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Background: The molecular pathogenesis of lung adenocarcinoma (LUAD)
involves genomic mutations, autophagy dysregulation, and signaling pathway
disruptions. Autophagy, a key cellular process, is tightly linked to cancer
development; genes like ATG5 and ATG10 influence lung cancer progression,
and epigenetic regulators modulate autophagy-related carcinogenesis.
However, the role of epigenetic-autophagy genes in LUAD’s tumor
microenvironment is under-researched.

Methods: We used the “limma™ package to identify differential epigenetic-
related genes associated with altered autophagy regulation (A-ERGs) in LUAD.
Single-cell RNA sequencing was further employed to evaluate the heterogeneity
of immune cells. Machine learning algorithms were utilized to construct and
identify diagnostic markers for LUAD, which were then validated by receiver
operating characteristic (ROC) curve analysis. Cell experiments, real-time PCR,
and Western blot were conducted to verify the expression of KDM6B and
KANSL1 and their effects on T-cell differentiation.

Results: Based on single-cell and transcriptome analyses, we screened
19 A-ERGs that were significantly differentially expressed in lung cancer
tissues. These genes were primarily enriched in exhausted T cells.
Subsequently, through machine learning, KDM6B and KANSL1 were identified
to have excellent diagnostic performance. Single-cell level and transcriptome
correlation analyses revealed that the expression of these two genes was
associated with exhausted T cells. Results from in vitro cell experiments
showed that high expression of these two genes promoted the occurrence of
T cell exhaustion.

Conclusion: In this study, we utilized bulk and single-cell transcriptomic data to
uncover the potential molecular mechanisms of A-ERGs in lung cancer. We
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explored the characteristic distribution of these genes in the tumor immune
microenvironment and identified two A-ERGs, KDM6B and KANSL1, as potential
diagnostic biomarkers for lung adenocarcinoma (LUAD). Our findings offer novel
strategies for targeted therapeutic interventions in LUAD.

A-ERGs, LUAD, exhausted CD8*T cells., DEGs, machine learning

Introduction

Lung adenocarcinoma (LUAD) is still the most common human
malignancy, with high incidence and mortality, which also is the
most frequently sub-type of Lung cancer (Sung et al., 2021).LUAD
patients are usually diagnosed at an advanced stage and the 5-year
survival rate is less than 4%, accounting for 38% of total cases (Dela
Cruz et al,, 2011). At present, like surgical resection, chemotherapy,
and even targeted therapies were mainly treatment for LUAD
patients, the prognosis remains poor with low survival rates for
the severity of pulmonary fibrosis, high incidence of multi-drug
resistances, and diversity of histologic properties (Bade and Dela
Cruz, 2020; Tang et al., 2019). The development of LUAD has been
shown to be closely related to several factors, such as patients with
Chronic obstructive pulmonary disease (COPD)and pulmonary
tuberculosis, smoke, immunologic dysfunction, tuberculosis
infection; and asthma (Tang et al, 2019; Sekine et al, 2012;
Chen et al,, 2004). However, there is still poorly information
regarding the pathogenic mechanisms driving LUAD initiation
and progression. Therefore, it is important to screen novel
potential markers of LUAD for predicting the prognosis of
individuals with LUAD and serving as therapeutic targets.

The molecular pathogenesis of LUAD is conceptualized as a
multi-step process characterized by the progressive accumulation of
cellular and molecular alterations, including encompass genomic
mutations, Macroautophagy/autophagy, and perturbations in
cellular signaling pathways and metabolic processes (Qian et al.,
2023; Chen et al.,, 2024; Guilbaud et al., 2023; Li et al., 2023; Cheng
et al., 2025). Macroautophagy/autophagy is a degradative process in
which serve as crucial regulators of cellular processes and signaling
pathways that drive cancer initiation and progression, playing an
indispensable role in the carcinogenic process (Lewerissa et al.,
2024). It has been found that the development of lung cancer has
been associated with a range of autophagy-related genes (Sharma
etal., 2021). For example, low ATG5 expression reduces cell growth
in RAS mutant (Guo et al,
2011).ATG10 overexpression was associated with poor prognosis

lung cancer cell lines
in lung cancer (Honscheid et al., 2014). While a large proportion of
cancer carcinogenesis caused by autophagy-related genes was
associated with mutations in genes encoding epigenetic
regulatory proteins that autophagy-regulate gene expression.
Recently, helicobacter pylori-induced silencing of
MAPI1LC3Av] methylation has been reported to lead to impaired
autophagy and promote gastric carcinogenesis (Muhammad et al.,
2017). EHMT?2 inhibition leads to cancer cell death via autophagy
induction in lung cancer (Kim et al., 2020).

There, the above studies suggest that epigenetic-related genes
associated with altered autophagy regulation play important roles in

tumors and the prognosis of patients with various types of cancer.
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Although people are developing a growing awareness of the
important of the epigenetic regulate autophagy for cancer, little
research has focused on the role of these genes in the lung cancer
tumour microenvironment. In recent years, the combined analysis
of single-cell RNA sequencing (scRNA-seq) and RNA-seq has
demonstrated higher sensitivity and accuracy in the study of
disease mechanisms. Meanwhile, it has also shown greater
efficiency in exploring disease mechanisms (Xie et al., 2024; Zhao
et al, 2022; Deng et al, 2024). Therefore, we performed an
investigation of epigenetic-related genes associated with altered
autophagy (A-ERGs) in LUAD Dbased on
transcriptome and single-cell sequencing data. We evaluated the
expression of A-ERGs in individuals afflicted with LUAD and their
potential correlations to diagnostic, prognostic, and immune

regulation

infiltration outcomes. Subsequently, through an in - depth
exploration of the characteristic distribution patterns of these
genes within the tumor immune microenvironment, it was
revealed that A- ERG is likely to modulate the oncogenesis of
LUAD by mediating exhausted T cells. Two A-ERGs, KDM6B
and KANSLI, were identified as potential diagnostic biomarkers
for LUAD through machine learning. Our findings contribute to a
better understanding of the functional role of A-ERGs in LUAD
development and offer insights for the identification of new
prognostic markers and therapeutic targets in LUAD.

Materials and methods

Acquisition and processing of RNA
sequencing (RNA-seq) data

Raw RNA-seq data from 585 LUAD samples (including 58 para-
cancerous tissue samples and 527 LUAD samples) and the
corresponding clinical data were obtained from the Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).
Additionally, RNA-seq data and
clinicopathological ~information for patients with LUAD
(GSE26939 and GSE68465) were downloaded from the GEO
database. The GSE26939
116 LUAD tumour samples were processed using the
GPL9053Agilent-UNC-custom-4X44K, while the
GSE68465 dataset containing 444 LUAD tumour samples were
analyzed using the GPL9269 Illumina Genome Analyzer II. The
scRNA-seq data of LUAD were download from the GSE131907 data,
including 11 distal normal lung tissues and 11 primary LUAD

other two  raw

expression profile consisting of

tissues. The gene expression matrix files for the data from all
three databases were derived from raw RNA-seq data using R
software. Figure 1 provides a flowchart of the overall workflow
and study design.
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FIGURE 1
The schematic diagram of this work.

Differential expression gene analysis

In this study, we utilized the “limma” package (Yin et al., 2022)
to identify differentially expressed genes (DEGs) within the LUAD
cohort, setting thresholds of [log2FC| > 0.585 and p-value <0.05
(Mayakonda et al., 2018). To visualize the relationship between
DEGs and A-ERGs, a Venn diagram was generated using Jvenn
(Newman et al., 2015). For the GSE26939 and GSE68465 datasets,
the R merge function was utilized to extract and combine these
datasets. First, the “limma” package might implicitly assume a
certain level of variance among samples during processing.
Therefore, data standardization is performed when conducting
differential gene analysis on different samples. Following this, we
carried out data normalization and DEG screening using the
“limma” package, maintaining the same thresholds of [log2FC| >
0.585 and p-value <0.05.

Functional, disease enrichment analysis and
regulatory network construction

To explore the hidden biological characteristics of the shared
DEGs and their complex relationships with diseases, analyses
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including Gene Ontology (GO) annotation and Disease Ontology
(DO) assessment were executed via the “cluster profiler” package.
Moreover, enrichment analyses for pathways such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathways, and
WikiPathways were conducted using Enrichr (https://maayanlab.
cloud/Enrichr/).

Analysis of single-cell RNA sequence data

The expression matrix was normalized using the Seurat software
package (version 4.3.2, accessible at https://satijalab.org/seurat/),
which also allowed for the generation of scaled data by factoring
in the UMI counts from each sample and the proportion of
mitochondrial gene expression. Cells of insufficient quality were
filtered out according to specific thresholds: <200 genes per
cell, <10 cells associated with each gene, and a mitochondrial
gene expression rate >15%. After this filtering process, the top
2,000 highly variable genes (HVGs) were selected for integration
of the samples using the “FindVariableGenes” function, followed by
principal component analysis of these HVGs carried out through the
“RunPCA” function (Zou et al., 2023). To correct for batch effects,
present across the various samples, the “Harmony package” was
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employed (Cao et al, 2023). Subsequently, we established a
resolution of 1.0 to facilitate the identification of cell types across
all populations, projecting the cells into a two-dimensional
representation using the “RunUMAP” function. To illustrate the
cell clusters, the “Dimplot” function was used (Huang et al., 2021).
The “UCell” package was then utilized to compute enrichment
scores for A-ERGs throughout the cell population (Andreatta and
Carmona, 2021). For the identification of DEGs across various
groups in same cell types, a differential expression analysis was
conducted using the FindMarkers function available in Seurat. The
criteria for DEG identification were defined as follows: |average fold
change| > 0.25 and P-value <0.05.

Construction of diagnostic model

We utilized a total of ten varied machine learning algorithms for
integration, encompassing methods such as Least Absolute
Shrinkage and Selection Operator (LASSO), Gradient Boosting
Machine (GBM), Random Survival Forest (RSF), Partial Least
Squares Regression for Cox (plsRcox), Stepwise Cox (StepCox),
Supervised Principal Components (SuperPC), Ridge Regression,
Survival Support Vector Machine (Survival-SVM), CoxBoost, and
Elastic Network (Enet). An evaluation of 101 different combinations
of these algorithms was conducted (Liu et al., 2022; Reel et al., 2021).
Our approach followed a sequenced strategy, which included
identifying prognostic factors through univariate Cox regression,
creating predictive models based on the TCGA-LUAD dataset, and
validating these models against additional independent datasets
(GSE26939 and GSE68465). The Harrell Consistency Index
(C-index) was then calculated to facilitate model selection. The
optimal model was determined to be the one that achieved the
highest average C-index across all datasets.

ROC curve

To thoroughly examine the diagnostic model for LUAD, we
performed receiver operating characteristic (ROC) curve analyses
on the gene expression datasets TCGA-LUAD cohort, using the
PROC package (Robin et al., 2011). At the same time, we executed
ROC curve analyses on the GSE26939 and GSE68465 datasets to
evaluate the diagnostic potential of key genes related to LUAD. The
area under the curve (AUC) was utilized to compare the ability of the
LASSO models to diagnose LUAD with the diagnostic effectiveness
of individual LUAD-associated genes.

Cell culture

Human LUAD cell lines H1975, and mouse Lewis lung
carcinoma (LLC) were purchased from the American Type
Culture Collection. All cell lines were cultured in DMEM
(Thermo Fisher Scientific), supplemented with 10% (v/v) foetal
bovine serum (FBS) and 100 pg/mL penicillin-streptomycin. All
maintained at 37°C and 5% CO2 in a

cells were

humidified incubator.
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TABLE 1 qPCR Primer of KDM6B and KANSL1.

KDM6B-F AGACCTCACCATCAGCCACTGT
KDM6B-R TCTTGGGTTTCACAGACTGGGC
KANSL1-F TGCCATGCAGTCTGTCAGATCC
KANSL1-R CAAGTAGCTCGGACTGCTCATG

RNA isolation and quantative PCR (qPCR)

Total RNA was extracted using the TRIzol reagent (China,
shanghai; Thermo Fisher Scientific) as per the manufacturer’s
protocol. A reverse Transcription kit (Takara) was used to
synthesise cDNA and a SYBR Green Master Mix kit (Vazyme,
Q221-01) was used to perform qPCR on the Roche LightCycler”
48011 platform (Roche Diagnostics, United States). The PCR
procedure was as following: 1 cycle at 95°C for 30 s, followed by
40 amplification cycles of denaturation at 95°C for 5 s and annealing
extension at 60°C for 34 s. The primers used for the gPCR were listed
in Table 1. The fold changes of gene expression levels were calculated

using the Formula 2744,

Western blotting

A total of 10 pg cell lysates were resuspended with 5 x SDS
loading buffer and subsequently incubated at 100°C for 5 min. After
centrifugation, the supernatants were separated by a SDS-PAGE and
transferred onto a PVDF membrane (Millipore). The proteins-
imprinted membranes were blocked with 5% bovine serum
albumin for 1 h and incubated with the corresponding primary
antibodies at 4°C overnight. After washed thrice, the membranes
were incubated with horseradish peroxidase-coupled secondary
antibodies for 1 h at room temperature, each membrane was
scanned using a Tanon 4500 imaging system (Shanghai, China).

RNA interference

mRNA mimics and negative control (NC) were designed and
purchased from GenePharmach Company (shanghai, China).
Transient transfections of these mimics into LLC, A549, and
H1975 cells were performed with the INTERFERin® Transfection
Reagent (Polyplus Transfection) at a final concentration of 20 nM,
according to the manufacturer’s instructions. Cells were harvested
48 h after transfection for qPCR and Western blotting analyses.

Statistical analysis

Statistical analyses were performed with GraphPad Prism
8.0 software. The differences between two groups were analyzed
by unpaired Student’s t-test, and differences among multiple groups
were analyzed by one-way or two-way ANOVA followed by the
Tukey test. The log-rank test was used for survival analysis, and the
Spearman rank-order correlation test was used for Pearson
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FIGURE 2

Identification of differentially expressedA-ERGs between normal and LUAD samples. (A) Waterfall plot of DEGs between normal and LUAD in TCGA
dataset. Red and yellow represent the magnitude of the p-value. (B) The Venn diagrams illustrate the common genes between DEGs and A-ERGs. (C) The
expression of these 19 A-ERGs between normal tissues and LUAD tissues in TCGA dataset. Red, tumor sample; blue, normal sample.(D) The expression
analysis of 19 A-ERGs in different stages of LUAD. (E) Waterfall plot illustrate the DEGs between normal and LUAD in GSE26939 and

GSE68465 datasets. (F) The expression of these 19 A-ERGs between normal

tissues and LUAD tissues in GSE26939 and GSE68465 datasets.

correlation analysis. A difference was considered significant if the p
value was <0.05.

Results

Identification of differentially expressedA-
ERGs in LUAD samples

The literature search (Lewerissa et al., 2024) identified a total of
20 epigenetic genes that regulate autophagy (A-ERGs), including
Histone modifiers (EZH2, SETD2, KATS, KANSL1, KDM6A,
KDMé6B, PHF8, SETD1A, KMT2A, KDM3B, EHMTI and

Frontiers in Pharmacology 05

KDMI1A), DNA methyltransferases (DNMT3 and MECP2),
Chromatin remodelers (ADNP, YY1 and YYI1API) and
Cytoplasmic protein modifiers (EP300, EHMT1 and SETD2).
Using the R package limma, we analyzed the DEGs in TCGA-
LUAD cohort, and found that most of these genes showed
significant differences in lung cancer tissues (Figures 2A,B). Next,
we visualized the differential expression of these A-ERGs in normal
and lung cancer samples using boxplots. The results showed that
there are genes with different expression trends among these
A-ERGs. For example, the EZH2, KDM1A, KANSL1, KDM6B,
and KAT8 genes are upregulated in lung cancer patients, while
EP300, MECP2, and SETD2 are downregulated in lung cancer
(Figure 2C). Considering the important biological functions of
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FIGURE 3

Immunological characterization of differentially expressed A-ERGs in the single cell atlas of LUAD patients. (A) UMAP display of the clusters of
immune cells in LAUD patients. (B) The dot plot presents the annotation markers pertaining to the cell clusters. (C) UMAP plots showing the main cell
types of LUAD samples. (D) Comparison of cell type proportions between normal and tumor groups. (E) Heatmap visualization of the expression patterns
of these differentially expressed A-ERGs in each cell type. (F) Module score distribution in UMAP space for these differentially expressed A-ERGs
modules was evaluated using "UCell” in different cell types. (G) Heatmap visualization of the expression patterns of these differentially expressed A-ERGs
in different cell subgroups. *p < 0.05; **p < 0.01; ***p < 0.01; ns, not significant.

these genes in tumorigenesis and development, we systematically =~ SETD1A, KDMT2A, KDM3B, DNMT3A, CHD6, CHD2, YY1,
studied the relationships between these regulatory factors and the ~ YY1AP1 and KDMIA were significantly correlated with the
pathological characteristics of lung cancer. The results showed that  grading of lung cancer patients (Figure 2D). Subsequently, we
most genes, including SETD2, KAT8, KANSL1, KDM6B, PHF8,  further analyzed the expression levels of these genes in lung
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cancer tissues using other external validation datasets
(GSE68465 and GSE26939). Consistent with the previous results,
most genes showed significant differences in lung cancer (Figures
2E,F). Therefore, these data indicate that these A-EGRs may play an
important role in the process of lung cancer development.

GO, DO, and pathway enrichment of the
differentially expressedA-ERGs

To reveal the potential biological processes, molecular functions,
and related diseases of these differentially expressed A-ERGs, we
explored the enriched pathways of these differentially expressedA-
ERGs in two databases (KEGG and Wikipathway). Pathway
enrichment analysis showed that these genes were significantly
in the PI3K-AKT JAK-STAT
TNF signaling
pathway, TGF-beta signaling pathway, PPAR signaling pathway,
ECM-receptor and Notch
(Supplementary Figures S1A, S1B). These data indicate that these

involved signaling pathway,

signaling pathway, signaling pathway, p53

interaction signaling  pathway
genes are mainly involved in immune-related signaling pathways.
Meanwhile, the DO analysis revealed that these A-ERGs were
markedly enriched in lung disease, immune disease, lung cancer,
obesity,
(Supplementary Figure S1C).

endocrine system disease and stomach cancer

High expression of the A-ERGs in T cells of
LUAD patients

To deeply explore these A-ERGs’expression profiles across
different cell types in LUAD, we performed scRNA-seq analysis.
A total of 63,314 cells were analyzed from the 22 samples
(including 11 patients with LUAD, and 11 healthy controls),
24 clusters were found among the cells using a graph-based
clustering technique coupled with the uniform manifold
approximation and  projection (UMAP) dimensionality
reduction method (Figure 3A). We then identified 8 cell types
based on the classical markers (Figures 3B,C; Supplementary
Figures S2A, S2B), including B cells, T cells, Endothelial cells,
Epithelial cells, Fibroblasts, Mast cells, Tumour-associated
(TAM), (NK) cells. We
observed a significant increase in the proportion of B cells

macrophages and natural Kkiller
among LUAD patients when compared to healthy controls
(Figure 3D; Supplementary Figure S2C). Conversely, the
proportions of TAM cells and NK cells were reduced in the
LUAD cohort (Figure 3D; Supplementary Figure S2C). To
deeply investigate these A-ERGs expression in these cells, we
utilized the “UCell” package to assess module scores based on
19 A-ERGs. In LUAD patients, T cells demonstrated the highest
module scores, aligning with heatmap data that emphasized their
elevated expression of these A-ERGs (Figures 3E,F). In addition,
we also assessed the expression levels of these A-ERGs in T cells
across all samples and found that, compared to the control group,
the expression of most A-ERGs was consistently higher in the lung
cancer group, except for KDM3B, EP300, MECP2, and KDM6A
(Figure 3G). These findings suggest that the activity of these
A-ERGs in T cells may be associated with the development of
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LUAD and the dysfunction of T cells in the tumor micro-
environment.

Increased proportion and A-ERGs
expression in exhausted CD8T in
LUAD patients

To further elucidate the influence of these A-ERGs on T cells in
patients with LUAD, we conducted a subpopulation analysis of
T cells, examining the distribution of upregulated A-ERGs across
T cell subgroups. Using UMAP analysis, T cell profiles were
categorized into 19 distinct cellular clusters (Figure 4A). This
clustering revealed four primary cell types, including
CD4'T  cells, Effected Memory CD8'T  monocytes,
GZMA*CDS'T cells and Exhausted CD8" T cells, identified
through classical markers (Figures 4B,C). Concurrently, we
measured the variations in proportions of these cell types, finding
a decrease in the number of CD8" T cells among LUAD patients and
a notable rise in the proportion of exhausted CD8"T cells (Figures
4D,E). Conversely, the proportions of GZMA'CD8'T cells were
reduced in the LUAD cohort (Figures 4D,E). Following this, we
utilized the “UCell” software package to assess the module scores of
the 16 upregulated A-ERGs across different cell types. The analysis
revealed that exhausted CD8"T cells in the LUAD cohort exhibited
the highest module scores, as visualized through UMAP,
significantly surpassing those in the control group (Figure 4F).
Moreover, heatmap analysis further confirmed that these A-ERGs
were predominantly enriched in exhausted CD8*T cells, displaying
elevated expression levels in LUAD patients (Figures 4G,H).
Collectively, these findings indicate that A-ERGs are highly
expressed in depleted T cells of LUAD patients and may play a
role in exacerbating the state of these patients by driving T cell
dysfunction.

Identification of biomarkers for LUAD by
machine learning

To develop a robust predictive model, we utilized selected
genes as input features and assessed ten machine learning
methodologies: Random Survival Forest (RSF), Elastic Net
(Enet), stepwise Cox regression, CoxBoost, Partial Least Squares
Regression for Cox (plsRcox), Lasso regression, Ridge regression,
SuperPC, Gradient Boosting Machine (GBM), and survival-
support vector machine (survival-SVM). Utilizing the TCGA-
LUAD dataset as our test dataset, along with other external
validation datasets (GSE26939 and GSE68465), we compared
the concordance index (C-index) of these models. Among them,
RSF emerged as the leading model, demonstrating superior
C-index performance (Figure 5A). An optimal diagnostic
signature was constructed using a combination of Lasso and
SVM-RFE 5B-E). We subsequently
validated the model through Receiver Operating Characteristic
(ROC) analysis. For the training TCGA cohort, the Area under the
curve (AUC) was 0.993 (Supplementary Figures S3A, S3C); the test
datasets GSE68465 exhibited AUCs of 0.838 (Supplementary
Figures S3B, S3D), respectively. Meanwhile, for the training

algorithms  (Figures
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ScRNA-seq reveals the immunological properties of differentially expressed A-ERGs in T cell subgroups. (A) UMAP plot showing each cluster of T cell
subgroups, coloured by different clusters. (B) A dot plot visualization the expression of marker genes in different clusters. (C) The UMAP plot shows each
cell type of T cell subgroups, colored by different cell types. (D) The Bar chart shows the relative frequency of each subgroup of T cells in different groups.
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the UMAP space was evaluated in different cell types. (G) The heatmap illustrates the expression distribution of these differentially expressed A-ERGs
within each subpopulation of T cells. (H) Heatmap visualization of the expression patterns of these differentially expressed A-ERGs in different cell

subgroups. **p < 0.01; ***p < 0.01; ns, not significant.

cohort of LUAD patients, the area under the curve (AUC)
exceeded 0.96, 0.93 and 0.95 for the 1-year, 2-year, and 3-year
separately (Figure 5F). The test GSE6846 dataset, exhibited AUC
values of 0.97, 0.96, and 0.98 at the 1-year, 2-year, and 3-year time
points (Figure 5G). Subsequently, KDM6B, and KANSLI as the top
two important features among these A-ERGs via these two
algorithms (Figure 5H). These observations indicate that
KDM6B and KANSLI possess significant diagnostic value in the
pathological process of aggravated lung cancer.

Validation of KANSL1, KDM6B expression in
different lung cancer cell lines

To explore the mRNA expression levels of KDM6B and
KANSLI, we consulted datasets from healthy individuals as well
as patients with LUAD. The expression level of these two genes
were significantly upregulated in patients compared with controls
(Figure 6A). Additionally, the ROC analysis confirmed that the
expression of KDM6B, and KANSLI1 were of great diagnostic value
in LUAD patients (Figure 6B). Meanwhile, additional datasets
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(GSE26939 and GSE68465 and GSE118370) further confirmed the
high expression of these two genes in LUAD patients (Figures
6C,D; Supplementary Figures S4A, S4B). Subsequently, the
prognostic value of these two genes was further evaluated, and
it was found that the high expression of these two genes was
significantly associated with the poor prognosis of lung cancer
(Figure 6E). Besides,the results of single-cell transcriptome
analysis also showed that these two genes are highly expressed
in CD8'T cells of LUAD patients (Figures 6F,G). In addition,
human A549 LUAD cells, and mouse LLC LUAD cells had notably
higher mRNA and protein levels of KDM6B, and KANSLI than
normal pulmonary epithelial cells (Figures 6H,I). We therefore
infer that these two genes play an essential role in the occurrence
and development of LUAD. To further explore the potential
biological functions of these two genes in LUAD, we conducted
GSEA enrichment analysis at the transcriptomic level. In the
LUAD cohort, the GSEA enrichment analysis of KDM6B
highlighted seven activated KEGG gene sets and three repressed
KEGG gene sets, with the JAK-STAT. TGF-beta signaling pathway,
B cell receptor signaling pathway, p53 signaling pathway and Toll
like receptor signaling pathways significantly upregulated, while
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GSEA function enrichment analysis of KSNSL1 and KDM6B in LUAD patients. ***p < 0.001

the T cell receptor

signaling pathway and Steroid hormone

biosynthesis was downregulated (Figure 6]). Remarkably, the
GSEA enrichment analysis results for KANSL]1 demonstrated
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receptor signaling pathway, Toll like receptor signaling pathway
and JAK-STAT signaling pathwa, were enriched and significantly
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FIGURE 7

KDM6B and KANSL1 induce the exhaustion of CD8" T cells. (A,B) Correlation analysis between PD-L1(CD274) and KDM6B and KANSL1 in LUAD,
based on TCGA cohort and GEO cohort. (C) Detect the expression levels of KDM6B and KANSL1 genes and proteins after treatment with mimics by gPCR
and Western blot. (D) After the overexpression of KDM6B and KANSL1, perform flow cytometric analysis in vitro to determine the proportion of

exhausted CD8'T cells.

upregulated in LUAD cohorts (Figure 6K). These overlapping
pathways indicate that KDM6B and KANSLI might facilitate
the
mechanisms.

development of LUAD via comparable pathological

Systematic immune characteristics of
KANSLland KDM6B in LUAD patients

The above single-cell study showed that exhausted CD8"T cells
in LUAD patients increased significantly. To further investigate
whether these two prognostic markers are associated with T-cell
infiltration in the pathogenesis of LUAD, we conducted a Pearson
correlation analysis between these two genes (KDM6B and
KANSL1) and immune cells. Consistent with the single-cell
results, in the LUAD group, the infiltration level of CD8'T cells
decreased significantly, while that of M2 macrophages increased
significantly (Supplementary Figures S5A, S5B). Meanwhile,
functional analysis further demonstrated that the functions of
CD8'T cell infiltration and the cytolytic activity significantly
decreased in the LUAD group as well (Supplementary Figure
S5C). Besides, the survival analysis showed that the decrease in
the number and function of T cells was significantly associated with
the poor prognosis of LUAD (Supplementary Figure S5D). Notably,
in line with the single-cell results, the expressions of KDM6B and
KANSLLI are significantly negatively correlated with CD8"T cells
and Gamma delta* T cells in LUAD (Supplementary Figure S5E)
and are significantly positively correlated with the expression of PD-
L1 (Figures 7A,B). To further clarify the impact of these two genes
on the function of T cells, we conducted in vitro cell experiments.
The results showed that the increased expression levels of KDM6B
and KANSLI significantly increased the proportion of exhausted
CDS8'T cells (Figures 7C-E). Thus, the above results suggested that
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these two genes may promote the progression of LUAD through
riving T cell dysfunction.

Dicussion

LUAD is a highly heterogeneous and invasive disease with a low
overall survival rate, and it is prone to tumour recurrence and
metastasis after treatment. The occurrence of lung cancer is closely
related to a series of genetic alterations (Denisenko et al., 2018; Shi
et al, 2016). In recent years, with the continuous development of
sequencing technologies and bioinformatics, molecular diagnosis
and molecular therapy have gradually attracted increasing attention
in the field of oncology. Autophagy is a highly conserved catabolic
pathway, which plays a crucial role in maintaining the stability of the
intracellular environment. Alterations in autophagy-related genes
are associated with the prevalence and progression of lung cancer
(Mizushima and Komatsu, 2011; Kroemer et al., 2010). Clinical
studies have shown that the overexpression of p62 is related to the
overall survival of lung cancer patients (Wang et al, 2019). In
addition, in the mouse model bearing lung cancer, inhibiting
caspase-3 and upregulating autophagy via mTOR can enhance
the efficacy of radiotherapy (Li et al, 2019). The precise
transcription of genes involved in autophagy is regulated by a
network of epigenetic factors. Epigenetics is generally regarded as
the heritable variation in gene expression or phenotype, rather than
changes in the DNA sequence. The transcription factor Forkhead
box O3 (FOXO3) and the surface marker CD47 can both regulate
the occurrence of autophagy (Wang et al., 2016; Li et al., 2018). It has
been reported that aberrantly expressed HDACS8 promotes the
occurrence of oral squamous cell carcinoma by activating caspase
- induced apoptotic cell death and promoting autophagy (Ahn and
Yoon, 2017a). Silencing of HDAC? inhibits salivary mucinous
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epidermoid carcinoma cytogenesis by inducing apoptosis and
autophagy (Ahn and Yoon, 2017b). Lysine specific demethylase 1
(LSD1) plays an important role in the treatment of neuroblastoma
and acute myeloid leukemia (AML) by mediating p62 expression
(He et al., 2020). Although there is a growing awareness of the
importance of epigenetic regulation of autophagy in cancer, the role
of these autophagy - related epigenetic genes in lung cancer,
especially in the tumor microenvironment, remains unclear.

In this study, we developed a multi-omics approach integrating
transcriptomics, scRNA-seq, and machine learning to investigate the
expression profiles of DEGs related to the epigenetic regulation of
autophagy-related genes (A-ERGs) in LUAD. We also determined
the in the
microenvironment of lung cancer and their potential associations
with the occurrence of the disease. Here, we identified the DEGs in
the A-ERGs that are significantly expressed in LUAD and
discovered the biological functions of these DEGs in the
of LUAD. these A-ERGs
significantly enriched in PI3K-AKT signaling pathway, JAK-

roles of potential molecular targets immune

pathogenesis Interestingly, are
STAT signaling pathway, TNF signalling pathway, p53 signalling
pathway, TGF-beta signalling pathway, PPAR signalling pathway,
ECM-receptor interaction and Notch signaling pathway.

To determine the expression landscape of these A-REGs in
different immune cells, we further investigated the characterization
of the single-cell profiles of LUAD samples. We found that,
compared with the control group, the numbers of B cells,
epithelial cells, and tumor-associated macrophages in tumor cells
increased significantly, while the number of natural killer (NK) cells
decreased significantly. There was no obvious difference in the
number of T cells between two groups. Surprisingly, most of the
A-ERGs are enriched in T cells, and their expression levels are higher
than those in the control group. The changes in the activity of T cells
play an important role in tumor progression. Therefore, we can infer
that these hub genes may be involved in the occurrence of tumors by
regulating the function of T cells. To further analyze the potential
mechanisms of these A-ERGs in the function of T cells, we further
studied the cellular profile characteristics of T cell subsets in LUAD.
We emphasize that in LUAD, the number of exhausted CD8"T cells
has significantly increased, while the number of effectors
CD8'T cells has significantly decreased. The spatiotemporal
exhaustion of cytotoxic CD8" T «cells within the tumor
microenvironment (TME) promotes tumor escape (Song et al.,
2022). Inhibitory molecules such as cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) and programmed cell death
protein 1 (PD-1) exist in cytotoxic CD8*T cells within the tumor
microenvironment (TME), leading to poor clinical prognosis in
LUAD patients (Zhang et al., 2021). Interestingly, we found that
these A-ERGs were mainly enriched in exhausted CD8'T cells of
LUAD patients. In patients with LUAD, the response of CD8'T
exhausted cells may be the main cause of the progression of LUAD.
Therefore, we infer that these A-ERGs may promote the
transformation of T cells into exhausted T cells, thereby
triggering tumor immune escape.

We then used LASSO regression and SVM-RFE machine
learning to screen out two A-ERGs as candidate biomarkers for
LUAD. KDM6B and KANSL1 were identified as potential
biomarkers with diagnostic value for LUAD. Two genes are
significantly upregulated in human LUAD disease. Lysine-specific
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demethylase 6B (KDM6B), is a key histone demethylase in various

normal and pathological processes such as inflammation,
development, aging, and cancer (Salminen et al., 2014).High
levels of KDM6B have been confirmed to regulate tumor
progression by mediating cell proliferation, migration, and
senescence (Cheng et al, 2025; Xun et al, 2021). TGF-B
of EMT

metastasis.

(transforming growth factor (1) is an inducer

(epithelial-mesenchymal transition) and tumor
Knocking down KDM6B can inhibit the invasion of breast
cancer cells by suppressing TGF-B-induced EMT (Ramad et al,
2020). Another study has also confirmed that in glioblastoma cell
lines, KDM6B is involved in cell proliferation, migration, and
invasion by inducing the expression of SNAIl (Salminen et al,
2014).In addition, the deletion of Kdm6b enhances antigen
presentation, interferon response, and the efficacy of ICI
(immune checkpoint inhibitor) immunotherapy in myeloid cells
by suppressing immunosuppressive mediators, including Mafb,
Socs3, and Sirpa (Goswami et al., 2023). KAT8 regulatory NSL
complex subunit 1(KANSLI), encodes a widely expressed nuclear
protein, which is a member of the non-specific lethal (NSL) complex
and is in the q21.31 region of chromosome 17 (Dingemans et al.,
2021). KANSL1 has been confirmed to be essential for the
acetylation of p53 at lysine 120 (K120), thereby regulating the
transcriptional activation of p53 target genes, which is an
important activator in tumorigenesis and metastasis (Li et al,
2009). The KANSLI gene encodes a nuclear protein involved in
chromatin modification and has been reported and confirmed to be
a cancer driver gene participating in epigenetic modification (Chang
etal, 2019). Besides, KANSLI is amplified and rearranged in ovarian
cancer, and the overexpression of its mRNA is a highly predictive
indicator of poor prognosis (Fejzo et al., 2021). Interestingly, high
expression of KANSLI can lead to a shift in the mRNA expression of
immune response gene sets from high to low levels, promoting
tumor immune escape and thus facilitating tumor progression
(Fejzo et al, 2021). Here, our research findings reveal the
significant overexpression of SOCS3 and FPR2 in the test set and
validation set of patients with LUAD, as well as in mouse tumor cell
lines, and these two genes are significantly enriched in exhausted
T cells. To further elucidate the potential biological functions of
KDM6B and KANSLI, we conducted a comprehensive Gene Set
(GSEA) the
Surprisingly, the pathways in which these two genes are enriched

Enrichment Analysis at transcriptome  level.
exhibit a considerable overlap in patients with LUAD, such as Toll
like receptor signaling pathway and JAK-STAT signalling pathway.
Subsequently, in vitro experiments of CD8*T cells, it was found that,
compared with the control group, these two genes significantly
promoted the exhaustion of CD8'T cells. This suggests that these
two genes may play an important role in the process of immune
escape in LUAD. Although our study contributes to a deeper
understanding of the roles and potential mechanisms of A-ERGs
in LUAD, it also has some limitations. Firstly, our reliance on
publicly available datasets may not fully capture the heterogeneity
of different samples. Our findings are mainly based on
bioinformatics analysis, which requires further experiments and
validation with more clinical samples. Finally, while our study
highlights  the related

associations, the specific molecular mechanisms remain to be

potential biological functions and

elucidated and verified.
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Conclusion

Our study, for the first time, adopted an analytical approach
combining transcriptomics, single-cell transcriptomics, and cell
experiments to explore the roles of A-ERGs in the occurrence and
development of LUAD and their underlying molecular mechanisms.
This research demonstrated that A-ERGs may regulate the occurrence
of LUAD by mediating exhausted T cells, and analyzed two hub genes,
namely KANSLI and KDME6B, as diagnostic biomarkers for LUAD,
thus providing new strategies and targets for potential therapies that
could block the occurrence and metastasis of LUAD in the future.
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