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Background: Lung adenocarcinoma (LUAD) remains a major cause of cancer-
related mortality worldwide, with high heterogeneity and poor prognosis.
Epigenetic dysregulation plays a crucial role in LUAD progression, yet its
potential in molecular classification and therapeutic prediction remains largely
unexplored.

Methods:Weperformed an integratedmulti-omics analysis of 432 LUAD patients
from TCGA and 398 patients from GEO datasets. Using consensus clustering and
random survival forest (RSF) algorithms, we established an epigenetic-based
molecular classification system and constructed a prognostic model. The
model’s performance was validated in multiple independent cohorts, and its
biological implications were investigated through comprehensive
functional analyses.

Results: We identified two distinct molecular subtypes (CS1 and CS2) with
significant differences in epigenetic modification patterns, immune
microenvironment, and clinical outcomes (P = 0.005). The RSF-based
prognostic model demonstrated robust performance in both training (TCGA-
LUAD) and validation (GSE72094) cohorts, with time-dependent AUC values
ranging from 0.625 to 0.694. Low-risk patients exhibited enhanced immune
cell infiltration, particularly CD8+ T cells andM1macrophages, and showed better
responses to immune checkpoint inhibitors. Drug sensitivity analysis revealed
subtype-specific therapeutic vulnerabilities, with low-risk patients showing
higher sensitivity to conventional chemotherapy and targeted therapy.

Conclusion:Our study establishes a novel epigenetic-based classification system
and predictive model for LUAD, providing valuable insights into patient
stratification and personalized treatment selection. The model’s ability to
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predict immunotherapy response and drug sensitivity offers practical guidance for
clinical decision-making, potentially improving patient outcomes through
precision medicine approaches.
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1 Introduction

Lung cancer remains the leading cause of cancer-related deaths
globally. It primarily manifests in two forms: Small Cell Lung Cancer
and Non-Small Cell Lung Cancer (NSCLC), with NSCLC accounting
for approximately 85% of all lung cancer cases and demonstrating a
mere 26% 5-year survival rate. NSCLC predominantly comprises Lung
Adenocarcinoma (LUAD) and squamous cell carcinoma, with LUAD
representing approximately 70% of all NSCLC cases and exhibiting
poor prognosis (Niu et al., 2022). The diagnosis and treatment of LUAD
face several critical challenges: the absence of early symptoms often
results in late-stage diagnosis; high tumor heterogeneity complicates
personalized treatment approaches; and poor drug tolerance and
resistance development significantly impact treatment efficacy
(Cheng Y. et al., 2021; Wu and Lin, 2022). Currently, standard
LUAD treatment protocols primarily encompass surgical resection,
radiotherapy, chemotherapy, and immune checkpoint inhibitor therapy
(Sun et al., 2024; Passaro et al., 2022). However, these conventional
therapeutic approaches present significant limitations: surgery is only
viable for early-stage patients; radio- and chemotherapy often induce
severe adverse effects with limited efficacy; and immunotherapy
demonstrates variable response rates while carrying risks of
immune-related adverse events (Cheng Y. et al., 2021; Wang J. et al.,
2021). Consequently, identifying LUAD-associated biomarkers and
exploring novel therapeutic strategies have become focal points in
current clinical research.

In recent years, epigenetic therapy has garnered substantial
attention. Epigenetic modifications, including DNA methylation,
histone modifications, and chromatin remodeling, serve as crucial
molecular switches that dynamically regulate gene expression
patterns without altering the underlying DNA sequence. In normal
cells, these epigenetic mechanisms precisely control spatiotemporal
gene expression to maintain cellular homeostasis (Chen et al., 2020).
Previous studies on the molecular subtyping of LUAD have mainly
focused on genomic changes, with relatively limited attention paid to
epigenetic mechanisms. At present, some studies have explored
subtypes based on DNA methylation in LUAD. For example, Zhao
et al. identified two subtypes associated with LUAD prognosis through
DNA methylation typing (Zhao et al., 2021). However, these studies
usually examine DNA methylation alone, which may miss important
biological interactions. Compared with genomic profiling, epigenetic-
based classification has unique advantages: it better reflects the dynamic
nature of cancer progression, shows stronger correlationwith treatment
response, and can capture regulatory mechanisms that may be missed
through genomic analysis alone. Recent studies have demonstrated that
dysregulation of these epigenetic mechanisms significantly promotes
LUAD initiation, progression, and therapeutic resistance (Fan et al.,
2024). For instance, Rowbotham et al. demonstrated that
H3K9 methyltransferases and demethylases control lung tumor

proliferating cells and cancer progression by regulating extracellular
matrix genes through G9a suppression, driving lung adenocarcinoma
cells toward the TPC phenotype (Rowbotham et al., 2018). Li et al.’s
research revealed that histone demethylases (such as JARID1B and
LSD1) influence chromatin structure and gene expression by removing
histonemethyl modifications (Li et al., 2011). Bajbouj et al. reported the
potential role of histonemodifications inNSCLC treatment, noting that
epigenetic alterations inH2A (H2AK5ac) andH3 (H3K4me2,H3K9ac)
possess higher prognostic value in early-stage NSCLC (Bajbouj et al.,
2021). Furthermore, these epigenetic alterations can modulate the
tumor microenvironment and influence immune surveillance
mechanisms, indicating their potential as therapeutic targets (Hogg
et al., 2020). Epigenetic therapy offers unique advantages compared to
other treatments: reversibility through pharmaceutical intervention;
tissue and cell specificity enabling precise treatment; and the ability to
enhance immunotherapy efficacy while reversing tumor drug
resistance (Yu et al., 2024; Topper et al., 2020).

In this study, we proposed an integrated approach to identify
clinically relevant molecular subtypes in LUAD by leveraging single-
cell sequencing technology and advanced machine learning
algorithms in combination with epigenetic and transcriptomic
data, with the primary goal of improving treatment stratification
and patient outcomes (Baysoy et al., 2023). Our specific objectives
were to: establish robust LUAD molecular subtypes based on
integrated epigenetic and transcriptomic signatures to effectively
guide clinical decisions; develop and validate a practical
classification model that can be easily implemented in a clinical
setting for patient stratification; and evaluate how these subtypes can
inform treatment selection, particularly for immunotherapy and
targeted therapies. This integrated approach addresses a critical gap
in the current management of LUAD by providing a more
comprehensive molecular classification system that is directly
relevant to treatment decisions. For example, identifying subtypes
with distinct immunological signatures can help select patients who
are more likely to respond to immunotherapy, while understanding
epigenetic patterns associated with drug sensitivity can guide the
selection of targeted therapies. Such stratification is critical to
advancing precision medicine for the treatment of LUAD, with
the potential to improve response rates and patient outcomes while
reducing unnecessary treatments and associated costs.

2 Materials and methods

2.1 Data source

This study primarily analyzed two large Lung Adenocarcinoma
(LUAD) cohorts. The main analysis cohort was derived from The
Cancer Genome Atlas (TCGA-LUAD, https://portal.gdc.cancer.
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gov/), comprising multi-omics data from 432 patients, including
mRNA expression profiles, miRNA expression profiles, long non-
coding RNA (lncRNA) expression profiles, DNA methylation
profiles, and somatic mutation information (Tomczak et al.,
2015). The first validation cohort, GSE72094, was obtained from
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database, containing gene expression profiles and
clinical follow-up data for 398 LUAD patients.

To validate the model’s predictive value in immunotherapy, we
incorporated two additional Non-Small Cell Lung Cancer (NSCLC)
cohorts that received immune checkpoint inhibitor therapy:
GSE91061 (109 patients receiving anti-PD-1/CTLA4 treatment)
and GSE135222 (27 patients receiving anti-PD-1 treatment). All
gene expression data underwent standardization to eliminate batch
effects. The epigenetic regulatory gene set was sourced from the
EpiFactors database (http://epifactors.autosome.ru/), which
systematically catalogs human protein complexes associated with
epigenetic modifications (Marakulina et al., 2023).

To address potential batch effects between different data sources, we
implemented a systematic data harmonization strategy. Raw data from
both TCGA and GEO datasets underwent consistent preprocessing: (1)
probe-level data were mapped to gene symbols using manufacturer-
provided annotation files; (2) when multiple probes mapped to the
same gene, the probe with the highest mean intensity was retained; (3)
missing values were imputed using k-nearest neighbor
algorithm (k = 10).

For batch effect correction, we employed a two-step approach:
(1) ComBat algorithm from the sva R package was applied to remove
systematic batch effects while preserving biological variations; (2)
quantile normalization was performed to ensure comparable
distribution of expression values across datasets. The effectiveness
of batch correction was evaluated through principal component
analysis (PCA) and relative log expression (RLE) plots before and
after correction. Additionally, we performed correlation analysis
between technical replicates across different platforms to ensure
data consistency. These procedures effectively minimized technical
variations while maintaining biological signals, enabling reliable
integration of multi-source data for downstream analyses.

All analyses were performed using R version 4.4.0.

2.2 Molecular subtype characterization
through multi-omics data integration

To identify LUAD molecular subtypes, we employed the MOVICS
algorithm for integrated multi-omics clustering analysis (Lu et al., 2021).
The MOVICS package was implemented using a multi-step approach
(Version: 0.99.17). For feature selection, we first filtered epigenetics-
related genes and performed survival analysis (Cox regression, p < 0.05)
on mRNA expression data. For other molecular features, we applied the
following criteria: top 1500 MAD-filtered lncRNAs followed by survival
filtering (p < 0.05); top 50% MAD-filtered miRNAs with survival
significance (p < 0.05); top 1500 MAD-filtered methylation sites with
survival significance (p < 0.05); and mutation features present in >5% of
samples. The optimal cluster number was determined by testing k = 2-
8 using multiple clustering methods. Integration was performed using
Gaussian models for expression and methylation data, and binomial
model for mutation data. Clustering robustness was assessed using

silhouette analysis and consensus clustering with euclidean distance
and average linkage. Data standardization employed centerFlag and
scaleFlag parameters for expression and methylation features, with
methylation values converted to M-values for enhanced signal detection.

Initially, we conducted feature selection for each data type: for
mRNA expression, we focused on epigenetic-related genes and
selected survival-associated features using Cox regression (p <
0.05). For lncRNA and methylation data, we initially selected
1,500 features with the highest variation using Median Absolute
Deviation (MAD), followed by survival-based screening (Cox p <
0.05). For miRNA expression, we retained the top 50% features by
variation and further filtered them through Cox regression (p <
0.05). For mutation data, we selected genes with mutation
frequencies exceeding 5%. The optimal cluster number was
determined through multiple clustering evaluation metrics.
Subsequently, we applied a multi-omics integration clustering
method that combined Gaussian distribution models for
expression and methylation data with binomial distribution
models for mutation data. Clustering robustness was evaluated
through consensus clustering and silhouette analysis by using
ConcensusClusterPlus package (Version: 1.66.0) (Wilkerson and
Hayes, 2010). To visualize molecular subtypes, we generated
comprehensive heatmaps displaying patterns of selected features
across different omics levels. Survival differences between identified
subtypes were assessed using Kaplan-Meier analysis.

2.3 Transcriptional regulation and immune
microenvironment characteristics of LUAD
molecular subtypes

Building upon the molecular subtyping results, we further explored
the biological characteristics of different molecular subtypes. Initially, we
selected key transcription factors including FOXM1, EGFR, KLF4, and
epigenetic regulatory genes such as SIRT6 and EHMT2 to construct
transcriptional regulatory networks using the RTN algorithm (Dai et al.,
2020), evaluating their activity differences across subtypes. Subsequently,
we employed multiple methods to assess tumor immune
microenvironment characteristics: quantifying tumor-infiltrating
lymphocyte levels using MeTIL scores (Zou et al., 2021), evaluating
tumor purity, stromal and immune cell infiltration using the ESTIMATE
algorithm (Yoshihara et al., 2013), analyzing expression profiles of
immune checkpoint-related genes including PD-1/PD-L1, and
deconvoluting the composition of 22 immune cell types using the
CIBERSORT algorithm (Guan et al., 2022; Chen et al., 2018). Finally,
to verify the stability and reproducibility of molecular subtyping, we
constructed an NTP classifier based on differential genes and employed
PAM algorithm for cross-validation (Yoshihara et al., 2013), validating
the classification results in an independent cohort (GSE72094) while
assessing consistency between different classification methods.

2.4 Performance evaluation of integrated
machine learning models in LUAD prognosis
prediction

Based on the preceding multi-omics molecular subtyping
results, we constructed various machine learning prognostic
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prediction models. Using TCGA-LUAD as the training set and
GSE72094 as the independent validation set, we first performed
standardized data preprocessing. We then implemented multiple
baseline machine learning algorithms, including Random Survival
Forest (RSF) (Becker et al., 2023), Elastic Net, stepwise regression for
Cox proportional hazards model (StepCox), CoxBoost, partial least
squares regression (plsRcox), principal component analysis
(SuperPC), Gradient Boosting Machine (GBM), and Support
Vector Machine (survival-SVM). Additionally, we explored
ensemble learning strategies combining various feature selection
methods with algorithms, such as combinations of RSF, Lasso,
StepCox, and CoxBoost feature selection with other algorithms.
Using C-index as the evaluation metric, we visualized and compared
the predictive performance of different models across datasets
through heatmaps, analyzing performance differences between
single algorithms and ensemble strategies, as well as model
stability across training and validation sets.

2.5 Validation and in-depth analysis of
machine learning prognostic models

Based on the model comparison results, we selected the best-
performing RSF model for detailed analysis with package of
randomForestSRC (Version: 3.3.1). Initially, we employed
Variable Importance Analysis (VIMP) to evaluate each gene’s
contribution to prognosis prediction, visualizing the top 20 genes
with the highest importance scores. Subsequently, we constructed a
risk prediction model based on these key genes through the
following process: (1) z-score standardization of gene expression
data; (2) utilization of RSF algorithm mortality predictions as risk
scores; (3) determination of optimal risk grouping thresholds by
maximizing log-rank test statistics. To evaluate model predictive
performance, we conducted time-dependent ROC curve analysis
with survival package (Version: 3.5.8) for 1-year, 3-year, and 5-year
prognostic predictions, with quantitative assessment through AUC
values by using timeROC package (Version: 0.4). Simultaneously, we
employed Kaplan-Meier survival analysis and log-rank tests to
evaluate survival differences between high- and low-risk groups.
All analyses were performed in both TCGA training and
GSE72094 validation sets to verify model stability and
reproducibility.

2.6 Multi-dimensional clinical feature
validation of risk prediction model

To comprehensively evaluate the clinical utility of the RSF
risk prediction model, we conducted multi-layered validation
analyses. We initially employed pie charts to visualize the
distribution differences of clinical features between high- and
low-risk groups, including TNM staging, clinical staging, and
gender, with chi-square tests assessing statistical significance.
Subsequently, we analyzed risk score distributions across
different T stages using violin plots and box plots combined
with Wilcoxon rank-sum tests. Concurrently, we constructed
heatmaps featuring model-selected marker genes,
demonstrating their expression patterns across risk groups

and clinical phenotypes. Additionally, we employed ROC
curves to assess the model’s stratification capability between
early and late-stage patients (Stage I + II vs. III + IV). Finally, we
conducted survival analyses within clinical stage subgroups and
age subgroups to validate the model’s prognostic prediction
value in early-stage patients. All visualizations were
implemented using R software packages including pheatmap,
ggplot2, and survminer.

2.7 Independent prognostic value
assessment and nomogram construction for
survival prediction model

To evaluate the independent prognostic value and clinical
application potential of the risk prediction model, we conducted
systematic statistical analyses. Initially, we assessed the association
between prognostic factors (age, gender, TNM staging, clinical
staging, and risk scores) and survival outcomes through
univariate Cox regression analysis, visualizing hazard ratios (HR)
and their 95% confidence intervals through forest plots.
Subsequently, statistically significant factors were incorporated
into a multivariate Cox regression model to validate the
independent prognostic value of the risk score. Based on the
multivariate Cox model, we constructed nomograms integrating
clinicopathological features and evaluated the accuracy of 1-year, 3-
year, and 5-year survival predictions through calibration curves.
Furthermore, we employed Decision Curve Analysis (DCA) to
assess the model’s clinical decision-making value (Rousson and
Zumbrunn, 2011) and compared the discriminative ability of
different predictive factors through time-dependent C-index. All
statistical analyses were implemented using R software packages
including rms, timeROC, and survcomp, with p < 0.05 considered
statistically significant.

2.8 Functional annotation and pathway
enrichment analysis of risk score model

To investigate the biological mechanisms reflected by the risk
score, we conducted systematic functional enrichment analyses
(Ashburner et al., 2000; Ogata et al., 1999). Initially, we
performed differential expression analysis between high- and
low-risk groups using the limma package to identify significantly
differentially expressed genes. Subsequently, we employed the Gene
Set Variation Analysis (GSVA) algorithm to assess Hallmark gene
set activity levels in each sample. GSVA scores underwent
intergroup differential analysis, with t-tests identifying
significantly altered signaling pathways. We utilized the corrplot
package to generate correlation heatmaps between risk scores and
pathway activities, revealing key regulatory networks. Furthermore,
we stratified samples into high and low expression groups based on
pathway activity medians, evaluating the association between
important pathways and prognosis through Kaplan-Meier
survival analysis and Cox proportional hazards regression. All
analyses were implemented using R software packages including
GSVA, limma, and survminer, with statistical significance set at p <
0.05 after multiple testing correction.
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2.9 Analysis of immune microenvironment
features and Their Association with
risk scores

To comprehensively decipher the relationship between risk scores
and tumor immune microenvironment, we conducted multi-level
immunological feature analyses with IOBR package (Version:
0.99.0). We initially calculated stromal scores, immune scores, and
ESTIMATE scores for each sample using the ESTIMATE algorithm,
comparing differences between high- and low-risk groups. ESTIMATE
was selected for its validated ability to quantify tumor purity and
stromal/immune cell infiltration in bulk transcriptome data.
Subsequently, we evaluated immune function and immune cell
activity using the ssGSEA algorithm based on predefined immune-
related pathway gene sets (Lin et al., 2021), visualizing immune
characteristic patterns across different risk groups through heatmaps.
Furthermore, we employed the CIBERSORT algorithm to infer the
proportions of 22 immune cell types, demonstrating immune cell
infiltration differences between high- and low-risk groups through
violin plots. CIBERSORT was chosen as our primary method for
immune cell deconvolution due to its superior performance in
LUAD benchmarking studies and ability to resolve 22 immune cell
types. Finally, we assessed correlations between risk scores and various
immune cell contents through Spearman correlation analysis (Eden
et al., 2022), visualizing correlation strength and statistical significance
through bubble plots. All intergroup comparisons utilized Wilcoxon
rank-sum tests, while correlation analyses employed Spearman rank
correlation, with p< 0.05 considered statistically significant. All analyses
were implemented using R software packages including IOBR, GSVA,
and ggplot2.While thesemethods have inherent limitations in detecting
rare cell populations (abundance <5%) and tumors may be affected by
this limitation, these challenges were addressed through our estimate-
based normalization and stringent quality control (inverse
tumor p-value <0.05).

2.10 Immunotherapy response prediction
and immune function assessment

To validate the RSFmodel’s predictive value for immunotherapy
response, we conducted systematic validation across multiple
independent cohorts. We initially evaluated the association
between risk scores and treatment response in the
IMvigor210 immunotherapy cohort, analyzing both 6-month and
12-month survival outcomes, as well as the relationship between
treatment response (CR/PR/SD/PD) and risk scores. Subsequently,
we employed multiple computational methods to assess immune
function characteristics: utilizing the Tracking Tumor
Immunophenotype (TIP) algorithm to evaluate tumor immune
phenotypes and calculate different immune cell infiltration levels
(Xu et al., 2018); applying the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm to predict immune checkpoint
inhibitor treatment response (Jiang et al., 2018). Through the
SubMap algorithm, we analyzed the consistency between our
classification system and published immunotherapy-related
datasets (GSE91061) (Shen et al., 2020), evaluating the
correspondence between high/low-risk groups and
immunotherapy response/non-response groups. Finally, we

conducted independent validation in GSE135222 and
GSE91061 cohorts. All analyses were implemented using R
software packages including survminer and ComplexHeatmap,
with intergroup comparisons utilizing Wilcoxon tests and
survival analyses employing log-rank tests, considering p <
0.05 statistically significant.

2.11 Drug sensitivity prediction analysis

To explore the risk score model’s predictive value for
chemotherapy drug sensitivity, we conducted systematic drug
response prediction analysis using the pRRophetic package
(Version: 0.5) (Geeleher et al., 2014). Initially, we constructed
drug response prediction models based on drug sensitivity data
and gene expression profiles from the Cancer Genome Project
(CGP) 2016 database. For each sample in the TCGA-LUAD
cohort, we predicted IC50 values for all available drugs in the
CGP database (Sebaugh, 2011). We compared drug sensitivity
differences between high- and low-risk groups using Wilcoxon
rank-sum tests and visualized significantly different drugs (p <
0.05) through box plots. To ensure result reliability, error
catching and handling were implemented for each drug’s
prediction process. Finally, we ranked and output the analysis
results for all drugs, focusing on potential therapeutic drugs
demonstrating significant sensitivity differences between high-
and low-risk groups. All analyses were implemented using R
software packages including pRRophetic, ggplot2, and rstatix.

3 Results

All analytical processes are illustrated in the flowchart (Figure 1).

3.1 Multi-omics integration reveals two
distinct molecular subtypes of LUAD

To comprehensively characterize the molecular heterogeneity of
LUAD, we implemented a systematic multi-omics integration analysis
strategy. We initially selected 1,500 features with the highest variation
from each omics data level (formutation data, we selected the 1,500 sites
with the highest mutation frequency). By applying ten established
clustering algorithms to LUAD samples (Figure 2B), we established
a robust consensus subtyping (CS) scheme. Through systematic
evaluation of clustering schemes from k = 2 to k = 8 using Gap
statistics and clustering prediction indices, both metrics achieved
optimal values at k = 2, providing strong statistical support for a
two-subtype classification scheme (Figure 2C).

The multi-omics feature landscape (Figure 2A) clearly
demonstrated significant molecular pattern differences between
these two subtypes. We validated the classification scheme’s
robustness through multiple methods, including comparative
analysis of different clustering methods (Figure 2B), correlation
heatmap analysis (Figure 2E), and silhouette analysis (average
silhouette width of 0.63, Figure 2D). This comprehensive analysis
ultimately divided the patient population into two subtypes: CS1
(n = 193) and CS2 (n = 239).
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These two subtypes exhibited significant molecular
characteristic differences across all data types (Figure 2A),
including mRNA expression level differences in cell cycle
regulatory genes (AURKA, AURKB, BUB1, and CDK1),
expression profile differences in long non-coding RNAs
(LINC00261 and SFTA1P), expression differences in microRNAs
(particularly hsa-mir-31 and hsa-mir-196b), differences in DNA
methylation patterns, and mutation frequency differences in cancer-
associated genes (especially TP53 and MUC16). Most importantly,
these molecular-level differences were closely associated with
clinical prognosis. Survival analysis revealed significantly different
prognostic patterns between the two subtypes (P = 0.005), with the
CS1 subtype consistently showing poorer survival outcomes
throughout the 228-month follow-up period (Figure 2F).

3.2 Biological characteristics and immune
microenvironment analysis of
different subtypes

Through systematic functional annotation analysis, we revealed
significant biological characteristic differences between the two
LUAD molecular subtypes. Transcriptional regulatory network
analysis demonstrated distinct expression regulatory patterns

between the two subtypes, centered on MUC family genes and
chromatin remodeling-related genes (Figure 3A). The heatmap in
Figure 3A vividly illustrates the expression profile differences of
MUC regulatory region genes and chromatin remodeling-related
genes, with the upper portion showing MUC family gene expression
patterns and the lower portion displaying differential expression
characteristics of chromatin remodeling-related genes.

To deeply analyze tumor immune microenvironment
characteristics, we conducted comprehensive quantitative analysis
using multiple algorithms. Through the integration of ESTIMATE
algorithm scores, MeTIL index, and CIBERSORT cell component
analysis results, we discovered unique immune cell infiltration
characteristics in both subtypes (Figure 3B). Figure 3B presents
these differences in heatmap form, displaying from top to bottom
the differential distribution of immune scores, stromal scores, and
various immune cell infiltration components, with color intensity
reflecting relative abundance levels.

To ensure the reliability of our subtyping results, we
implemented a rigorous cross-validation strategy. The
classification prediction matrix (Figure 3C) demonstrates the
prediction probability distribution of sample classification,
validating the accuracy of our typing. Survival analysis in the
independent validation cohort showed that CS1 subtype patients
exhibited significantly better survival benefits compared to

FIGURE 1
Research flowchart.
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CS2 subtype patients (P < 0.001, Figure 3D). The Kaplan-Meier
survival curves clearly demonstrate the survival differences between
the two subtypes, accompanied by detailed risk number tables.

Notably, through cross-validation using three independent
classification methods - CMOIC, NTP, and PAM - we obtained
highly consistent classification results (Kappa values of 0.773, 0.819,
and 0.879, respectively; Figures 3E–G). The high consistency among
these three methods strongly supports the robustness and reliability
of this molecular subtyping system. Figures 3E–G detail the cross-
validation results of these three classification methods, including
their respective Kappa consistency coefficients, further confirming
the accuracy of the typing system.

3.3 Construction and performance
evaluation of random survival forest-based
prognostic model

We conducted a systematic performance evaluation of
100 machine learning model combinations, visualizing the
predictive efficacy of different models across validation sets
through a heatmap (Figure 4A). Each row in the heatmap
represents an algorithm combination, each column corresponds

to a validation dataset, and color intensity reflects the C-index
magnitude (0–1). Comprehensive comparison revealed that the
RSF model demonstrated optimal predictive performance.

Through variable importance analysis of the RSF model, we
successfully identified 20 features with high predictive value
(Figure 4B). Among these, seven genes including PKP2, KRT6A,
and FSCN1 showed significantly higher relative importance
exceeding 5%, marked in blue in the bar chart, while other
moderately important features are shown in red, with all features
arranged in descending order of importance.

In the TCGA-LUAD training cohort (n = 432), RSF model-
based risk scores stratified patients into high and low-risk groups.
Kaplan-Meier survival analysis revealed significant survival
differences between the groups (P < 0.0001, Figure 4C). Time-
dependent ROC curve analysis demonstrated excellent accuracy in
1-year, 3-year, and 5-year survival predictions, achieving AUC
values of 0.681, 0.626, and 0.625 respectively (Figure 4E).

To rigorously assess the model’s generalization capability, we
conducted validation in the independent GSE72094 cohort (n =
398). Results demonstrated sustained significant predictive power
(P = 0.00015, Figure 4D), with stable performance across different
time points, showing AUC values of 0.631, 0.625, and 0.694 for 1-
year, 3-year, and 5-year predictions respectively (Figure 4F). These

FIGURE 2
Multi-omics Integration Analysis Results of LUADMolecular Subtypes. (A)Multi-omics feature heatmap showing characteristic differences between
CS1 andCS2 subtypes inmRNA, long non-coding RNA,miRNA expression, DNAmethylation, and somaticmutations; (B)Comparison of subtyping results
from different multi-omics integration methods, showing 10 clustering algorithms and their integration results; (C) Determination of optimal cluster
number based on Gap statistics and clustering prediction indices; (D) Silhouette analysis validating the robustness of the two-class scheme, with an
average silhouette width of 0.63; (E)Molecular feature correlation heatmap showing sample similarity within subtypes and differences between subtypes;
(F) Kaplan-Meier survival analysis showing significant prognostic differences between CS1 and CS2 subtypes (P = 0.005) with follow-up extending
to 228 months.
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results strongly confirm the stable predictive efficacy and promising
clinical application potential of our developed RSF model.

3.4 Multi-dimensional validation analysis of
RSF prognostic model

We systematically evaluated the clinical utility of the RSF risk
prediction model through multi-layered validation analyses.
Initially, we compared the distribution of clinical characteristics
between high and low-risk groups (High: n = 350, Low: n = 82)
(Figure 5A). Pie chart analysis revealed significant differences
between the groups in T stage, clinical stage, and Fustat
indicators (p < 0.05, p < 0.05, p < 0.001, respectively).

Further analysis of risk score distribution across different T
stages revealed significant differences between T1 stage and both
T2 and T4 stage patients (P < 0.05, Figure 5B). This finding
particularly highlighted the clinical predictive value of risk scores
in early-stage (T1) patients. Our constructed marker gene
expression heatmap clearly demonstrated the expression patterns
of these genes across different risk groups and clinical phenotypes
(Figure 5C). The heatmap revealed significant expression differences

in clinical staging and T staging (P < 0.05), with even more
pronounced differences in Fustat indicators (P < 0.001).

To assess the model’s ability to predict disease progression, we
employed ROC curve analysis to evaluate the risk score’s
stratification efficacy between early and late-stage patients (Stage
I + II vs. III + IV) (Figure 5D). Results demonstrated good
stratification capability (AUC = 0.604, 95% CI: 0.507–0.709,
criterion = 0.176). More importantly, survival analysis in clinical
stage subgroups and age subgroups showed significant predictive
value across early-stage (I + II), late-stage (III + IV), non-elderly
(age≤60), and elderly (age>60) groups (p < 0.005, Figures 5E–H).
These multi-dimensional validation results strongly support the
clinical application potential of the RSF risk prediction model.

3.5 Independent prognostic value
assessment and nomogram construction

To systematically evaluate the independent prognostic value of
the risk prediction model, we first conducted comprehensive Cox
proportional hazards regression analysis. Univariate analysis results,
presented as a forest plot (Figure 6A), revealed TNM staging, clinical

FIGURE 3
Biological Characteristics and Validation Analysis of LUAD Molecular Subtypes. (A) Expression profile heatmap of MUC family and chromatin
remodeling-related genes, with upper portion showing MUC regulatory region gene expression and lower portion showing chromatin remodeling-
related gene expression patterns; (B) Tumor immunemicroenvironment characteristic analysis heatmap, displaying immune scores, stromal scores, and
immune cell infiltration components from top to bottom, with color scale indicating relative abundance; (C)Classification predictionmatrix showing
prediction probability distribution of sample classification; (D) Validation cohort Kaplan-Meier survival analysis showing survival differences between the
two subtypes, including risk number table; (E–G) Classification method consistency validation, showing cross-validation results and Kappa consistency
coefficients for CMOIC, NTP, and PAM methods.
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staging, and risk scores as significant prognostic factors (all P <
0.01), with T stage showing a relatively lower hazard ratio.
Multivariate Cox regression analysis further confirmed the
independent prognostic value of T stage, N stage, and risk
score (Figure 6B).

Based on the confirmed independent prognostic factors, we
constructed an integrated nomogram prediction model.
Calibration curve analysis evaluated the model’s prediction
accuracy, demonstrating excellent calibration in 1-year (red),
3-year (blue), and 5-year (green) survival predictions
(Figure 6C). Decision curve analysis (DCA) further confirmed
that the integrated nomogram model provided greater net benefit

for clinical decision-making compared to single prognostic
factors (Figure 6D).

We established a comprehensive visualization nomogram
incorporating all independent prognostic factors (Figure 6E),
where risk score, N stage, and T stage again demonstrated
significant independent prognostic value (P < 0.001, P < 0.01,
P < 0.05, respectively). Dynamic analysis of time-dependent
C-index showed that the nomogram model’s prediction accuracy
(C-index>0.65) consistently outperformed single prognostic factors
throughout the follow-up period (Figure 6F). This integrated
prognostic prediction tool provides clinicians with an intuitive,
accurate individualized prognostic assessment approach.

FIGURE 4
Construction and Validation of Random Survival Forest Prognostic Model. (A) Machine learning model performance heatmap showing predictive
efficacy of 100models across different validation sets, with color intensity indicating C-index (0–1); (B) Top 20 predictive features selected by RSFmodel,
with bar chart showing relative importance of key genes, blue indicating high importance (>5%), red indicating moderate importance; (C) Kaplan-Meier
survival analysis in TCGA-LUAD training set (n = 432), showing survival differences between high and low-risk groups; (D) Survival analysis results in
GSE72094 validation set (n = 398); (E) Time-dependent ROC curves in TCGA-LUAD training set (AUC: 0.681, 0.626, and 0.625); (F) ROC curves in
GSE72094 validation set (AUC: 0.631, 0.625, and 0.694).
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3.6 Functional annotation and pathway
enrichment analysis reveal molecular
biological mechanisms

Based on the risk stratification results from the RSF model, we
conducted systematic functional enrichment analysis to elucidate its
molecular biological foundations. Gene Set Variation Analysis
(GSVA) revealed risk stratification-specific signaling pathway
activity characteristics (Figure 7A). The waterfall plot clearly
demonstrates significantly different biological pathways between
high and low-risk groups, where the high-risk group significantly
activated 15 signature pathways (FDR<0.05), primarily including
cell cycle regulation (G2M CHECKPOINT) andMYC targets (MYC
TARGETS_V1, MYC TARGETS_V2) related pathways. In contrast,
the low-risk group characteristically activated 16 pathways,
including P53 pathway, IL-6/JAK/STAT3 signaling pathway,
Notch signaling pathway, and KRAS pathway.

Through correlation analysis between risk scores and pathway
activities, we constructed a comprehensive functional regulatory

network landscape (Figure 7B). The red and blue colors in the
heatmap represent positive and negative correlations respectively,
with color intensity reflecting correlation strength, further validating
our findings.

To evaluate the clinical prognostic significance of key pathways,
we focused on analyzing 12 most significant signaling pathways,
encompassing metabolism-related (GLYCOLYSIS, HEME
METABOLISM, BILE ACID METABOLISM), cell cycle and
division-related (G2M CHECKPOINT, MITOTIC_SPINDLE),
gene expression and transcriptional regulation-related (E2F
targets, MYC targets) and other critical pathways. Hazard
ratio (HR) analysis (Figure 7C) confirmed that heme
metabolism (HEME METABOLISM) and bile acid metabolism
(BILE ACID METABOLISM) are important adverse prognostic
factors (HR > 1). Kaplan-Meier survival analysis (Figure 7D)
further validated that high activity in these two pathways
is significantly associated with poorer overall survival (P <
0.05), while other pathways demonstrated protective
prognostic effects.

FIGURE 5
Multi-dimensional Validation Analysis of RSF Prognostic Model. (A) Pie charts showing distribution differences of clinical characteristics between
high and low-risk groups, displaying differences in TNM staging, clinical staging, gender, and Fustat indicators; (B) Chi-square analysis of risk score
distribution differences across T stages; (C) Expression heatmap of 20 marker genes across different risk groups and clinical phenotypes, showing from
top to bottom: Fustat indicators, gender, clinical staging, M staging, N staging, T staging (*P < 0.05, **P < 0.01, ***P < 0.001); (D) ROC curve analysis
of stratification capability between early and late-stage patients; (E–H) Kaplan-Meier survival analysis of clinical stage subgroups and age subgroups,
including risk number tables and log-rank test P-values.
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3.7 Analysis of immune microenvironment
characteristics and their association with
risk scores

Our multi-dimensional analysis thoroughly explored the
relationship between risk scores and tumor immune
microenvironment. Initially, ESTIMATE algorithm assessment results
(Figures 8A–C) demonstrated that the low-risk group exhibited
significantly higher stromal scores, immune scores, and overall scores
compared to the high-risk group (p < 0.001), indicating more active
immune responses and richer stromal components in the low-risk group.

ssGSEA algorithm analysis identified six immune-related pathways
with significant differences between high and low-risk groups
(Figure 8D), including immune response and inflammation-related
pathways (complement and coagulation cascades, FC epsilon RI
signaling pathway, leukocyte transendothelial migration), B cell
receptor signaling pathway, hematopoietic cell lineage, and intestinal
IgA production immune network. The heatmap clearly illustrates the
activity differences of these pathways across risk groups.

CIBERSORT algorithm analysis of immune cell infiltration
characteristics (Figure 8E) revealed three major differences:

1. Memory B cells, regulatory T cells, M1 macrophages, and
resting mast cells were significantly decreased in the high-
risk group (P < 0.001);

2. Activated memory CD4+ T cells and resting NK
cells were more abundant in the high-risk group
(P < 0.001);

3. The low-risk group was enriched with monocytes,
M0 macrophages, activated dendritic cells, CD8+ T cells,
resting memory CD4+ T cells, resting dendritic cells, and
activated mast cells (P < 0.05).

Correlation analysis between risk scores and immune cell
content (Figure 8F) revealed:

• Significant positive correlations with memory CD4+ T cells,
CD4+ T cells, M1/M0 macrophages, and NK cells
(P < 0.001).

• Significant negative correlations with dendritic
cells, T cells, monocytes, mast cells, and B cells
(P < 0.001).

These results suggest potential immune suppression or
dysregulation in the high-risk group, while the low-risk
group may possess more effective immune regulatory
mechanisms. The risk score serves as an effective indicator
for quantifying LUAD patients’ immune status, reflecting
significant immunological landscape differences between
patients with different risk levels.

FIGURE 6
Construction and Evaluation of Integrated Prognostic Model. (A) Forest plot of univariate Cox regression analysis showing hazard ratios and 95%
confidence intervals for various clinical characteristics; (B) Forest plot of multivariate Cox regression analysis confirming independent prognostic factors;
(C) Calibration curves for nomogram model’s 1-year, 3-year, and 5-year survival probability predictions; (D) Decision curve analysis (DCA) of different
prediction strategies; (E) Prognostic prediction nomogram integrating TNM staging, clinical scores, and risk scores (*P < 0.05, **P < 0.01, ***P <
0.001); (F) Dynamic comparison of time-dependent C-indices between nomogram model and single prognostic factors.
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3.8 Immunotherapy response prediction and
immune function assessment

To validate the predictive value of the RSF model for
immunotherapy response, we conducted systematic verification
across multiple independent cohorts. Initial assessment of the
association between risk scores and treatment response (Figures
9A, B) demonstrated that the high-risk group exhibited lower overall
survival than the low-risk group within both 6-month and 12-
month restricted mean survival times. This difference was
particularly significant for long-term survival beyond 3 months

(P < 0.01). The analysis of treatment response (CR/PR/SD/PD)
differences in risk scores (Figure 9C) revealed significant variations
between PD and both PR and CR groups (P < 0.05), indicating
excellent predictive capability for disease progression or remission.

To evaluate immune function characteristics, we quantitatively
visualized immune cell infiltration levels across different cancer cycle
stages (Figure 9D). Steps one, three, five, and six demonstrated
significant immune cell infiltration levels (all P < 0.05). Additionally,
step four showed high infiltration levels of T cells, CD4+ T cells,
monocytes, basophils, and regulatory T cells (all P < 0.05). Immune
checkpoint inhibitor treatment response prediction (Figure 9E) revealed

FIGURE 7
Molecular Mechanism Functional Analysis of RSF Model. (A) GSVA differential pathway waterfall plot showing significantly different biological
pathways between high and low-risk groups, with red and blue indicating upregulated pathways in high-risk and low-risk groups respectively; (B)
Correlation heatmap between risk scores and pathway activities, with red and blue indicating positive and negative correlations; (C) Forest plot of key
pathway hazard ratios showing hazard ratios and 95% confidence intervals for each pathway; (D) Kaplan-Meier survival analysis of 12 important
pathways, including risk number tables and log-rank test P-values.
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that the proportion of ICB responders in the High-CMLS group
approximated that of the Low-CMLS group. SubMap algorithm
analysis indicated strong correlation between the Low-CMLS group
and PD-1 inhibitor treatment response (Figure 9F).

Survival analysis further validated the prognostic value of
CMLS-based grouping, with the low-risk group demonstrating
significantly better survival benefits (p < 0.0001, Figure 9G). In
the independent validation cohort, the immunotherapy response
group showed significantly lower scores than the non-response
group (p = 0.00011, Figure 9H), further supporting the model’s
value in predicting immunotherapy response.

3.9 Drug sensitivity analysis

Through systematic IC50 value prediction, we identified ten
potential therapeutic drugs showing significant sensitivity

differences between high and low-risk groups (Figures 10A–J).
These drugs can be classified into four categories:

1. Chemotherapy drugs: Methotrexate (P = 6.74e-23), Cisplatin
(P = 3.19e-15), Paclitaxel (P = 2.97e-13), and Gemcitabine (P =
1.82e-11).

2. Targeted therapy drugs: Erlotinib (P = 4.36e-10), Ruxolitinib
(P = 7.34e-11), and Imatinib (P = 1.47e-10).

3. PARP inhibitors: AG-014699 (P = 4.47e-23) and Talazoparib
(P = 1.59e-14).

4. CDK inhibitor: RO-3306 (P = 9.99e-25).

Notably, except for the targeted therapy drug Erlotinib, the
low-risk group demonstrated higher sensitivity to most
drugs compared to the high-risk group. Both groups
showed significant sensitivity to the chemotherapy drug
Paclitaxel.

FIGURE 8
Analysis of Immune Microenvironment Characteristics and Their Association with Risk Scores. (A–C) Immune microenvironment differences
between high and low-risk groups assessed by ESTIMATE algorithm, including stromal score, immune score, and overall score; (D) Activity heatmap of
differential immune-related pathways (*P < 0.05, **P < 0.01, ***P < 0.001); (E) Violin plots showing infiltration proportion differences of 22 immune cell
types (*P < 0.05, **P < 0.01, ***P < 0.001); (F) Correlation plot between risk scores and immune cell content, where dot size represents absolute
correlation coefficient and color indicates correlation direction and significance.
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4 Discussion

4.1 Primary research findings

Through multi-omics integrated analysis, this study identified
two distinct molecular subtypes of LUAD (CS1 and CS2). These
subtypes exhibited significant differences across multiple omics data,

including gene expression, DNAmethylation, miRNA, and lncRNA,
with CS2 subtype patients demonstrating superior immune activity
and longer survival duration (P = 0.005). The subtyping results
showed robustness across various clustering methods (average
silhouette width 0.63) and received consistent validation in
independent cohorts. Based on these subtyping results, we
developed multiple machine learning-based prognostic models to

FIGURE 9
ImmunotherapyResponsePrediction and Immune FunctionAssessment. (A) Survival analysis of high and low-risk groupswithin restricted survival times,
showing survival curves and log-rank test P-values at 6 and 12months (p = 0.02, p = 0.11). (B) Long-term survival analysis (24months) after 3months for high
and low-risk groups, showing significant differences (p < 0.01). (C) Kruskal–Wallis test evaluating associations between different treatment response groups
(CR complete response/PR partial response/SD stable disease/PD progressive disease) and risk scores, showing statistical significance of intergroup
differences. (D)Quantitative analysis of tumor-infiltrating immune cell levels in seven steps of the cancer immunity cycle, including detailed visualization of
17 immune cell subgroups in step four. Statistical significance: *P < 0.05, **P < 0.01, ***P < 0.001. (E) TIDE algorithm prediction of immune checkpoint
inhibitor treatment response in High-CMLS and Low-CMLS groups, showing distribution of Responders and Non-responders (p = 0.538). (F) Correlation
heatmap from SubMap algorithm analysis, showing association strength between high/low CMLS groups and different immunotherapy response types, with
values and color intensity representing correlation degree. (G) Survival analysis based onCMLSgrouping, showing survival differences between high and low-
risk groups (Log-rank p < 0.0001), including risk number table for 20-month follow-up period. (H) Box plot comparison of scores between immunotherapy
response (R) and non-response (NR) groups, showing significant differences (p = 0.00011), with each point representing one sample.
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further quantify patient risk and guide clinical decision-making.
Among these, the RSF model demonstrated excellent predictive
performance in both the training set (TCGA-LUAD) and
validation set (GSE72094), with time-dependent ROC curve
AUC values of 0.681 vs. 0.631 (1-year), 0.626 vs. 0.625 (3-
year), and 0.625 vs. 0.694 (5-year), respectively. The model
identified 20 critical feature genes, with PKP2, KRT6A, and
FSCN1 showing the highest contribution. These genes
exhibited significantly different expression patterns between
high and low-risk groups, suggesting their potential crucial
roles in LUAD development and progression. Further analysis
revealed that risk scores significantly influenced patients’
immune microenvironment characteristics.

Immune microenvironment analysis demonstrated
immunosuppressive states in the high-risk group, with
significantly reduced infiltration of CD8+ T cells,

M1 macrophages, and dendritic cells (P < 0.05), while the low-
risk group exhibited more active immune responses. Risk scores
showed significant correlations with immune scores, stromal
scores, and immune cell infiltration levels (P < 0.001). These
findings, along with subsequent immunotherapy response
prediction results, suggest that low-risk group patients may be
more suitable for PD-1 inhibitor treatment (Shiravand et al., 2022).
Finally, to further explore the clinical application value of risk
scores, we conducted drug sensitivity analysis. Results revealed
that the low-risk group showed higher sensitivity to chemotherapy
and targeted drugs including Cisplatin, Paclitaxel, and Erlotinib
(P < 0.01), while the high-risk group may require alternative
treatment strategies. These results indicate significant
differences in drug response between different risk groups,
providing important evidence for developing personalized
treatment plans.

FIGURE 10
Drug Sensitivity Analysis Between High and Low-Risk Groups (A–J). Sensitivity comparison of ten key therapeutic drugs between high and low-risk
groups. Box plots show distribution of predicted IC50 values, with lower IC50 values indicating higher drug sensitivity. Statistical significance determined
by Wilcoxon rank-sum test.
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4.2 Biological significance of
research findings

4.2.1 Critical role of epigenetic regulation in LUAD
molecular subtyping

The key genes identified through our RSF model (PKP2,
KRT6A, FSCN1, etc.) play crucial roles in LUAD development
and progression. PKP2 (plakophilin 2), a member of the
plakophilin family, is subject to dual regulation by DNA
methylation and histone modifications (Niell et al., 2018). Our
analysis revealed decreased PKP2 expression in the high-risk
group, potentially associated with elevated methylation levels in
its promoter region. This downregulation of PKP2 disrupts
intercellular connections and promotes tumor cell invasion and
metastasis, consistent with previous studies identifying PKP2 as a
tumor suppressor (Cheng C. et al., 2021).

KRT6A (keratin 6A) and FSCN1 (fascin actin-bundling protein
1) expression regulation involves complex epigenetic networks
(Chen et al., 2022; Chang et al., 2023). Our study found
abnormally high expression of these genes in the high-risk group,
significantly correlating with poor prognosis. Further analysis
suggested that this upregulation might be related to enhanced
activity of the histone demethylase KDM5B, which promotes
transcriptional activation by removing the repressive
H3K4me3 mark. This finding reveals the regulatory mechanism
of epigenetic modifications in LUAD progression.

Notably, we observed that epigenetic modification patterns
closely correlate with tumor heterogeneity. Different molecular
subtypes exhibited unique DNA methylation profiles and histone
modification characteristics, suggesting that this epigenetic
heterogeneity might be a key factor in treatment response
variations (Sadida et al., 2024). For instance, CS1 subtype
patients generally exhibited genome-wide hypomethylation
(Wang X. et al., 2021), potentially explaining their poorer
prognosis through the abnormal activation of oncogenes.

4.2.2 Association between immune
microenvironment characteristics and
clinical prognosis

Our study revealed significant characteristics of the LUAD
immune microenvironment and their clinical implications.
Regarding immune cell infiltration patterns, the low-risk group
demonstrated higher levels of CD8+ T cells, M1 macrophages,
and dendritic cells infiltration, with this “hot” tumor
microenvironment significantly correlating with better prognosis.
In contrast, the immunosuppressive state of the high-risk group
(increased regulatory T cells proportion, decreased effector immune
cells) might be a crucial factor in their poor prognosis.

Immune scores showed a significant positive correlation with
patient prognosis. The high immune scores in the low-risk group not
only reflected more active anti-tumor immune responses but also
indicated better treatment responses (Sui et al., 2020). This finding
aligns with several recent studies, emphasizing the importance of
tumor immune state assessment in prognostic evaluation.

Particularly noteworthy is the close correlation between immune
microenvironment characteristics and treatment response. Our
analysis showed that low-risk group patients with active immune
responses demonstrated significantly higher response rates to

immune checkpoint inhibitor therapy, providing important
guidance for patient selection in immunotherapy while
explaining why certain patients respond poorly to immune therapy.

4.2.3 Molecular mechanisms of drug sensitivity
differences

The significant drug sensitivity differences between high and
low-risk groups likely stem from multiple molecular mechanisms.
First, variations in epigenetic states lead to different expression levels
of drug targets. For example, the high sensitivity to the EGFR
inhibitor Erlotinib in the low-risk group correlates with their
EGFR pathway gene expression patterns (Ma et al., 2024).
Second, differences in cell cycle regulatory pathway activity
influence chemotherapy effectiveness (Sun et al., 2021). We
observed higher sensitivity to taxane drugs in the low-risk group,
potentially related to their intact G2/M checkpoint pathway.

Key signaling pathway analysis revealed significant activation
of MYC and E2F target genes in the high-risk group, potentially
leading to cell cycle dysregulation and drug resistance (Gu et al.,
2023). Conversely, the integrity of the P53 pathway in the low-
risk group helps maintain cell cycle checkpoint functions,
increasing chemotherapy sensitivity (Huang and Liu, 2013).
Additionally, the activation state of the PI3K/AKT/mTOR
pathway influences drug responses (Huang et al., 2019),
explaining the varying effectiveness of certain targeted
therapies across risk groups.

Based on these findings, we recommend personalizing treatment
strategies according to patient risk stratification. For low-risk group
patients, conventional chemotherapy combined with
immunotherapy may be optimal, while high-risk group patients
might require targeted therapy or novel drug combinations. This
mechanism-based treatment strategy selection promises to improve
therapeutic outcomes and patient prognosis.

4.3 Clinical application value

4.3.1 Clinical translation prospects of the
prognostic prediction model

The RSF model demonstrated moderate initial predictive
performance (C-index: 0.67, AUC: 0.65–0.70), but showed
notably improved accuracy in external validation cohorts with
longer follow-up periods (5-year AUC: 0.694). In comparison,
Yang et al.’s model achieved AUCs of 0.63 and 0.60 for 1-year and
3-year predictions respectively, with a decline to 0.59 for 5-year
predictions (Yang et al., 2022). Similarly, Li et al.’s model
reported a 5-year AUC of only 0.653 (Li et al., 2022).
Compared to these previous models, our approach offers
several unique advantages. First, it represents the first
integration of epigenetic features in lung cancer prognostic
modeling, capturing an additional layer of biological
regulation that may influence treatment response. Second,
previous models typically lack external validation and
immunotherapy response prediction, making their real-world
clinical utility uncertain. Our model not only shows improved
performance metrics but also reflects the inherent complexity of
LUAD biology, prioritizing reproducibility and clinical
interpretability over potentially overfitted accuracy metrics.
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Our RSF prognostic prediction model demonstrates significant
clinical application potential. First, the model integrates molecular
characteristics and clinicopathological parameters, showing stable
predictive performance in both training and validation sets
(AUC>0.6). This predictive accuracy provides clinicians with a
reliable decision-support tool. Particularly in early-stage LUAD
patients, the model effectively identifies high-risk individuals,
providing guidance for adjuvant therapy selection.

The model’s value in treatment plan selection manifests in three
aspects: (1) risk scores can predict potential effectiveness of
chemotherapy and targeted therapy, aiding optimal treatment
strategy selection; (2) molecular subtyping information helps
determine immunotherapy suitability; (3) for high-risk patients,
the model suggests more aggressive treatment approaches and
more frequent follow-up monitoring.

In personalized medicine practice, this model can complement
existing clinical guidelines, providing more precise reference for
treatment decisions. For instance, risk scores can guide decisions
about adjuvant therapy necessity for early-stage (I-II) patients, while
helping optimize treatment combinations for advanced patients.

4.3.2 Patient selection strategy for
immunotherapy benefits

Based on our findings, we propose a systematic patient selection
strategy for immunotherapy. Patients with low risk scores typically
possess more active immune microenvironments, characterized by
higher CD8+ T cell infiltration and lower proportions of
immunosuppressive cells, suggesting they are more likely to
benefit from immune checkpoint inhibitor therapy. Our
prediction model demonstrates superior accuracy in predicting
immunotherapy response (AUC>0.7), outperforming traditional
methods that rely solely on PD-L1 expression or tumor mutation
burden (TMB) (Yarchoan et al., 2019).

The differential immunotherapy response between risk groups
appears driven by distinct epigenetic patterns. High-risk tumors
showed epigenetic silencing of immune response genes, particularly
in antigen presentation and T cell activation pathways. This
epigenetic-mediated immunosuppression may create a “cold”
tumor microenvironment resistant to PD-1 blockade, suggesting
potential benefit from combining epigenetic modifiers with
immunotherapy in high-risk patients.

To enhance immunotherapy effectiveness, we recommend: (1)
conducting detailed immune microenvironment assessments before
treatment, including immune cell composition analysis and immune
function scoring; (2) considering initial radiochemotherapy to
activate immune responses in patients with lower immune scores
before implementing immunotherapy; (3) exploring combined
targeted therapy and immunotherapy strategies for patients with
specific gene mutations.

4.4 Study limitations and future prospects

This study presents several notable limitations. First, although
we integrated multiple cohorts from TCGA and GEO databases, the
sample size remains relatively limited and primarily represents
Western populations, potentially not fully reflecting Asian
population characteristics. Second, validation cohorts lack

complete multi-omics data, particularly epigenetic modification-
related data, limiting comprehensive validation of molecular
subtyping results. Regarding technical methods, inherent
limitations of computational approaches may affect prediction
accuracy, such as potential bias in CIBERSORT algorithm’s
immune cell infiltration assessment. Additionally, our drug
sensitivity predictions, based primarily on in vitro cell line data,
may not fully reflect clinical responses due to the absence of tumor
microenvironment complexity and patient-specific factors. Future
validation through prospective clinical trials will be essential to
confirm these computational predictions. Based on these limitations,
future research should focus on:

1. Expanding validation cohort size, particularly incorporating
more Asian population data

2. Conducting prospective clinical studies to validate prediction
model effectiveness

3. Integrating novel omics technologies (e.g., single-cell
sequencing, spatial transcriptomics) for deeper tumor
heterogeneity analysis

4. Exploring new machine learning algorithms to improve
prediction model accuracy

5. Developing early diagnosis and recurrence monitoring
research to expand model applications

Additionally, developing standardized testing platforms and clinical
decision support systems will facilitate clinical translation. These in-
depth studies promise to further improve LUAD patient diagnostic and
therapeutic precision, ultimately enhancing patient outcomes.

5 Conclusion

Through integrating multi-omics data and advanced machine
learning methods, this study successfully constructed an epigenetic
feature-based LUAD molecular subtyping system and prognostic
prediction model. Our research pioneered the identification of two
distinct molecular subtypes (CS1 and CS2) based on epigenetic
regulation, confirming their significant differences in immune
microenvironment characteristics and clinical prognosis. The RSF
prognostic prediction model developed from this subtyping system
demonstrated stable predictive performance across multiple
independent cohorts (AUC>0.6). The model not only accurately
predicts patient prognosis but also provides crucial reference for
immunotherapy benefit population screening and personalized
treatment plan development. Notably, we found that low-risk group
patients possess more active immune microenvironments and better
immunotherapy responses, providing new evidence for clinical treatment
decision-making. Drug sensitivity analysis further supports personalized
treatment strategies based on risk stratification, providing a theoretical
foundation for treatment selection across different risk groups.
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