Deborde et al., 2018). KPC mouse models can spontaneously
develop PDAC accompanied by PNI, but the multi-step
carcinogenic process and the differing time scales compared to
human disease may obscure key early driving events of PNI
(Huang et al., 2023; Hirth et al., 2022). Collectively, these model
limitations result in a fragmented understanding of PNI
mechanisms: in vivo models struggle to elucidate the dynamic
interactions between SCs and cancer cells in real time, while
in vitro systems overly simplify the microenvironment, failing to
reveal the multidimensional synergistic effects of immune
suppression, nerve remodeling, and matrix stiffening. Future
efforts should integrate high-resolution in vivo imaging, multi-

component organ co-culture systems, and single-cell
spatiotemporal omics to overcome existing bottlenecks and
comprehensively decode the molecular and cellular driving
networks of PNI.

3 Function of Schwann cells in
perineural invasion of pancreatic ductal
adenocarcinoma

3.1 SCs: the primary glial cells within the PNS

Neurons and glia are the two main cell types that constitute the
PNS. Neurons are specialized cells responsible for transmitting
electrical and chemical signals, while glia serve as supportive
cells. Astrocytes, oligodendrocytes, microglia, and Schwann cells
are glial cells (von Bartheld et al., 2016) that participate in immune
responses within the nervous system, provide structural support,
maintain the extracellular environment, and regulate
neurotransmitter levels (Grigorescu et al., 2024). Additionally,
they are crucial for developing, maintaining, and repairing neural
circuits (Allen and Lyons, 2018). Among glial cells, SCs are the most
prominent in the PNS. They are vital for the growth, function, and
regeneration of peripheral nerves (Gomez-Sanchez et al., 2015). In
the mature nervous system, SCs are classified into two primary
types: myelinating and non-myelinating (Figure 2). Myelinating SCs
create the myelin sheath that encases all large-diameter peripheral
axons, with each myelinating SC serving a single axon (Bolivar et al.,
2020). In contrast, non-myelinating SCs wrap around multiple
smaller axons, collectively encasing them within a structure
known as a Remak bundle. Under normal physiological
conditions, SCs can lead to PNS myelination, support axons, and
regenerate damaged nerves (Jessen and Arthur-Farraj, 2019).

FIGURE 1
Pathological and Clinical Implications of Perineural Invasion (PNI) in PDAC: This figure illustrates the pathological features of PDAC. Perineural
invasion promotes metastasis and proliferation in cancer cells and also regulates drug resistance. Pancreatic ductal adenocarcinoma patients are more
likely to experience neuropathic symptoms such as back, abdominal pain, neurological dysfunction and asymptomatic PNI. Additionally, high perineural
invasion infiltration in patients is associated with a poor prognosis (Zhang et al., 2013).
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Notably, Schwann cells exhibit remarkable plasticity functioning as
multipotent progenitors capable of differentiating into various glial
and non-glial cell types, including melanocytes, chondrocytes, etc
(Taveggia and Feltri, 2022).

3.2 PNI facilitated by SCs in PDAC

In pathological conditions, SCs can influence cancer
progression. Studies have shown that repair Schwann cells (rSCs),
which arise in response to nerve regeneration after nerve damage
caused by cancer cell invasion. These cells exhibit high plasticity and
can generally differentiated from fully differentiated myelin cells,
non-myelin cells (Remak), and terminal Schwann cells (Wei et al.,
2024). Once converted to rSC, they facilitate the regeneration of
damaged nerves. PNI, a hallmark of pancreatic ductal
adenocarcinoma (PDAC), is present in nearly all cases and can

manifest clinically as pain, paresthesia, numbness, or even paralysis
in some patients (Homolova et al., 2024). Schwann cells have been
identified as pro-tumorigenic cells within the tumor
microenvironment, where they critically promote PNI (Cai et al.,
2024). In human PDAC specimens, a direct association between SCs
and cancer cells has been observed via electron microscopy and
further validated by immunofluorescence (Sun C. et al., 2023; Su
et al., 2020). Similar interactions have been reported in other
maliganancies, including colorectal cancer (Han et al., 2022),
thyroid cancer (Kandil et al., 2010), salivary duct carcinoma
(Nakazato et al., 1985), and squamous cell carcinoma of the skin
(Fahim et al., 2022), suggesting SCs may broadly regulate tumor
innervation across cancer types (Azam and Pecot, 2016).
Mechanistically, SCs secrete a variety of molecules to regulate
tumorigenesis, while cancer cells and nerves reciprocally release
signaling factors that facilitate PNI (Bakst and Wong, 2016). These
findings highlight the complex interplay between different signalling

FIGURE 2
Developmental Lineage and Functional Characteristics of Schwann Cells. Schwann cells from neural crest-derived progenitors later highlight their
differentiation into immature Schwann cells and subsequent maturation into myelinating or non-myelinating subtypes. Abnormal variants of each
subtype are noted, along with their potential pathological implications.
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molecules, neurotrophic factors, and chemokines in promoting PNI
and tumor progression (Jiang et al., 2022). From a therapeutic
perspective, further research is needed to determine whether
broad targeting of SCs or specific inhibition of PNI-related
molecular pathways would be more beneficial for patients. A
deeper understanding of the cellular and molecular mechanisms
driving perineural invasion could unveil novel opportunities for
therapeutic intervention.

Recent studies have delineated the molecular signatures of
sympathetic and sensory neurons innervating PDAC or healthy
pancreas, revealing distinct transcriptomic patterns in tumor-
associated neurons and their interactive networks with the TME.
Further investigations demonstrate that pharmacological
denervation induces a pro-inflammatory TME and enhances the
efficacy of immune checkpoint inhibitors, while taxane-based drugs
(e.g., nab-paclitaxel) suppress PDAC growth by inducing
intratumoral neuropathy. Additionally, SCs play critical roles in
cancer invasion, as tumor-activated Schwann cell tracks (TASTs)
dynamically form migration pathways for cancer cells through
c-Jun-dependent reprogramming, analogous to nerve repair
processes. Spatial transcriptomic analyses reveal hypertrophic
tumor-associated nerves in PDAC exhibit features of neural
injury, including programmed cell death, Schwann cell
proliferation signaling, and increased neuroglial cell turnover
with concurrent apoptosis. These findings uncover the
pathological mechanisms of nerve injury and repair within the
tumor-nerve microenvironment, establishing novel therapeutic
strategies targeting neural regulation in PDAC (Weitz et al.,
2023; Deborde et al., 2022; Thiel et al., 2025).

3.3 SCs and other cell typeswork together to
influence PNI

The abundance of SCs within the tumor is clinically significant,
with higher SC densities typically correlating with increased PNI
(Deborde et al., 2016). SCs recruit specific immune cells to enhance
the PNI capability of tumor cells. Notably, SCs exhibit strong
associations with myeloid-derived suppressor cells, regulatory
T cells, and macrophages, implying potential crosstalk within the
tumor microenvironment (Sun C. et al., 2023). Macrophages in the
tumor microenvironment can polarize into distinct phenotypes,
including M1, M2, and tumor-associated macrophages (TAMs)
(Gao et al., 2022). M1 often eliminates the damaged cells in
inflammatory tissue, while M2 often promotes the proliferation
of neoplastic cells (Zhang and Sioud, 2023). TAMs further secrete
factors (such as IL-8) to activate PDAC cells and promote PNI
(Boutilier and Elsawa, 2021). SCs can secrete some factors that affect
macrophages. Galectin-3 is secreted by SCs, which can induce a
chemotactic response of the macrophage cells, and macrophage
infiltration can induce peripheral neuropathy (Koyanagi et al.,
2021). The reciprocal bFGF/IL-33 signaling axis between
Schwann cells and TAMs also has found to play a critical role in
facilitating perineural invasion (PNI) in pancreatic ductal
adenocarcinoma (PDAC), creating a self-amplifying feedback
loop that drives neural infiltration (Zhang et al., 2024). In
addition, chemokine 2 (CXCL-2) and chemokine 1 (CXCL-1)
secreted by SCs also promoted macrophage infiltration, which

promotes pain perception (Zhang et al., 2023; Ntogwa et al.,
2020). During nerve damage in cancer, SCs and macrophages
engage in reciprocal interactions (De Logu et al., 2021).
Activation of SCs TRPA1 stimulated NOX1-dependent
H2O2 production to recruit macrophages. TRPA1 silencing
reduces macrophage infiltration and alleviates mechanical pain in
murine models (De Logu et al., 2017). Schwann cell-derived
exosomes (SCDEs) suppress M1 macrophage polarization while
stimulating M2 polarization, thereby diminishing inflammation,
aiding in the regeneration of the myelin sheath and axons, and
assisting in the repair of sciatic function (Ren et al., 2023; Sun J. et al.,
2023; Fendl et al., 2023). In SCs, upregulating lncARAT facilitates
axonal regeneration by attracting and activating macrophages (Yin
et al., 2022).

Emerging evidence indicates that the interactions between
cancer-associated fibroblasts (CAFs) and SCs significantly
influence cancer progression in TME (Akkiz, 2023). CAFs, key
stromal components in cancers like PDAC, drive tumor growth,
invasion, and metastasis (Mao et al., 2021). SCs and CAFs can
communicate through paracrine signaling, where they release
signaling cytokines, chemokines, and other molecules. Such
growth factors TGF-β can stimulate SCs to produce factors that
promote tumor progression (Fang et al., 2023). SCs can facilitate the
conversion of tumor cells and CAFs into more aggressive forms,
such as basal-like tumor cells and inflammatory CAFs (iCAFs)
(Wright et al., 2023). SCs boost the growth and movement of
tumor cells via Midkine signaling. Additionally, they facilitate the
conversion into iCAFs through the function of interleukin-1α (Xue
et al., 2023). The presence of CAFs correlated significantly with PNI
in breast cancer (Son et al., 2019). The PNI-associated transcript
(PIAT) of the CAF can promote neural remodeling in pancreatic
cancer by mediating the modification of m5C (Zheng et al., 2024).

In addition, SCs also recruit and polarize dendritic cells into
regulatory dendritic cells (rDCs), which exhibit reduced pro-
inflammatory cytokine expression and elevated anti-inflammatory
markers (e.g., IL-10, TGF-β), further facilitating PNI (Schmidt et al.,
2012; Troise et al., 2024). While the TME is known to mediate PNI
through complex cellular interactions, the specific mechanisms by
which SCs coordinate with other TME components to promote PNI
in PDAC remain poorly characterized (Capodanno and Hirth,
2023). A comprehensive understanding of these interactions may
not only clarify the biological underpinnings of PNI but also identify
potential therapeutic targets (Figure 3).

4 Schwann cells molecular mediators
promote perineural invasion in
pancreatic ductal adenocarcinoma

4.1 Neurotrophins

SCs play a direct role in regulating PDAC progression through
the secretion of various signaling molecules, including
neurotrophins (GDNF, NGF, BDNF, and NT-3), chemokines,
cytokines, axonal guidance molecules, matrix metalloproteinases,
and other molecular mediators (Figure 4). These neurotrophins and
their receptors (Trk and p75NTR) mediate critical pathways in
tumor development (Ferdoushi et al., 2020; Chang et al., 2019;Wang
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et al., 2014). Specifically, elevated nerve growth factor (NGF)
enhances TrkA signalling to activate the MAPK pathway
supporting critical processes for neuronal cell survival,
differentiation, and axon development (Marlin and Li, 2015).
GDNF promotes cancer cell migration by activating both PI3K/
Akt and Ras-Raf-MEK-ERK signaling pathways (Veit et al., 2004).
The BDNF/TrkB axis, along with NT-3/TrkC signaling, facilitates
PDAC progression through perineural invasion, with TrkB being
overexpressed in approximately 50% of PDAC cases compared to
normal tissue (Sclabas et al., 2005; Akil et al., 2016). Importantly,
blockade of NT-3/TrkC signaling has been shown to inhibit PNI in
both pancreatic and prostate cancers (Li H. et al., 2019). The release
of neurotrophins by SCs highlights their role in the intricate
interaction between the PNS and tumor development, indicating
their potential as targets for cancer therapy.

4.2 Chemokines and cytokines

Chemokines, including CXCL-12, CCL-2 and CCL-5, have been
shown to recruit immune cells to the TME, which supports
inflammation and enhances tumor progression (Demir et al.,
2017; Huang et al., 2020; Aldinucci and Colombatti, 2014). SC-
derived cytokines such as IL-6, TNF-α, and TGF-β play pivotal roles

in promoting tumor cell proliferation, invasion, and perineural
invasion (PNI) through activation of critical signaling pathways
like STAT-3 and NF-κB (Bolin et al., 1995; Chu et al., 2020). A study
showed that CCL21 and CXCL10 promote pancreatic cancer cell
migration toward sensory neurons, and high CXCR3/CCR7 levels in
PDAC patients correlate with increased cancer-associated pain
(Hirth et al., 2020). Moreover, the CX3CR-1/CX3CL-1 signaling
pathway has been implicated in the invasion of peripheral nerves
and the spread of tumor cells along nerves both within and outside
the pancreas (Marchesi et al., 2010). Similarly, the CXCL-12/CXCR-
4 signaling pathway has been shown to enhance the invasiveness of
prostate cancer cells in laboratory conditions and to elevate the
number of nerves in living organisms (Song et al., 2024). SCs exhibit
unique pro-tumorigenic behaviors by modulating pathways such as
CXCL-5/CXCR-2/PI3K/AKT/GSK-3β/Snail-Twist to drive EMT
and metastatic potential in lung cancer (Tian et al., 2022).
Additionally, SCs co-cultured with tumor cells can secrete high
levels of IL-6, which promotes the migration and invasion of the
cancer cells through the activation of STAT-3 signaling, however, it
can be mitigated by neutralizing IL-6 or inhibiting STAT-3
expression (Su et al., 2020). Furthermore, SCs-derived TGF-β
contributes to the acquisition of aggressive properties by
pancreatic cancer cells (Roger et al., 2019), while cancer-activated
SCs form invasive tracks through the c-Jun-dependent mechanism

FIGURE 3
The role of Schwann cells in facilitating perineural invasion and tumor innervation, contributing to cancer metastasis. Schwann cells have a strong
attraction to cancer cells. Cancer cells are attracted to Schwann cells or adapt to invade nerves, actively forming a tumour-nerve niche. Schwann cells can
synergistically promote cancer metastasis by secreting neurotrophic factors and chemokines and by regulating various cells within the tumour
microenvironment. This interaction creates a positive feedback loop between cancer cells and nerves.
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(Arthur-Farraj et al., 2012). The release of chemokines and cytokines
by SCs is crucial in cancer development, as it influences immune
responses, fosters inflammation, and supports the survival and
growth of tumor cells. Additional research is necessary to
elucidate the precise mechanisms through which SCs-secreted
chemokines and cytokines contribute to tumorigenesis, aiming to
create innovative cancer treatment approaches.

4.3 Matrix metalloproteinases

Matrix metalloproteinases (MMPs) are crucial enzymes
involved in extracellular matrix (ECM) remodeling, playing key
roles in both physiological processes (e.g., nerve repair) and
pathological conditions (e.g., cancer progression). In the PNS,
SCs have been shown to release MMP-2 and MMP-9 (Okada
et al., 2004; Okada et al., 2003), which facilitate ECM

degradation to enable cellular migration and subsequent
remyelination during nerve regeneration. Emerging evidence
indicates that SC-derived MMPs also contribute to cancer
pathogenesis by remodeling the tumor microenvironment (TME),
thereby promoting cancer cell invasion and metastasis (Kessenbrock
et al., 2010). Notably, MMP-9, an extracellular protease that is
upregulated in SCs following peripheral nerve injury, plays a vital
role in regulating axonal degeneration and recruiting macrophages
to the injury site (Chattopadhyay et al., 2007). In addition, SCsmight
secrete MMP-2, cathepsin D, plasminogen activator inhibitor-1, or
galectin-1, which collectively modify the TME to favor perineural
invasion PNI (Ferdoushi et al., 2020). This phenomenon is
particularly evident in cervical cancer, where cancer cell-activated
SCs demonstrate increased MMP expression that degrades the ECM
and creates a PNI-permissive microenvironment (Huang et al.,
2020). Given the well-established role of SC-derived MMPs in
nervous system development and regeneration, further

FIGURE 4
Molecular Mediators involved in Schwann cells. (A) Schwann cells secrete Neurotrophins, such as nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), along with their receptors (Trk and p75NTR) promote tumor cell invasion of nerves. (B) Schwann
cells release cytokines such as IL-6, tumor necrosis factor-alpha (TNF-α), and TGF-β, which promote tumor cell survival, proliferation, invasion, and
epithelial-mesenchymal transition (EMT) of pancreatic cancer cells through pathways involving STAT-3, NF-κB, or CX3CR-1/CX3CL-1. (C)MMP-2,
MMP-9, and MMP-12 are secreted by Schwann cells, which is essential to exploring the role of SCs in tumor innervation. (D) Schwann cells release Gal-
3BP, cathepsin D, PAI-1, biglycan, TIMP-2, and Gal-1 to promote tumor growth.
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investigation into their contribution to tumor innervation processes
is warranted. Understanding these mechanisms may provide novel
insights into the neural tropism of malignant cells and potential
therapeutic targets.

4.4 Other molecular mediators

Proteomic analysis of the SC secretome identified multiple
proteins involved in cell-cell adhesion, oxidation-reduction
processes, and other functions. Key findings showed that proteins
such as Gal-3BP, MMP-2, cathepsin D, PAI-1, biglycan, TIMP-2,
and Gal-1 were upregulated in SC-conditioned medium. These
proteins promoted pancreatic cancer cells proliferation and
migration, and their effects were reversible by blocking antibodies
(Ferdoushi et al., 2020). Notably, many of these proteins have been
previously linked to pancreatic cancer progression. For example,
blocking antibodies against Gal-3BP inhibited lung metastasis and
prolonged survival in orthotopic pancreatic cancer mouse models
(Choi et al., 2022). Downregulation of cathepsin D and Galectin-1
inhibits the migration of pancreatic cancer cells (Roda et al., 2009;
Whiteman et al., 2007). The study identified several proteins that
were not validated in this research, but these proteins have been
confirmed to participate in the progression of other cancers and may
likewise contribute to pancreatic cancer development. Additionally,
depletion of the long noncoding RNA (lncRNA) plasmacytoma
variant translocation 1 (PVT1) secreted by nonmyelinating
Schwann cells inhibits tumor growth in PDAC (Sun C. et al.,
2023). Understanding the molecules secreted by SCs and their
mechanisms of action can provide a theoretical basis for
developing therapeutic strategies to block PNI.

5 Conclusion and future perspectives

Schwann cells (SCs) play a pivotal role in the pathogenesis of
perineural invasion (PNI) in pancreatic ductal adenocarcinoma
(PDAC). During PNI, SCs dynamically interact with cancer cells
and other components of the tumour microenvironment to facilitate
nerve infiltration and metastasis. In addition, SCs contribute to
neural remodelling and inflammatory responses by recruiting
immune cells, thereby fostering an immunosuppressive niche that
supports tumour progression. Neuro-immune interactions regulate
the tumor immune microenvironment through multiple pathways,
including adrenergic, cholinergic, and neuropeptide signaling.
Preclinical and clinical data indicate that the sympathetic nervous
system directly governs T cell fate via the adrenergic receptor
ADRB1, driving their terminal differentiation into exhausted
states and thereby suppressing anti-tumor immunity (Globig
et al., 2023). Notably, pancreatic cancer patients using β-blockers
exhibit survival benefits, underscoring the critical role of neuro-
immune crosstalk in immune regulation. This discovery highlights a
promising research direction for understanding and manipulating
neuro-immune interactions in cancer therapy. SCs involvement in
cancer-associated pain underscores their dual role in PDAC
pathophysiology, as SC-nerve interactions amplify nociceptive
signalling through cytokine release and neuronal sensitisation.
What’s more, emerging evidence suggests that SC-derived

exosomes can modulate the tumor microenvironment by
influencing the behavior of various stromal and immune cells,
such as CAFs and tumor-infiltrating immune cells. These
exosomes may facilitate intercellular communication,
reprogramming immune responses, promoting fibroblast
activation, or even enhancing tumor cell invasiveness (Hao et al.,
2023; Wong et al., 2022; Wei et al., 2019). Although there are
currently no reports on the role of Schwann cell (SC)-derived
exosomes in regulating pancreatic cancer progression,
investigating the impact of SC-secreted exosomes on tumor cells
holds significant scientific and clinical relevance.

Targeting Schwann cells is a promising therapeutic approach
because disrupting the communication between SCs and cancer cells
has the potential to inhibit critical processes such as PNI and
metastasis. By disrupting the signalling pathways that facilitate
this interaction, it may be possible to slow tumour progression,
reduce the likelihood of cancer spreading to adjacent tissues and
distant organs, and enhance the body’s immune response against the
tumour, potentially leading to improved patient outcomes. In
addition, modulating the tumour-promoting secretory profile of
SCs could alter the tumour microenvironment in a way that reduces
the supportive role of SCs in cancer progression. Targeting Schwann
cells could be a valuable addition to existing therapies that not only
aim to alleviate the pain associated with tumour invasion, but also
aim to improve overall survival rates for patients battling PDAC.
Further research is needed to uncover chemotherapy-induced
peripheral neuropathy underlying mechanisms, assess whether
chemotherapy-induced nerve damage fuels tumor progression,
and develop better diagnostic tools to distinguish systemic from
tumor-associated neuropathy.

Despite these promising avenues, significant challenges remain
to fully elucidate the heterogeneity of Schwann cells and their
context-dependent functions within the PDAC microenvironment.
The function of SCs can vary significantly depending on their local
environment and the stage of tumour development. This complexity
complicates the development of targeted therapies, so addressing
these knowledge gaps is critical to advancing SC-focused
interventions into clinical practice. The use of advanced
experimental models, including in vitro and in vivo systems that
accurately mimic the tumour microenvironment, will be essential to
gain a deeper understanding of SC biology in PDAC. In addition,
detailed mechanistic studies will help elucidate the specific roles that
SCs play in tumour progression and their interactions with cancer
cells. By overcoming these challenges, researchers can pave the way for
innovative therapeutic strategies that exploit the unique properties of
Schwann cells, ultimately improving patient outcomes and offering
new hope in the fight against pancreatic cancer.
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Glossary
SCs Schwann cells

PNI perineural invasion

PDAC pancreatic ductal adenocarcinoma

TME tumor microenvironment

PNS peripheral nervous system

CT Computed tomography

MR Magnetic Resonance

CP chronic pancreatitis

rSCs repair Schwann cells

Remak non-myelin Schwann cells

TAMs tumor-associated macrophages

IL-8 interleukin-8

CXCL-1 chemokine 1

CXCL-2 chemokine 2

CXCL-5 chemokine 5

CXCL-12 chemokine 12

TRPA1 transient receptor potential ankyrin 1

NOX1 NADPH oxidase 1

CAFs cancer-associated fibroblasts

TGF-β Transforming growth factor-β

iCAFs inflammatory CAFs

IL-6 Interleukin-6

IL-10 Interleukin-10

NGF nerve growth factor

GDNF glial cell-derived neurotrophic factor

BDNF brain-derived neurotrophic factor

NT-3 neurotrophin-3

p75NTR p75 Neurotrophin Receptor

Trk Tyrosine kinase receptor

TrkA Tyrosine kinase receptor A

TrkB Tyrosine kinase receptor B

TrkC Tyrosine kinase receptor C

MAPK Mitogen-activated protein kinase

PI3K Phosphoinositide 3-kinases

Akt protein kinase B

MEK mitogen-activated protein kinase

ERK extracellular-signal-regulated kinase

CCL-2 chemokine (C-C motif) ligand 2

CCL-5 chemokine (C-C motif) ligand 5

TNF-α tumor necrosis factor-alpha

STAT-3 Signal transducer and activator of transcription 3

NF-κB Nuclear factor kappa B

CX3CR-1 CX3C motif chemokine receptor 1

CX3CL-1 chemokine (C-X3-C motif) ligand 1

CXCR-2 C-X-C chemokine receptor type 2

CXCR-4 C-X-C chemokine receptor type 4

GSK-3β Glycogen Synthase Kinase 3beta

EMT epithelial-mesenchymal transition

MMPs matrix metalloproteinase

MMP2 matrix metallopeptidase 2

MMP9 matrix metallopeptidase 9

MMP12 matrix metallopeptidase 12

Ach acetylcholine

NE norepinephrine

β-AR β-adrenergic receptor

Gal-3BP galectin-3–binding protein

PAI-1 plasminogen activator inhibitor-1 biglycan

TIMP-2 tissue inhibitor of metalloproteinases-2

Gal-1 galectin-1.
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