AUTHOR=Li Yu , Liu Xiangjun , Zhou Jingwen , Li Fengjiao , Wang Yuting , Liu Qingzhong TITLE=Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling JOURNAL=Frontiers in Pharmacology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1541509 DOI=10.3389/fphar.2025.1541509 ISSN=1663-9812 ABSTRACT=Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target interventions to address complex diseases, providing advantages over single-target therapies. However, the active metabolites, therapeutic targets, and especially the combination mechanisms remain unclear. The integration of advanced data analysis and nonlinear modeling capabilities of artificial intelligence (AI) is driving the transformation of TCM into precision medicine. This review concentrates on the application of AI in TCM target prediction, including multi-omics techniques, TCM-specialized databases, machine learning (ML), deep learning (DL), and cross-modal fusion strategies. It also critically analyzes persistent challenges such as data heterogeneity, limited model interpretability, causal confounding, and insufficient robustness validation in practical applications. To enhance the reliability and scalability of AI in TCM target prediction, future research should prioritize continuous optimization of the AI algorithms using zero-shot learning, end-to-end architectures, and self-supervised contrastive learning.