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Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target
interventions to address complex diseases, providing advantages over single-
target therapies. However, the active metabolites, therapeutic targets, and
especially the combination mechanisms remain unclear. The integration of
advanced data analysis and nonlinear modeling capabilities of artificial
intelligence (AI) is driving the transformation of TCM into precision medicine.
This review concentrates on the application of AI in TCM target prediction,
including multi-omics techniques, TCM-specialized databases, machine
learning (ML), deep learning (DL), and cross-modal fusion strategies. It also
critically analyzes persistent challenges such as data heterogeneity, limited
model interpretability, causal confounding, and insufficient robustness
validation in practical applications. To enhance the reliability and scalability of
AI in TCM target prediction, future research should prioritize continuous
optimization of the AI algorithms using zero-shot learning, end-to-end
architectures, and self-supervised contrastive learning.

KEYWORDS

artificial intelligence, algorithms, traditional Chinese medicine, active metabolites,
therapeutic targets

1 Introduction

Traditional Chinese Medicine (TCM), with its millennia-old history, has demonstrated
significant therapeutic efficacy across East Asia and is increasingly gaining global
recognition. In recent years, natural products account for over 60% of the world’s
medicines (Lin et al., 2022; Zhu X. et al., 2022). Notably, several Western
pharmaceuticals, such as artemisinin from Artemisia annua for malaria and ephedrine
from Ephedra for asthma, trace their origins to TCM (Kong et al., 2023). Conventional drug
discovery, which predominantly focuses on single-target interactions, often falls short in
treating complex diseases like diabetes and cancer, frequently resulting in limited efficacy
and significant side effects (Zhang R. et al., 2019). This has prompted a paradigm shift
towards a multi-metabolites multi-target approach, which aligns more closely with TCM’s
holistic principles. In contrast to single-compound Western medicines, TCM utilizes the
synergistic effects of multiple active metabolites, achieving therapeutic outcomes through
complex, multi-target interactions (Heinrich et al., 2022; Liu J. et al., 2023). Nevertheless,
conventional approaches—network pharmacology, experimental screening, and static
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correlation analyses—are inadequate in capturing the dynamic,
non-linear nature of multi-metabolite relationships, thus
constraining their applicability in modern drug discovery.

Recent advancements in artificial intelligence (AI) have
transformed the study of multi-metabolite interactions in TCM,
with machine learning (ML) and deep learning (DL) technologies
reaching sufficient maturity for analyzing complex interactions
between active metabolites and their multiple targets (Wang
et al., 2021; Ma et al., 2023; Zhang et al., 2023a). The unique
capabilities of AI in processing large-scale data, recognizing
complex patterns, and integrating multi-dimensional datasets
have rendered it an indispensable tool in TCM research
(Seetharam et al., 2019). ML algorithms excel at identifying
potential interaction patterns from vast datasets, while DL takes
this further by automatically learning higher-order features to
capture complex relationships between active metabolites and
their multiple targets (Calderaro et al., 2022).

Beyond data processing and pattern recognition, AI’s
integration into TCM research extends to the synthesis of multi-
omics data, including genomics, proteomics, metabolomics, and
spatial omics (Razzaq et al., 2022). Through the utilization of AI’s
advanced analysis capabilities, these heterogeneous data sources are
integrated to construct complex network models that capture the
intricate relationships between multiple metabolites and targets
(Pan et al., 2024). This comprehensive integration enhances our
understanding of the synergistic effects of active metabolites and
significantly improves research precision, providing robust data
support for investigating TCM holistic principles and efficacy
mechanisms (Hua et al., 2024). The study explores the
application of AI-driven biological analysis in target research,
incorporating diverse TCM target databases and multi-omics
approaches, including epigenetics, genomics, proteomics,
metabolomics, and spatial omics. Furthermore, the study
evaluates the deployment of various AI algorithms—such as ML,
DL, and cross-modal data fusion—in multi-target models, assessing
their suitability, advantages, and limitations in TCM research. By
synthesizing current challenges, technological limitations, and
emerging opportunities, this study provides valuable insights into
future directions for integrating AI with TCM, particularly in
understanding the complex relationships between active
metabolites and their therapeutic targets.

2 Research methodology

This study conducted a systematic literature review to examine
the application of AI, ML, and DL technologies in TCM target
research. A hybrid methodology combining the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines proposed by Moher et al. and the Systematic
Literature Review (SLR) framework established by Manuel et al.
was employed (Moher et al., 2015; Muhammad et al., 2021). The
methodological architecture encompassed four primary procedures:
formulation of research objectives, definition of scope, selection of
literature, and validation. The systematic review aimed to identify
and analyze current applications of AI technologies in TCM target
discovery. Three databases (Web of Science, PubMed, and IEEE)
were selected based on their rigorous academic standards and

established reputation as reliable sources for scholarly research.
Preliminary investigations indicated that additional database
searches would not significantly enhance retrieval outcomes, thus
justifying this selection. Search parameters combined the following
keywords: “Artificial Intelligence, Algorithm, Neural Network,
Machine Learning, Deep Learning” combined with “Traditional
Chinese Medicine, Target Identification, Drug Development,
Botanical drugs.” The screening process entailed an initial
evaluation of article titles and abstracts, followed by the
elimination of duplicates and studies not related to TCM. A
temporal constraint was applied to include literature published
between January 2010 and January 2025, and only peer-reviewed
journal articles were considered. Following a thorough evaluation of
the full texts, 125 papers were deemed eligible for inclusion in the
study. The complete methodology flowchart is illustrated in Figure 1.

3 Complexity of multi-metabolite
multi-target interactions

The fundamental difference between TCM andWesternmedicine
lies in their respective approaches to therapeutic formulation. TCM
utilizes balanced formulations derived from multiple natural sources,
including plants, animals, and minerals. These natural matrices
contain active metabolites, such as alkaloids, polyphenols,
polysaccharides, flavonoids, and terpenoids, that engage in multi-
target biological interactions (Zhang Y. et al., 2024). The therapeutic
efficacy of TCM is not derived from the activity of individual
metabolites, but rather from the optimized interplay between
biological metabolites (Li D. et al., 2022). This characteristic
necessitates precise calibration of dosage ratios and
pharmacokinetic parameters to ensure the desired therapeutic
outcome. The multi-metabolite multi-target interactions have
demonstrated particular clinical value in the management of
complex pathologies. A notable example is the Xiangdan injection,
which exemplifies multi-metabolite principles by enhancing cerebral
perfusion through complementary metabolic pathways via flavonoid-
saponin-polysaccharide coordination (Gao F. et al., 2024). Similarly,
the Shugan Lidan Xiaoshi formulation integrates quercetin, lignans,
and paeoniflorin to concurrently mitigate inflammation and oxidative
stress in acute pancreatitis (J et al., 2024). Experimental studies have
demonstrated the dual modulation of p38MAPK signaling and
cytokine cascades (TNF-α, IL-6) in sepsis management by the
Yantiao formulation (Zhu et al., 2024), thus illustrating TCM
capacity for multi-pathway intervention.

FIGURE 1
Research flowchart.
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However, current TCM research confronts methodological
limitations. Conventional experimental paradigms inadequately
characterize metabolite synergies, while clinical trial
reproducibility suffers from formulation variability. Conventional
reductionist approaches, which focus on single targets, fail to
capture the emergent therapeutic properties of multi-metabolite
systems. Integration of AI presents transformative solutions for
multi-metabolite multi-target analysis. ML and DL algorithms
enable systematic mapping of nonlinear relationships in
multidimensional pharmacological data (Holm et al., 2021; Li X.
et al., 2022). The integration of high-throughput virtual screening
platforms with molecular dynamics simulations has been shown to
facilitate the identification of active metabolites (Zhou E. et al.,
2024). Network pharmacology tools, such as the TCMFP algorithm,
have been employed to optimize formulation design through
disease-specific target matching (Niu et al., 2023). Predictive
pharmacokinetic models have been developed to enhance
formulation optimization by simulating in vivo metabolic
trajectories (Li et al., 2024).

These computational innovations enable rigorous analysis of
TCM’s complexity while preserving its holistic therapeutic
framework. The integration of traditional Chinese pharmacopeia
with AI-driven methodologies promises transformative advances in
understanding polypharmacological systems.

4 Scope of AI biological analysis for
target investigations in TCM

The exponential growth of multi-omics data, coupled with the
increasing availability of comprehensive databases, has established a
robust foundation for the development of sophisticated drug target

inference algorithms. This convergence of AI and innovative
experimental techniques represents a highly efficient paradigm
for drug discovery.

4.1 Multi-omics technologies

The comprehensive analysis of multi-omics data, encompassing
epigenomics, genomics, proteomics, metabolomics, and spatial
omics, offers a robust approach for elucidating drug mechanisms
of action and identifying potential therapeutic targets (Figure 2).
Table 1 provides a comprehensive list of commonly employed
databases designed to facilitate the integration of multi-
omics datasets.

Epigenomics focuses on the study of reversible chemical
modifications to DNA and associated proteins that modulate
gene expression without altering the underlying DNA sequence.
Pharmacological agents capable of interacting with DNA can
profoundly influence transcriptional processes, replication fidelity,
and overall genetic expression, consequently impacting
physiological functions (Chen et al., 2022). For instance, Ming
et al. employed epigenomic data, encompassing DNA
methylation and histone modification networks, to demonstrate
that curcumin induces apoptosis and exerts anticancer effects by
inhibiting DNAmethyltransferase (DNMT) and histone deacetylase
(HDAC) activity (Ming et al., 2022). Conversely, genomics utilizes
high-throughput molecular, genetic, and cellular techniques to
assess gene function. This approach finds wide application in
genotype-phenotype association analysis, biomarker discovery for
patient stratification, gene function prediction, and mapping of
biochemically active genomic regions (McDonagh et al., 2024).
For instance, Xu et al. applied a consensus clustering algorithm

FIGURE 2
Artificial intelligence integrates multi-omics data to identify therapeutic targets in TCM. (Created with BioRender.com).

Frontiers in Pharmacology frontiersin.org03

Li et al. 10.3389/fphar.2025.1541509

http://BioRender.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1541509


to identify putative diabetic driver genes and showed that Nfkb1,
Stat1, and Ifnrg1 may represent key targets for the anti-diabetic
effects of Gegen Qinlian Decoction (Xu et al., 2020).

Proteomics is instrumental in elucidating biological processes by
annotating genome sequences, quantifying protein abundance,

characterizing post-translational modifications, and mapping
protein-protein interactions (PPIs) (Ding et al., 2022; Xiao,
2024). For instance, Xu et al. developed a novel serum
proteomics platform integrating data-independent acquisition
mass spectrometry (dIA-MS) with customized antibody

TABLE 1 Commonly used repositories related to genomics, proteomics, metabolomics, and multi-omics.

Database Full name Description Web link References

Genomics

GO Gene Ontology GO contains functional information for genes from over
460,000 species

http://www.geneontology.org The Gene Ontology
Consortium (2017)

GEO Gene Expression Omnibus GEO repository archives and freely distributes
microarray, NGS and other forms of high-throughput
functional genomic data

http://www.ncbi.nlm.nih.gov/
geo/

Barrett et al. (2013)

GTEx Genotype-Tissue Expression GTEx provides gene expression profiles in different
tissue types

https://gtexportal.org/home/ Consortium (2013)

ENCODE Encyclopedia of DNA Elements ENCODE identifies and catalogs all functional elements
of the human genome previously mapped by the HGP.

https://www.encodeproject.
org/

Colwell (2016)

DisGeNET DisGeNET DisGeNET is one of the largest collections of genes and
variants involved in human disease

http://www.disgenet.org Piñero et al. (2017)

Ensembl Ensembl Ensembl is unique in its flexible infrastructure for access
to genomic data and annotation

https://www.ensembl.org Cunningham et al. (2022)

Gene Gene Gene focuses on viral, prokaryotic, and eukaryotic NCBI
RefSeq genomes

www.ncbi.nlm.nih.gov/gene/ Brown et al. (2015)

CCLE Cancer Cell Line Encyclopedia CCLE contains gene expression, chromosome copy
number, and massively parallel sequencing data from
947 human cancer cell lines

www.broadinstitute.org/ccle Barretina et al. (2012)

TCGA The Cancer Genome Atlas TCGA collects exome sequencing data of more than
11,000 cancer samples

https://portal.gdc.cancer.gov/ Ganini et al. (2021)

Proteomics

PDB Protein Data Bank PDB focuses on ligand binding site in ligandable
proteins

http://bioinfo-pharma.u-
strasbg.fr/scPDB/

Desaphy et al. (2015)

STRING STRING STRING integrates protein-protein interactions-both
physical interactions and functional associations

https://string-db.org/ Szklarczyk et al. (2023)

UniProt Universal Protein
Knowledgebase

UniProt provides a rich and accurately annotated
protein sequence knowledgebase

http://www.uniprot.org Apweiler et al. (2004)

TTD Therapeutic Target Database Therapeutic target database describing target
druggability information

https://idrblab.org/ttd/ Zhou et al. (2024b)

Metabolomics

HMDB Human Metabolome Database The world’s largest and most comprehensive, organism-
specific metabolomic database

https://hmdb.ca Wishart et al. (2021)

KEGG Kyoto Encyclopedia of Genes
and Genomes

KEGG links genomic information with higher order
functional information

https://www.genome.ad.jp/
kegg/

Kanehisa and Goto (2000)

Reactome Reactome A database of reactions, pathways and biological
processes

http://www.reactome.org Croft et al. (2011)

LMPD LIPID MAPS Proteome
Database

An object-relational database of lipid-associated protein
sequences and annotations

http://www.lipidmaps.org/ Cotter et al. (2006)

Multi-omics

OmicsNet OmicsNet A web-based platform for multi-omics integration and
network visual analytics

http://www.omicsnet.ca Zhou et al. (2022)

Metabo Analyst Metabo Analyst MetaboAnalyst towards more transparent and
integrative metabolomics analysis

http://metaboanalyst.ca Chong et al. (2018)
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microarrays to identify biomarkers of psoriasis activity. This study
revealed a positive association between disease activity and three
specific serum proteins: PI3, CCL22, and IL-12B (Xu et al., 2019).
Complementary to proteomics, metabolomics enables the
qualitative and quantitative analysis of low-molecular-weight
metabolites under defined physiological conditions, thereby
aiding biomarker discovery (Feng et al., 2020; Xing et al., 2024a).
Wu et al. constructed a metabolite-pathway-target network using
metabolomic data to investigate the effects of Shaoyao Decoction in
ulcerative colitis. This analysis identified STAT3, IL-1B, IL-6, IL-2,
AKT1, IL-4, ICAM1, and CCND1 as core targets of the decoction,
exhibiting significant binding affinities with active metabolites such
as quercetin, baicalin, kaempferol, and wogonin (Wu et al., 2022).

As a critical extension of multi-omics frameworks, spatial omics
technologies (e.g., 10x Genomics Visium, Nanostring GeoMx)
provide unprecedented resolution for mapping molecular
distributions within tissue microenvironments, thereby bridging
the gap between TCM’s systemic effects and localized target
engagement (Yang et al., 2024). For instance, the integration of
graph neural networks (GNNs) with spatial transcriptomics
facilitates dynamic modeling of ephedrine alkaloid-target
interactions across temporal and spatial dimensions (Laubscher
et al., 2024). While challenges persist in cross-platform data
harmonization and computational scalability, emerging tools such
as STUtility and deep spatial transformers demonstrate significant
potential for standardizing TCM spatial datasets. This technological

TABLE 2 Overview of the data statistics and availability of different TCM databases.

Database Latest
update
year

Prescriptions TCM
(plants)

Ingredients Targets Diseases Websites References

TM-MC 2024 5,075 635 34,107 13,992 27,997 https://tm-mc.kr Kim et al. (2024)

ITCM 2023 25,857 8454 43,430 18,851 11,180 http://itcm.biotcm.net Tian et al. (2023)

TCM Bank 2023 NA 9,192 61,966 15,179 32,529 https://TCMBank.cn/ Lv et al. (2023b)

TCMIP (ETCM) 2023 48,442 2005 38,298 25,647 8,045 http://www.tcmip.cn/
ETCM2/front/#/)

Zhang et al.
(2023d)

DCABM-TCM 2023 192 194 1816 3,970 4,006 http://bionet.ncpsb.org.
cn/dcabm-tcm/

Liu et al. (2023b)

TCM-suite 2022 6692 7322 704,321 19,319 15,437 http://TCM-Suite.
AImicrobiome.cn

Yang et al.
(2022b)

TCMSID 2022 NA 499 20,015 3270 NA https://tcm.scbdd.com Zhang et al.
(2022b)

LTM-TCM 2022 48,126 9122 34,967 13,109 NA http://cloud.tasly.com/
#/tcm/home

Li et al. (2022b)

SuperTCM 2021 NA 6516 55,772 543 8634 http://tcm.charite.de/
supertcm

Chen et al. (2021)

Hit 2.0 2021 NA 1,250 1,237 2,208 NA http://hit2.badd-cao.net Yan et al. (2022)

HERB 2020 NA 7263 49,258 12,933 28,212 http://herb.ac.cn/ Fang et al. (2021)

TCMIO 2020 1493 618 16,437 126,972 NA http://tcmio.xielab.net Liu et al. (2020)

YaTCM 2018 1813 6220 47,696 18,697 1907 http://cadd.pharmacy.
nankai.edu.cn/yatcm/
home

Li et al. (2018)

SymMap 2018 NA 1717 19,595 4302 5235 http://www.symmap.org/ Wu et al. (2018)

TCMID 2018 46,914 8159 25,210 NA 3791 http://www.megabionet.
org/tcmid/

Huang et al.
(2018)

TCM-Mesh 2017 NA 6235 383,840 4,518,065 6204 http://mesh.tcm.
microbioinformatics.org/

Zhang et al.
(2017)

CEMTDD 2014 NA 621 4060 2163 210 http://www.cemtdd.com/
index.html

Huang and Wang
(2014)

TCMSP 2014 NA 499 29,384 3311 837 http://sm.nwsuaf.edu.cn/
lsp/tcmsp.php

Ru et al. (2014)

CVDHD 2013 NA 3518 35,230 2395 302 http://pkuxxj.pku.edu.
cn/CVDHD

Gu et al. (2013)

TCM Database@
Taiwan

2011 NA 453 24,033 NA NA http://tcm.cmu.edu.tw/ Chen (2011)
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synergy elevates multi-omics research from static network mapping
to spatially resolved, dynamic interaction modeling, fundamentally
advancing the interpretation of TCM’s holistic therapeutic
principles (Xu et al., 2023; Zhao Z. et al., 2024).

4.2 TCM databases

In the contemporary landscape of pharmaceutical research and
development, target identification stands as a pivotal phase, serving
as the cornerstone for subsequent innovation. A multitude of
databases has emerged, offering exhaustive information
pertaining to both drugs and their associated targets. These
databases vary in scope and focus, with some, such as Drug
Bank, Drug Central, SuperDrug2, Drug Map, and DRESIS,
concentrating on pharmacological data (Wang D. et al., 2016;
Griesenauer et al., 2019). In contrast, resources such as Gene
Cards, TTD, and DisGeNET are primarily dedicated to target
research (Liu X. et al., 2023). Additionally, molecular and
bioactivity data are accessible through platforms such as
PubChem, ChEMBL, and Binding DB (Kim et al., 2016).
Notably, the past decade has witnessed significant growth in
specialized TCM databases (Table 2), which have become
invaluable resources for TCM research.

These TCM-specific databases include ITCM (Tian et al., 2023),
TCM Bank (Lv et al., 2023a), Hit 2.0 (Yan et al., 2022), HERB (Fang
et al., 2021), TCMIO (Liu et al., 2020), and TCMIP (ETCM) (Zhang
et al., 2023b), SymMap (Wu et al., 2018), TCMID (Huang et al.,
2018), TCM Database@Taiwan (Chen, 2011), LTM-TCM (Li D.
et al., 2022), and TCMSP (Ru et al., 2014), TCM-Mesh (Zhang et al.,
2017), TM-MC 2.0 (Kim et al., 2024), YaTCM (Li et al., 2018),
CVDHD (Gu et al., 2013), CEMTDD (Huang and Wang, 2014),
TM-MC (Kim et al., 2024), TCM-suite (Yang P. et al., 2022),
SuperTCM (Q et al., 2021), TCMSID (Zhang L.-X. et al., 2022),
and DCABM-TCM (Liu Z. et al., 2023). These databases collectively
provide extensive data on TCM prescriptions, active metabolites,
and their associated pathways and diseases, each with distinct
emphases. For instance, SymMap links TCM symptoms,
botanical drugs, and modern medical symptoms, while YaTCM
identifies TCM formulas, protein targets, and pathways. TCMSP
provides ADME (absorption, distribution, metabolism, and
excretion) data for numerous commonly used metabolites.
TCMID focuses on plant-derived chemicals, including their
molecular structures, targets, and pharmacological properties, and
DCABM-TCM emphasizes in vivo metabolites. TM-MC provides
information on active metabolites in Northeast Asian traditional
medicine, enhancing TCM diversity through systematically curated
phytochemical profiles. TCM-suite integrates advanced
phytochemical profiling, multi-omics, network pharmacology,
and target prediction algorithms in a unified analytical workflow.
SuperTCM employs corpus linguistics to decipher botanical drugs
and contemporary pathway mapping, thereby bridging the gap
between the two. TCMSID provides multi-level interaction
networks and detailed metabolite profiles, ensuring structural
classification and data reliability through systematic verification
processes. These databases offer diverse functionalities, including
comprehensive datasets, advanced text mining algorithms, and
integration with contemporary biomedical systems. Despite their

differences in data quality and characteristics, these databases
collectively advance TCM research by providing reliable, diverse
information and specialized tools for drug discovery and integration
with modern medicine.

5 Application of AI algorithms in TCM

5.1 Limitations of traditional
cyberpharmacology

The rapid accumulation of biological data and the increasing
complexity of multidimensional, multi-target research have exposed
critical limitations in traditional cyberpharmacology approaches,
particularly in handling large-scale heterogeneous datasets. First,
conventional methods predominantly rely on experimental data and
manual annotation, rendering them time-consuming and inefficient
for large-scale data processing (Ye et al., 2020). While active
metabolites frequently exhibit dose-responsive effects on
individual targets, their polypharmacological actions often
manifest nonlinear behaviors contingent on concentration
gradients and temporal exposure patterns (Li X. et al., 2022).
These phenomena are poorly captured by conventional linear
regression models. A critical methodological gap exists in the
static modeling frameworks of conventional approaches, which
inadequately represent the dynamic network interactions
underlying biological systems. This methodological limitation
hinders systematic investigation of essential pharmacological
mechanisms, including metabolite synergy and antagonism (Y
et al., 2024). Collectively, these deficiencies in computational
scalability, nonlinear system analysis, and temporal resolution
impede mechanistic elucidation of multi-metabolite multi-target
strategies. AI integration offers paradigm-shifting solutions to
these challenges, as detailed in Figure 3.

5.2 Machine learning algorithms

Machine learning (ML) algorithms demonstrate proficiency in
the extraction of critical patterns from high-dimensional data and
the deciphering of complex relationships, thereby enabling more
precise target prediction (Figure 4). The subsequent sections
delineate specific applications of prominent ML algorithms in the
domain of TCM research. This encompasses an assessment of their
performance in processing high-dimensional data, feature
extraction, clustering capabilities, and their applicability and
limitations in multi-target prediction.

5.2.1 Support vector machine
The Support Vector Machine (SVM), a widely used linear

classifier for binary classification tasks, constructs optimal
hyperplanes to maximize interclass margins while achieving high
accuracy through distinct category discrimination (Nedaie and
Najafi, 2018). The SVM facilitates metabolite classification and
pattern recognition by extracting structural and functional
features (Heikamp and Bajorath, 2014). In high-dimensional
nonlinear interactions, kernel functions enable SVM to project
data into higher-dimensional spaces, effectively capturing latent
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nonlinear patterns (Ma et al., 2023). This approach demonstrates
strong generalization and overfitting resistance in small-sample
scenarios, though scalability challenges with large datasets and
empirical dependency on kernel selection limit broader multi-
metabolite applications.

For instance, Cong et al. developed an SVMmodel that achieved
high predictive accuracy in identifying TNF-α converting enzyme
(TACE) inhibitors (Cong et al., 2009). However, the SVM model in
this study has critical limitations, including a pronounced class
imbalance (443 inhibitors vs. 759 non-inhibitors), Gaussian kernel
dependency without evaluating polynomial or sigmoidal
alternatives, and reliance on static physicochemical descriptors
(e.g., topological indices). Similarly, Zhang et al. integrated
single-cell sequencing with SVM to identify core biomarkers of
myocardial infarction, such as IL-1B and TLR2, and linked them to
botanical drugs like Dan shen, San qi, and Cha shugen (Zhang Q.
et al., 2022). Despite the efficiency of LASSO regression and SVM-
RFE algorithms in feature selection, their reliance on single-center
datasets (GSE66360, n = 99) that are susceptible to collinearity-
driven feature selection bias is a notable limitation. These models are
further hindered by their reliance on static descriptors, which lacks
dynamic binding insights and inherent interpretability barriers of
black-box decision boundaries. To address these limitations,
mitigation strategies have been proposed, including SMOTE-

augmented class rebalancing, Bayesian-optimized kernel selection,
and molecular dynamics-derived 3D interaction fingerprints. These
strategies are complemented by SHAP/LIME frameworks for
mechanistic interpretation (Zhang L.-X. et al., 2022). Future
research must prioritize multicenter validation with ensemble
architectures (e.g., random forest hybrids) and multi-omics
integration to enhance biomarker discovery robustness and
clinical translatability in TCM research.

5.2.2 Decision tree
Decision tree (DT) algorithms utilize a tree-like structure for

classification and regression, employing “if-then” rules (Cheng et al.,
2021). While individual DTs are interpretable, they are susceptible
to overfitting and noise sensitivity. To address these limitations,
ensemble methods have been developed, including Random Forest
(RF) (Rhodes et al., 2023), Gradient Boosting Decision Tree (GBDT)
(Zhang and Jung, 2021), Extreme Gradient Boosting (XGBoost)
(Ching et al., 2022), and LightGBM (Yang R. et al., 2022). These
methods combine multiple DTs to improve robustness and
predictive accuracy. RF builds multiple independent DTs and
aggregates their outcomes, effectively identifying key features and
revealing metabolite-target associations (Savargiv et al., 2021). For
instance, Chen et al. employed RF and SVM to predict Alzheimer’s
disease-related metabolites, identifying 3-O-methyl ferulic acid and
cyanidanon as potential GSK3β interactors (Chen et al., 2019).
However, traditional QSAR frameworks relying on RF face
limitations including dimensionality reduction artifacts from
PCA/Lasso feature selection and oversimplified 2D molecular
descriptors that neglect 3D steric/electronic interactions captured
in CoMSIA models. Validation challenges persist, notably protein
rigidity assumptions in molecular docking and insufficient
conformational sampling in 100 ns MD simulations.

Conversely, RF demonstrates robustness against noise, requires
minimal preprocessing, and is well-suited for high-dimensional,
large-scale datasets (Jones et al., 2017). However, its interpretability
diminishes with increasing complexity (Zhang Y. et al., 2019). In
contrast, XGBoost improves predictive accuracy through iterative
optimization, rendering it particularly effective for identifying novel

FIGURE 3
Timeline of the development of AI algorithms. Key machine learning (ML) algorithms include PCA, K-Means, Decision Trees, SVM, and RF, while
significant deep learning (DL) algorithms include CNN, RNN, LSTM, GAN, and GNN. This timeline showcases the evolution and expansion of AI algorithms
from traditional ML to advanced DL models.

FIGURE 4
Regression and classification in machine learning (ML). The left
diagram illustrates regression, where a function models the
continuous relationship between the feature X and target Y; the right
diagram depicts classification, where a decision boundary
separates data points into distinct categories.
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targets and pharmacological roles of active metabolites (Shin, 2022).
For instance, Zheng et al. applied XGBoost with Bayesian
optimization to identify critical biomarkers for metabolic
syndrome and associated TCM indicators (Zheng et al., 2023).
However, the developed BO-XGBoost model relies on self-
reported TCM indicators collected through questionnaires, which
may introduce recall bias and subjective interpretation variability.
While hybrid sampling addressed class imbalance, the original
dataset’s 6.6:1 class ratio might still influence model robustness
for minority class predictions. Potential improvements include
multicenter studies with wearable-device biometrics to augment
population representativeness, longitudinal designs tracking
metabolic progression, and hybrid architectures combining blood
biomarkers with TCM indicators (Rhodes et al., 2023). Continuous
model updating mechanisms and experimental validation remain
critical for clinical translation, positioning XGBoost as a powerful
yet refinement-demanding tool in modern multi-metabolite multi-
target research (Zheng et al., 2023).

5.2.3 Clustering algorithms
Clustering algorithms, a form of unsupervised learning, are

extensively utilized for data grouping and pattern recognition.
These methods group active metabolites and targets based on
shared features or pharmacological properties, enabling the
identification of underlying patterns (Gan et al., 2018). Common
approaches include k-means and hierarchical clustering. K-means
clustering, a method that assigns data points to a predefined number
of clusters (k), effectively groups active metabolites with similar
chemical structures or pharmacological activities (Li et al., 2023a). In
contrast, hierarchical clustering constructs a tree-like hierarchy of
relationships through iterative merging or splitting. A notable
advantage of hierarchical clustering over k-means is its ability to
manage complex data structures, a feature particularly beneficial
when analyzing such structures (Zavadlav et al., 2019).

Clustering algorithms have been demonstrated to offer a unique
value in identifying latent patterns from unlabeled data. However,
traditional methods face critical challenges in high-dimensional
datasets and noise susceptibility. Conventional approaches, such
as k-means clustering, frequently employ empirically determined
cluster numbers, which can compromise reliability through
subjective parameterization. To address these limitations, Han
et al. developed an improved artificial bee colony (IABC)
algorithm that automates cluster center selection, successfully
enhancing metabolite clustering (Han et al., 2019). However, this
method is sensitive to the choice of Gaussian kernel parameters,
particularly the cutoff distance dc, in heterogeneous density
distributions, and it also exhibits premature convergence risks in
complex search landscapes. To address these limitations, strategic
enhancements can be made, including an adaptive dc calibration via
k-nearest neighbor density estimation to optimize cluster
identification. Furthermore, a hybridization of IABC with
quantum-inspired operators could refine the exploration-
exploitation balance, thereby strengthening the algorithmic
robustness of the IABC for TCM datasets characterized by
variable botanical drug nomenclature and multidimensional
interactions (Han et al., 2019).

SVM, DT, and clustering algorithms each offer unique
advantages in multi-metabolite multi-target research. SVM

demonstrates proficiency in the classification of small, high-
dimensional datasets, while DT algorithms, particularly ensemble
methods such as RF and XGBoost, exhibit efficacy in the extraction
of features and the identification of targets in complex biological
systems. Clustering algorithms, in contrast, are instrumental in the
realm of unsupervised learning, facilitating the discovery of latent
patterns. However, it is imperative to acknowledge the limitations
inherent in these methodologies. SVM grapples with computational
challenges posed by large datasets, DT models may lack
interpretability due to complex trees, and clustering algorithms
are sensitive to noise in high-dimensional contexts. These
limitations underscore the necessity for judicious integration and
optimization of these techniques. Future research should prioritize
the development of hybrid approaches that synergistically leverage
the strengths of these algorithms, thereby creating robust,
interpretable, and multi-layered predictive models. These
advancements hold great promise in deepening our
understanding of multi-metabolite multi-target mechanisms in
TCM and driving significant progress in pharmacological research.

5.3 Deep learning algorithms

Deep learning (DL) has been shown to outperform conventional
machine learning methods in nonlinear modeling and automated
feature extraction. In multi-metabolite multi-target interaction
prediction, DL algorithms achieve superior accuracy by capturing
intricate biological system relationships. These algorithms
autonomously extract high-level molecular features, analyze
complex metabolite-target interaction networks, and process
dynamic biological data, enabling deeper insights into
pharmacological mechanisms. Below we discuss several
representative DL algorithms and their strengths in feature
extraction and dynamic modeling.

5.3.1 Convolutional neural networks
Convolutional Neural Networks (CNNs), a prevalent

technology in the domain of image processing (Figure 5),
comprise three fundamental components: convolutional layers for
local feature extraction, pooling layers for dimensionality reduction,
and fully connected layers for classification or regression (Guo et al.,
2020). The remarkable efficacy of CNNs in processing nonlinear,
high-dimensional data can be attributed to their local receptive
fields, weight sharing, and pooling operations (Soffer et al., 2019). In
TCM research, CNNs have been employed to automatically detect

FIGURE 5
The classic LeNet architecture in CNNs is designed for 2D image
feature extraction and classification. It consists of an input layer,
alternating convolutional and pooling layers, a fully connected layer,
and an output layer. This structure progressively extracts and
maps local to global features for tasks like object detection and image
classification.
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molecular features, such as spatial distributions, with the aim of
predicting targets and mechanisms. For instance, Liu et al.
developed a CNN-based drug screening platform that integrates
multi-source data and topological information to predict potential
therapeutic agents for Parkinson’s disease and related proteins (Liu
et al., 2022). Similarly, Chen et al. combined CNNs with genetic
algorithms to predict liver cancer treatment efficacy, identifying
active metabolites (quercetin, kaempferol) that modulate IL-17 and
TNF pathways (Chen et al., 2023). However, these methods exhibit
shared limitations, including increased overfitting by relying on a
limited clinical data set (n = 745) and the risk of potential false
positives from Pan-Assay interfering compounds (PAINS).
Molecular dynamics (MD) simulations offer a potential solution
by analyzing compound-membrane interaction patterns to
effectively identify PAINS, providing enhanced specificity
compared to traditional ligand-based screening approaches
(Magalhães et al., 2021). Future research should focus on
developing hybrid graph-CNN architectures trained on MD-
derived interaction fingerprints, such as halogen bond
configurations, combined with ML classifiers to further improve
predictive accuracy and biological relevance.

Furthermore, CNN-based drug-target interaction (DTI) models
are frequently employed to predict novel targets for active
metabolites. For instance, Hu et al. introduced SSELM-neg, a
framework designed to enhance model performance through the
selection of high-quality negative samples and parameter
optimization via a spherical search algorithm (Hu et al., 2023). ,
In a separate investigation, Qu et al. utilized a CNN-based graph
autoencoder to extract high-order structural information from
heterogeneous networks, achieving a substantial improvement in
DTI prediction accuracy (Qu et al., 2024). While CNNs exhibit
robust feature extraction and generalization capabilities, their
applicability is constrained by reliance on grid-like data
representations, challenges in distinguishing true negatives from
unvalidated non-interacting pairs, and limited adaptability to time-
series datasets. Future advancements in this field should prioritize
the integration of geometric DL into hybrid architectures to process
non-Euclidean molecular representations, the implementation of
rigorous negative sample validation protocols (e.g., orthogonal
experimental confirmation), and the optimization of spherical
search algorithms for efficient parameter tuning in high-
dimensional spaces (Guo et al., 2020).

5.3.2 Recurrent neural networks
The dynamic interactions between active metabolites and their

biological targets frequently exhibit significant temporal
dependencies, a characteristic that CNNs often fail to accurately
capture. However, recurrent neural networks (RNNs) are
particularly well-suited at modelling time-series datasets,
showing efficacy in applications involving sequential patterns.
RNNs leverage a recurrent architecture, integrating current
inputs with preceding hidden states to effectively capture
dynamic features across time (Wang J. et al., 2016; Mao and
Sejdić, 2023). This attribute renders RNNs an ideal method for
analyzing the in vivo metabolic transformations of active
metabolites and their interactions with biological targets (Tang
and Wu, 2022). For instance, Zhang et al. developed an RNN-
based model, termed GRMC, which accurately predicts meridian

associations for active metabolites based on graph-derived neural
features (Zhang P. et al., 2024).

However, conventional RNNs are prone to vanishing and
exploding gradients when processing long input sequences,
thereby limiting their ability to model protracted temporal
dependencies. This limitation spurred the development of
modified RNN architectures, such as Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units (GRUs) (Yu, 2022).
LSTMs incorporate memory cells and sophisticated gating
mechanisms to mitigate the gradient vanishing problem, thereby
enabling the effective modelling of long-term dependencies (Jaihuni
et al., 2022). GRUs, a computationally simplified version of LSTMs,
merge the forget and update gates, improving efficiency while
maintaining a comparable capability for modelling temporal
dynamics (Kim et al., 2023). Despite these advancements in
capturing temporal dependencies, RNNs and their variants
frequently demonstrate diminished computational efficiency
when confronted with substantial datasets and intricate,
nonlinear relationships. Consequently, future research endeavors
should prioritize the development of hybrid architectures that
seamlessly integrate attention-enhanced RNNs with graph neural
networks (GNNs). These hybrid architectures should aim to
concurrently model both sequential dependencies and multi-scale
interaction patterns. Moreover, the utilization of parallel computing
frameworks is imperative to address the computational bottlenecks
inherent in these models (Wang D. et al., 2016; Mao and
Sejdić, 2023).

5.3.3 Graph neural networks
To address the inherent limitations of RNNs and their variants

in capturing complex, non-sequential relationships, graph neural
networks (GNNs) have emerged as a powerful deep learning
architecture for processing graph-structured datasets. Grounded
in principles of graph theory, GNNs operate by propagating and
learning feature representations through connections between nodes
(Pasa et al., 2022). Nodes represent active metabolites or targets,
while edges denote interactions. Through graph convolution, GNNs
efficiently aggregate structural information to capture nonlinear
relationships (Wang et al., 2023). For instance, Duan et al.
developed HTINet2, a GNN-based framework capable of
extracting and representing deep metabolite-target interaction
patterns (Duan et al., 2024). A distinguishing feature of GNNs is
their inherent independence from spatial or sequential ordering,
facilitating the flexible learning of inter-node relationships and
circumventing the temporal constraints of RNNs. While
HTINet2 demonstrates superior performance, its limitations
include dependence on knowledge graph completeness and
sparse supervised signals from limited clinical data. Future
directions should focus on integrating multi-omics data and
experimental validation to enhance biological relevance
prediction (Jin et al., 2022).

5.4 Cross-modal data fusion algorithms

Cross-modal data fusion algorithms are designed to integrate
information from diverse modalities, encompassing chemical
structural data of active metabolites, biological target data, and
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pharmacological experimental results. This approach enables a
holistic analysis of metabolite-target interactions. Three primary
methods are commonly used: joint embedding, attention
mechanisms, and deep generative models (Liu L. et al., 2024).
Joint embedding techniques create a shared feature space for
multimodal data, optimizing correlations between modalities. For
instance, Deep Canonical Correlation Analysis (DCCA) extracts
common features from electroencephalography (EEG) and eye-
tracking data to detect fatigue (Lian et al., 2024). Similarly, Zhao
et al. developed a multimodal framework combining visual
transformers and Graph Convolutional Networks (GCNs) for
recommendation and prescription generation of botanical drugs
(Zhao W. et al., 2024). Deep generative models, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders
(VAEs), have been employed to explore metabolite-target
relationships (Gao et al., 2020). GANs consist of a generator and
a discriminator that work adversarially to produce realistic synthetic
datasets. In TCM research, GANs generate potential active
molecular structures to predict novel target interactions. In
contrast, VAEs learn latent distributions from input data to
generate new samples, excelling at capturing underlying feature
spaces. Despite these advances, current approaches struggle with
modality-specific feature misalignment and overreliance on
synthetic data that has not been validated by experimental
pharmacology. Future work must prioritize physics-informed
generative architectures and self-supervised multimodal
alignment to bridge domain gaps between computational
predictions and biological plausibility (Liu M. et al., 2024).

6 Challenges

Despite significant advancements in ML and DL applications for
TCM studies, persistent methodological challenges require
systematic resolution. This section will therefore analyze current
limitations, existing solutions, and future research directions.

6.1 Dilemma regarding input modalities

Current TCM target prediction models face fundamental
limitations in processing heterogeneous data streams. Single-
modality approaches inadequately capture the complexity of
TCM, necessitating integration of chemical, biological,
pharmacological, multi-omics (genomic, proteomic,
metabolomic), and clinical data domains. Three critical barriers
have been identified: First, there is technical heterogeneity from
disparate database architectures and annotation protocols. Second,
there are nonlinear interactions between modality-specific feature
spaces. Third, there is class imbalance across disease taxonomies.
These challenges collectively constrain model generalizability.
Therefore, advanced multimodal fusion frameworks are necessary
for robust TCM analysis. Emerging solutions demonstrate progress
in multimodal integration. The Drug LAMP model enhances
prediction accuracy through synergistic fusion of molecular maps
and protein sequences via multimodal PLMs combined with
conventional feature extraction (Luo et al., 2024). Similarly, the
MKG-FENN framework achieves superior drug-drug interaction

prediction by integrating neural networks with multimodal
knowledge graphs, effectively modeling drug-chemical entity
relationships and molecular substructure interactions (Jiao
et al., 2023).

The integration of multimodal data has emerged as a prominent
approach in TCM research, with the predominant strategies falling
into three categories (Figure 6): early fusion (input-level
concatenation), mid fusion (feature-space integration via
attention mechanisms), and late fusion (output-level aggregation)
(Ding et al., 2021; Hamamoto et al., 2022). Advanced
implementations, such as the Drug LAMP model, employ
Pocket-Guided Common Attention (PGCA) and Paired
Multimodal Attention (PMMA) modules to optimize cross-modal
feature alignment (Wu et al., 2021; Borse et al., 2023; Hou et al.,
2024). State-of-the-art Transformer-based architectures show
particular promise for TCM target prediction through their
inherent capacity for contextual relationship modeling (Meyer
et al., 2019; Liu J. et al., 2023). Natural language provides a rich
source of fine-grained knowledge and control instructions, often
used in visuomotor tasks (Lee et al., 2023; Vaid et al., 2024).
Similarly, natural language processing (NLP) techniques have
demonstrated potential as a means of integrating textual
information associated with TCM, usage guidelines, and
contraindications. For instance, Song et al. developed a database
of adverse reactions for both Chinese and Western medicines
utilizing large-scale language models (LLM) and NLP techniques,
which improved prediction accuracy and utility (Song et al., 2024).
However, the integration of natural language models into TCM
target prediction poses challenges due to the substantial inference
time, limited quantitative accuracy, and potential instability of
natural language models. In addition, textual databases related to
Chinese medicine may contain noise and inaccuracies. Therefore,
while LLM may be suitable for specialized, complex scenarios or
high-level behavioral prediction, their direct integration into TCM
target prediction requires careful consideration (Lv et al., 2023b).

6.2 Dependence on feature representation

Current TCM target prediction systems face fundamental
limitations in feature representation engineering. The inherent
complexity of TCM formulations, characterized by
polypharmacological interaction patterns, parallels the
sensorimotor challenges of autonomous urban navigation systems
(Hilleli and El-Yaniv, 2018). Despite methodological advances (He
et al., 2016), no consensus exists for optimal TCM target
representation. Emerging solutions employ heterogeneous
networks integrating active metabolites, biological targets, and
interaction profiles (Gao J. et al., 2024). However, these
architectures require validation across diverse pharmacological
contexts. A critical implementation gap persists in co-optimizing
feature representations with downstream decision
layers—misalignment between these stages frequently degrades
prediction accuracy.

Representation learning approaches are constrained by two
factors: 1) information bottleneck effects during feature
compression, which eliminate contextually relevant
pharmacological data; and 2) over-simplified chemical descriptors
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that omit critical structural-activity relationships (Zhang S. et al.,
2024). The prevalence of redundant information (e.g., inactive
molecular substructures) further complicates discriminative
feature extraction (Liu L. et al., 2024). Despite the potential
demonstrated by self-supervised learning for TCM representation
learning (Bucci et al., 2022), two fundamental challenges persist: 1)
the development of pretext tasks to capture TCM’s latent
pharmacological signatures, and 2) the quantitative validation of
learned representations in clinical prediction scenarios.
Transformer-based architectures may offer solutions through
their inherent capacity for context-aware feature learning, though
concerns regarding computational complexity persist.

6.3 Complexity of world modeling

The application of deep reinforcement learning (DRL) to TCM
target prediction is constrained by three interrelated challenges
rooted in the complexity of world modeling. First, the high
sample complexity inherent to DRL necessitates extensive

pharmacological datasets—a critical limitation given the
polypharmacological nature and data scarcity of TCM systems
(Song et al., 2024). Secondly, model-environment divergence in
Model-Based Reinforcement Learning (MBRL) introduces
prediction error propagation, necessitating the integration of
deep neural networks with Bayesian uncertainty quantification to
mitigate dynamic model inaccuracies (Guo et al., 2023). Thirdly,
computational intractability arises from the combinatorial demands
of multistep MBRL planning and multimodal data integration, a
problem that is particularly problematic for real-time clinical
applications (Lv et al., 2023a).

Current MBRL frameworks exhibit systemic biases toward
established structure-activity relationships, potentially overlooking
novel therapeutic targets. This limitation necessitates the
implementation of entropy-driven exploration strategies to
enhance solution space navigation while maintaining
computational feasibility. Dimensionality reduction techniques
have demonstrated efficacy in addressing high-dimensional state
spaces, particularly in the context of image-based phytochemical
analyses (Zhang S. et al., 2023). The development of architectural

FIGURE 6
AI-driven multimodal fusion strategies. Three principal approaches emerge: (1) Early fusion synthesizes heterogeneous datasets into unified feature
representations before model development; (2) Middle fusion preserves original data structures while integrating feature embeddings through
intermediate processing layers; (3) Late fusion combines outputs from modality-specific predictive models through aggregation algorithms.
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optimizations that balance model complexity and computational
tractability is imperative to bridge the gap between theoretical
MBRL capabilities and the practical requirements of TCM
research. However, significant challenges persist in aligning these
computational frameworks with holistic pharmacological principles.

6.4 Reliance on multi-task learning

Multi-task learning (MTL) offers strategic advantages for TCM
target prediction through shared representation learning across
pharmacological activity, therapeutic effects, and safety profiling
tasks. By leveraging inter-task correlations via task-specific heads,
MTL reduces computational redundancy while enhancing model
generalizability (Vandenhende et al., 2022). This approach aligns
with TCM’s requirement for holistic biological system modeling,
where concurrent prediction of multi-target interactions benefits
from shared intermediate representations. However, two critical
limitations emerge: 1) Optimization challenges in balancing task-
specific loss functions, particularly given TCM’s sparse
pharmacological annotations; and 2) Insufficient theoretical
frameworks for auxiliary task selection in polypharmacological
contexts (Ishihara et al., 2021; Jaeger et al., 2023).

6.5 Lack of interpretability

Despite significant advancements in the field of AI algorithms
for predicting TCM metabolite-target interactions, the inherent
“black box” nature of many models poses a substantial obstacle
to their widespread adoption and acceptance. This opacity hinders
both understanding and user trust, giving rise to significant ethical
and legal concerns (Ornes, 2023). The complexity of deep neural
network architectures, while often associated with high predictive
accuracy, contributes significantly to a lack of model interpretability
(Zhang Y. et al., 2024). A persistent trade-off exists between accuracy
and interpretability, and efforts to improve model accuracy
frequently necessitate more intricate architectures and algorithms,
thereby compromising model transparency (Zhang P. et al., 2024).
The absence of standardized evaluation metrics further exacerbates
this challenge, as it prevents both the development of interpretable
models and the comparative analysis of their transparency (Karim
et al., 2023).

In order to address the aforementioned limitations, researchers
have explored post hoc explainable AI (X-AI) techniques, such as
generating saliency maps to highlight influential input features.
However, such approaches offer limited insights, and their
efficacy remains difficult for a rigorous evaluation (Solorio-
Ramírez et al., 2021). Consequently, considerable attention has
shifted towards the design of end-to-end frameworks that
incorporate interpretability into the model architecture. Attention
mechanisms, for example, offer a certain degree of interpretability by
assigning weights to features, thereby highlighting their relative
importance in intermediate representations. However, while
attention-based visualizations provide intuitive cues, their fidelity
and utility in providing comprehensive explanations remain limited
(Harfouche et al., 2023). The incorporation of interpretability-
focused tasks, rule integration, cost learning, natural language-

based interpretability, and uncertainty quantification holds
promise for improving model reliability and transparency in
TCM target prediction (Yang G. et al., 2022). However, many of
these methods function primarily as auxiliary tasks, with a
potentially limited impact on the final predictive outcome.

6.6 Causal confusion

Causal confounding, a persistent challenge in imitation learning
for nearly 2 decades, presents a significant parallel in TCM target
prediction modeling. The inherent complexity of TCM chemical
compositions, coupled with potential synergistic or antagonistic
interactions between active metabolites, can substantially impact
predictive outcomes. Existing models may exhibit an over-reliance
on readily available chemical features while neglecting other
potentially important factors (Lin et al., 2022). Additionally, the
inherent heterogeneity of TCM target prediction datasets, which
encompass diverse data sources prone to biases and inconsistencies,
introduces noise into the learning process and amplifies the effect of
causal confounding (Zhu Y. et al., 2022). To address these
challenges, researchers have proposed several strategies. One
approach involves enhancing the model’s ability to identify
salient features through the incorporation of auxiliary tasks, such
as semantic segmentation of active metabolites or depth estimation.
However, this approach increases model complexity and necessitates
high-quality annotated datasets, which are difficult to obtain (Zhang
Y. et al., 2023). An alternative strategy focuses on quantifying model
uncertainty modeling, enabling the identification and correction of
spurious associations (Öcal et al., 2022). This strategy integrates
likelihood models to capture uncertainty, providing a
computationally efficient approach for quantifying uncertainty in
stochastic models of gene expression.

6.7 Lack of robustness

The TCM datasets generally manifest class imbalance,
characterized by the overrepresentation of a few categories while
other, equally important yet less prevalent, categories exhibit a
paucity of instances. This imbalanced distribution poses a
substantial challenge to model generalization across diverse
environments (Yang et al., 2020). To address this challenge,
researchers have proposed various data processing techniques,
including oversampling (Krawczyk et al., 2020), undersampling
(Marin and Hedges, 2018), and data augmentation (Shorten
et al., 2021), as well as weighting-based methods (Fernandes
et al., 2023). Additionally, the presence of covariate bias poses a
substantial obstacle. Discrepancies between the distribution of
training datasets and real-world application data can lead to
reduced model performance in novel testing environments (Pitt
et al., 2025). Pitt et al. employed the DAgger (Dataset Aggregation)
algorithm to enrich the training dataset and improve model
robustness through an iterative training process involving the
continuous collection and expert annotation of new data (Pitt
et al., 2025).

Domain Adaptation (DA) is an alternative transfer learning
methodology that aims to train a model across identical source and
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target tasks but different domains. In TCM target prediction, this
domain divergence may manifest as a divergence between simulated
and real-world datasets (Jin et al., 2024). Addressing this divergence,
studies have demonstrated the efficacy of employing image
translators and discriminators to map data from disparate
domains into a shared latent space or representation, such as
segmentation maps (He et al., 2023). Additionally, domain
randomization has been shown to enhance model robustness by
randomizing the rendering and physical parameters of the
simulator, thereby effectively counteracting real-world variability
(Bandyopadhyay et al., 2022).

7 Future trends

In light of the aforementioned challenges and opportunities, the
following key research directions are proposed to facilitate
substantial advancements within the field.

7.1 Zero-shot and few-shot learning

The inherent diversity and rarity of TCM datasets pose a
significant challenge for model development. Zero- and few-
sample learning techniques offer a promising avenue to address
this issue by enabling models to adapt to new target domains with
limited or unlabeled data. For instance, the TxGNN model,
developed by Huang et al., efficiently predicts drug indications
and contraindications by analyzing a large-scale medical
knowledge graph and providing interpretable multi-pathways
explanations that reveal the medical reasoning underpinning the
predictions (Huang et al., 2024). This approach not only improves
prediction accuracy, but also highlights the potential for drug
repurposing, exhibiting a strong alignment with clinical
prescribing practices.

7.2 Modular end-to-end planning

Modular end-to-end planning frameworks, which are
characterized by the optimization of multiple modules while
prioritizing the final planning task, offer the advantage of
improved interpretability. The efficacy of this framework within
the context of target prediction has also been demonstrated. By
designing different perceptual modules, researchers can explore a
diverse range of loss functions and training strategies to optimize
both model robustness and accuracy (Lv et al., 2023b). This modular
approach enables not only a deeper understanding of the model’s
decision-making process but also enhances its adaptability within
complex environments.

7.3 Data engines

Large-scale, high-quality datasets are imperative for the
advancement of target prediction in TCM. The development of
an automated data labeling engine offers a significant opportunity to
streamline the iterative process of data and model development. A

notable example is TCM Bank, a comprehensive TCM database that
utilizes big data-driven and unsupervised learning methodologies to
predict the adverse effects of both Chinese and Western medicines
(Song et al., 2024). The data engine not only supports case mining
and scenario generation, but also facilitates data-driven evaluation
and improves model generalization.

7.4 Foundation model

Recent advancements in foundation modeling, particularly
within the domains of language (Li et al., 2025) and vision (Fang
et al., 2023), have demonstrated that the availability of large-scale
datasets, coupled with increased model capacity, can unlock the
enormous potential of AI for sophisticated reasoning tasks. These
base models can be further optimized through methodologies such
as self-supervised reconstruction or comparative learning (Zeng
et al., 2022). To illustrate this, consider the training of a model
designed to predict a plausible future state for an environment. This
model can then be utilized for planning in 2D, 3D, or latent spaces to
improve performance in downstream tasks (Li et al., 2023b).

7.5 Self-supervised and
comparative learning

Recent advancements in ML and DL have led to the
development of self-supervised and comparative learning
methodologies, which have emerged as promising avenues for
target prediction in TCM. For instance, the application of
functional representations derived from gene signatures to
metabolite-target prediction, through the use of deep learning
models, has shown the ability to identify functionally similar
genes and optimize gene embedding vectors (Chen et al., 2024).
This approach improves predictive accuracy and reveals associations
and common information across different modalities, thereby
providing a novel perspective for TCM target prediction.

8 Conclusion

This review provides a comprehensive examination of the
applications and advancements of AI in modelling multi-
metabolite multi-target interactions within the context of TCM.
AI methodologies have revolutionized the field, providing
innovative tools and frameworks for the analysis and
quantification of the complex interactions between active
metabolites and biological targets. The integration of multi-omics
datasets, advanced deep learning techniques, and knowledge graph-
based frameworks has significantly improved the predictive
accuracy and robustness of TCM studies, enabling more
systematic metabolite screening and pharmacodynamic analysis.

However, several challenges persist. Data heterogeneity, sample
imbalance, and the complexity of TCM formulations impede
effective feature representation and model training. Additionally,
the “black box” nature of many AI models limits their
interpretability, reducing trust among researchers and
practitioners. Issues such as causal confounding and insufficient
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model robustness further complicate AI applications in TCM target
prediction. To that end, future research should prioritize the
development of zero-shot and few-shot learning paradigms, the
creation of modular end-to-end planning frameworks, the
development of data engines, and the integration of self-
supervised learning methodologies. These approaches are
designed to enhance model adaptability, interpretability, and
reliability. In summary, the integration of AI into TCM
represents a significant step toward the modernization of TCM
and the advancement of personalized medicine. By addressing
current challenges and pursuing innovative directions, the field
can achieve a broader impact and global relevance. Continued
interdisciplinary collaboration is essential to fully realize the
potential of AI in TCM research.
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