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Objective: To construct and validate a risk prediction model for patients with
meropenem-induced liver injury (MiLI).

Methods: A retrospective case-control study was conducted to collect data on
inpatients treated with meropenem at Shiyan People’s Hospital, Hubei, China
from January 2018 to December 2022; this study served as the model
construction dataset. Univariate analysis and multiple logistic regression
analysis were employed to identify the related factors for MiLI, and a
nomogram risk prediction model for MiLI was constructed. The recognition
ability and prediction accuracy of the model were evaluated using the
receiver operating characteristic (ROC) and calibration curves. The clinical
efficacy was assessed via the decision curve analysis (DCA). The internal
validation was performed using the bootstrap method, and external validation
was conducted based on an external dataset from Shiyan Taihe Hospital between
October 2021 and December 2023.

Results: A total of 1,625 individuals were included in the model construction
dataset, of which 62 occurred MiLI. The external validation dataset included
1,032 cases, with 74 patients developing liver injury. Six variables were
independent factors for MiLI and included in the final prediction model:
being male (OR = 2.080, 95% CI: 1.050–4.123, P = 0.036), ICU admission
(OR = 8.207, 95% CI: 4.094–16.453, P < 0.001), gallbladder disease (OR = 8.240,
95% CI: 3.605–18.832, P < 0.001), baseline ALP (OR = 1.012, 95% CI:
1.004–1.019, P = 0.004), GGT (OR = 1.010, 95% CI: 1.005–1.015, P < 0.001),
and PLT (OR = 0.997, 95% CI: 0.994–0.999, P = 0.020). The c-statistic value for
internal validation of the prediction model was 0.821; the sensitivity and
specificity were 0.997 and 0.924, respectively. The c-statistic value of the
prediction model in the model construction dataset was 0.837 (95% CI,
0.789–0.885), while in the external validation dataset was 0.851 (95% CI,
0.802–0.901). The P-values of the calibration curve in the two datasets were
0.935 and 0.084, respectively.
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Conclusion: Being male, ICU admission, gallbladder disease, higher levels of
baseline ALP and GGT, and lower levels of baseline PLT were the risk factors for
MiLI. The nomogram model built based on these factors demonstrated favorable
performance in discrimination, calibration, clinical applicability, and internal-
external validation. The nomogram model can assist clinicians in early
identification of high-risk patients receiving meropenem, predicting the risk of
MiLI, and ensuring safe medication practices.

KEYWORDS

drug-induced liver injury, meropenem, risk factor, prediction model, drug safety, adverse
drug reaction

1 Introduction

Meropenem is a broad-spectrum carbapenem antibiotic used
to treat gram-positive and gram-negative bacteria infections. It has
efficacy in treating the moderate to severe bacterial infections,
mixed infections, and infections caused by multidrug-resistant
bacteria (Gobezie et al., 2024). With the increasing clinical use
of meropenem, there has been a growing incidence of liver injury
reported in association with its administration (Cheung et al.,
2021; Tattersall et al., 2018; Zubarev et al., 2020). Drug-induced
liver injury (DILI) is primarily caused by biological agents,
chemicals, and other factors that cause damage to liver (Mili
et al., 2023). An epidemiological study showed that the annual
incidence of DILI among hospitalized patients in China is
23.80 per 100,000, which is higher than the rate reported in
Western countries (Shen et al., 2019). DILI is one of the most
common and serious adverse drug reactions encountered in
clinical practice (Tuohutaerbieke et al., 2021; Zeng et al., 2022).
In severe cases, DILI can directly lead to liver failure and
even death.

Until now, there are only several case reports on meropenem-
induced liver injury (MiLI) (Cheung et al., 2021; Tattersall et al.,
2018; Zubarev et al., 2020). These case report studies primarily
focused on investigating the types and characteristics of liver
injury associated with meropenem. There is a notable deficiency
in research concerning the influencing factors and predictive
models for MiLI. Consequently, this study conducted a
retrospective case-control analysis of hospitalized patients
treated with meropenem. We aimed to identify the risk factors
for MiLI and construct a nomogram risk prediction model. This
model is intended to assist clinical staffs in early identification of
MiLI risk, facilitate prevention measures in clinical practice, and
enhance meropenem safety use.

2 Materials and methods

2.1 Basic information of subjects

The data were collected from hospitalized patients treated with
meropenem at the Shiyan People’s Hospital between January
2018 and December 2022. For external validation, we extracted
data from hospitalized patients using meropenem at the Taihe
Hospital in Shiyan City from October 2021 to December 2023. The
same inclusion and exclusion criteria were applied to both datasets.
Inclusion criteria were shown as follows: ① Hospitalized patients
receiving meropenem; ② Age ≥18 years old; ③ A complete liver
biochemical examination was conducted before and after
medication; ④ No history of DILI prior to medication.
Exclusion criteria included: ① other diseases that may cause
abnormal liver function, such as fatty liver, liver cancer, viral
hepatitis, ischemic or autoimmune hepatitis, alcoholic liver
disease, and malignant tumors (Zeng et al., 2022); ② death;
and ③ incomplete clinical data.

2.2 Definition of MiLI and the grouping
of patients

According to the criteria for DILI outlined in the
2023 edition of the Chinese Guidelines for the Diagnosis and
Treatment of DILI, the liver biochemical indices must meet at
least one of the following requirements (Li et al., 2022a): ①
ALT ≥5×ULN; ② ALP ≥2×ULN; or ③ ALT ≥3×ULN and
TBIL ≥2×ULN. The Roussel Uclaf Causality Assessment
Method (RUCAM) Scale was employed to evaluate the causal
relationship between liver injury and meropenem (Rodríguez
et al., 2022). The patients in the case group met one of the
biochemical criteria for DILI, and had the RUCAM score
is ≥3 points. Patients without liver injury after meropenem
use served as the controls.

2.3 Data collection

As suggested by a previous research (Li et al., 2022b), the
following factors included in this study: ① general information
such as sex, age, underlying diseases, medical history, concomitant
medications, and duration of meropenem use; ② baseline
laboratory test values, including ALT, AST, ALP, TBIL, GGT,

Abbreviations: DILI, Drug-induced liver injury; MiLI, Meropenem-induced
liver injury; ROC, Receiver operating characteristic curve; DCA, Decision
curve analysis; CI, Confidence interval; RUCAM, Roussel Uclaf Causality
Assessment Method; ALT, Alanine aminotransferase; ALP, Alkaline
phosphatase; TBIL, Total bilirubin; AST, Aspartate aminotransferase; GGT,
Gamma-glutamyl transpeptidase; ALB, Albumin; CREA, Creatinine; PLT,
Platelet; WBC, White blood cell; HGB, Hemoglobin; PT, Prothrombin time;
PCT, Procalcitonin; INR, International normalized ratio; HAV, Hepatitis A virus;
HBV, Hepatitis B Virus; HCV, Hepatitis C virus; HEV, Hepatitis E virus; PBC,
Primary biliary cholangitis; PSC, Primary sclerosing cholangitis; GSH,
Glutathione; ROS, Reactive oxygen species.
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ALB, CREA, PLT,WBC, HGB, PT, PCT and INR, biochemical assay
methods followed those described in the references (Shang et al.,
2019). Baseline data of laboratory tests were the most recent test
values prior to the use of meropenem (Ji et al., 2023). All MiLI cases
were evaluated and reviewed by two senior or above clinical
pharmacists.

2.4 Statistical analysis

The SPSS (version 26.0) and R 4.4.1 for Windows were used for
statistical analysis. For quantitative data, the normality of the data
was assessed using the Shapiro-Wilk test prior to the parametric
tests. Data that conformed to a normal distribution were expressed
as mean ± standard deviation, and comparisons between the case
and control groups were conducted using the independent two-
sample t-test. For data that did not follow a normal distribution, data

were presented as median and interquartile ranges, and the Mann-
WhitneyU test was employed for comparisons between the case and
control groups. Categorical data were expressed as n (%) and the
comparisons between the case and control groups were analyzed
using the chi-squared (χ2) test.

Variables with P < 0.05 in univariate analysis were included in
the initial multivariable model, and variables with statistical
significance in the multivariate logistic regression analysis were
included in the final prediction model. Multivariable logistic
regression was performed to identify independent risk factors for
MiLI; odds ratios (ORs) and 95% confidence intervals (CIs) were
also estimated. Two-sided P < 0.05 were considered to be statistically
significant.

The risk prediction model for MiLI was established based on the
independent risk factors and presented in the form of a nomogram.
The discriminative ability of logistic regression model was assessed
based on the area under the receiver operating characteristic (ROC)

FIGURE 1
Flow chart for prediction model establishment and validation.
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TABLE 1 Univariate analysis of MiLI related variables in the model construction dataset.

Variable Controls
N = 1,563

Cases
N = 62

χ2/Z/t P

Sex [n (%)] 4.775 0.029

Yes 1,026 (65.64%) 49 (79.03%)

No 537 (34.36%) 13 (20.97%)

Allergy history [n (%)] 0.025 0.875

Yes 135 (8.64%) 5 (8.06%)

No 1,428 (91.36%) 57 (91.94%)

Smoking history [n (%)]

Yes 574 (36.72%) 22 (35.48%) 0.040 0.842

No 989 (63.27%) 40 (64.52%)

Alcohol history [n (%)] 1.340 0.247

Yes 472 (30.20%) 23 (37.10%)

No 1,091 (69.80%) 39 (62.90%)

Diabetes [n (%)] 0.825 0.364

Yes 282 (18.04%) 14 (22.58%)

No 1,281 (81.96%) 48 (77.42%)

Hypertension [n (%)] 1.237 0.266

Yes 670 (42.87%) 31 (50.00%)

No 893 (57.13%) 31 (50.00%)

Hypoproteinemia [n (%)] 9.572 0.002

Yes 556 (35.57%) 34 (54.84%)

No 1,007 (64.43%) 28 (45.16%)

Shock [n (%)] 5.668 0.017

Yes 250 (15.99%) 17 (27.42%)

No 1,313 (84.01%) 45 (72.58%)

ICU admission [n (%)] 40.740 <0.001
Yes 624 (39.92%) 50 (80.65%)

No 939 (60.08%) 12 (19.35%)

Sepsis or septicemia [n (%)] 4.137 0.042

Yes 313 (20.03%) 19 (30.65%)

No 1,250 (79.97%) 43 (69.35%)

Liver disease [n (%)] 6.804 0.009

Yes 218 (13.95%) 16 (25.81%)

No 1,345 (86.05%) 46 (74.19%)

Gallbladder disease [n (%)] 41.714 <0.001
Yes 43 (2.75%) 11 (17.74%)

No 1,520 (97.25%) 51 (82.26%)

Kidney diseases [n (%)] 1.164 0.281

Yes 408 (26.10%) 20 (32.26%)

No 1,155 (73.90%) 42 (67.74%)

Cardiovascular disease [n (%)] 5.414 0.020

Yes 1,011 (64.68%) 49 (79.03%)

No 552 (35.32%) 13 (20.97%)

Nervous disease [n (%)]

Yes 729 (46.64%) 35 (56.45%) 2.304 0.129

No 834 (53.36%) 27 (43.55%)

Respiratory disease [n (%)] 0.007 0.934

Yes 1,242 (79.46%) 49 (79.03%)

No 321 (20.54%) 13 (20.97%)

(Continued on following page)
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curve. Model calibration was evaluated using the Hosmer-
Lemeshow statistics. The clinical effectiveness was evaluated by
the decision curve analysis (DCA). We used the Bootstrap

method to calculate the c-statistics of the model. External
validation dataset also used to evaluate the predictive accuracy of
the model.

TABLE 1 (Continued) Univariate analysis of MiLI related variables in the model construction dataset.

Variable Controls
N = 1,563

Cases
N = 62

χ2/Z/t P

Other antimicrobial agents [n (%)] 2.147 0.143

Yes 1,431 (91.55%) 60 (96.77%)

No 132 (8.45%) 2 (3.23%)

Lipid-lowering drug [n (%)] 0.570 0.450

Yes 557 (35.64%) 25 (40.32%)

No 1,006 (64.36%) 37 (59.68%)

Antipyretic and analgesic [n (%)]

Yes 280 (17.91%) 15 (24.19%) 1.583 0.208

No 1,283 (82.09%) 47 (75.81%)

Antiepileptic drug [n (%)] 0.366 0.545

Yes 187 (11.96%) 9 (14.52)

No 1,376 (88.04%) 53 (85.48%)

Antihypertensive drug [n (%)] 1.081 0.299

Yes 702 (44.91%) 32 (51.61%)

No 861 (55.09%) 30 (48.39%)

Age (years) 67.56 (54.75,76.79) 67.17 (56.72,77.11) −0.504 0.614

Length of stay (days) 17.00 (11.71,26.15) 24.00 (14.75,37.25) −3.602 <0.001

ALT (U/L) 16.75 (11.00,27.92) 24.00 (15.50,48.25) −3.704 <0.001

TBIL (μmol/L) 11.90 (8.30,17.50) 11.90 (7.83,17.73) −0.009 0.993

ALP(U/L) 56.00 (43.00,73.00) 64.00 (44.50,119.25) −2.391 0.017

GGT (U/L) 24.00 (15.00,42.23) 45.50 (19.75,81.75) −3.670 <0.001

AST (U/L) 21.00 (15.00,35.00) 33.00 (19.00,53.50) −4.249 <0.001

ALB (g/L) 33.60 (30.10,37.00) 32.65 (28.80,36.50) −1.430 0.153

TP (g/L) 61.80 (55.90,67.60) 59.60 (53.30,67.55) −1.037 0.300

TBA (μmol/L) 4.00 (2.00,7.80) 5.90 (2.55,8.48) −1.759 0.079

CREA (μmol/L) 80.85 (64.75,110.40) 93.85 (74.63,122.63) −2.591 0.010

PT(s) 13.60 (12.30,15.30) 14.10 (12.48,15.85) −0.976 0.329

INR 1.12 (1.02,1.25) 1.16 (1.05,1.30) −1.284 0.199

TT(s) 15.30 (14.00,16.90) 15.10 (13.88,17.25) −0.410 0.682

WBC(×109/L) 9.41 (6.35,13.22) 10.68 (7.70,13.41) −1.282 0.200

LYM(×109/L) 0.82 (0.54,1.23) 0.86 (0.57,1.23) −0.518 0.604

EOS(×109/L) 0.01 (0.00,0.08) 0.01 (0.00,0.06) −0.168 0.867

HGB (g/L) 111.47 ± 24.76 105.53 ± 22.84 1.856 0.064

PLT (×109/L) 180.00 (125.00,245.00) 145.50 (95.50,203.75) −2.533 0.011

PCT (ng/mL) 0.28 (0.16,1.28) 0.52 (0.21,2.00) −2.789 0.005

hs-CRP (mg/L) 62.95 (21.16,94.08) 69.88 (28.56,113.95) −1.085 0.278

Note:① Liver disease excluded HAV, HBV, HCV, HEV, autoimmune hepatitis, fatty liver, alcoholic liver, liver malignancy and other diseases, and the presence of liver abscess, liver cyst, liver

nodules and other mild basic liver disease; ② Gallbladder disease excluded PBC, PSC, pancreatic bile duct malignancy and other diseases, existing in the past cholecystitis, gallstones, post-

cholecystectomy and other diseases; ③ Cardiovascular disease included the clinical diagnosis of coronary heart disease, heart failure, myocardial infarction, angina pectoris and others.
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3 Results

3.1 Basic information of the research object

In Shiyan People’s Hospital, 4,456 hospitalized patients
aged ≥18 years treated with meropenem were initially screened. After
excluding 2,831 cases (1,042 with other liver injury-causing diseases,
366 deaths, and 1,423with incomplete clinical data), 1,625 cases (62 cases
and 1,563 controls) were included in the model construction dataset.
Univariate and multivariate logistic analyses were performed on this
dataset to construct a predictive model for MiLI. Internal validation was
conducted via bootstrap resampling using the same dataset.

At the Taihe Hospital in Shiyan City, 2,456 hospitalized patients
aged ≥18 years received meropenem treatment. We excluded

1,424 cases (372 had liver injury from other diseases, 46 died,
and 1,006 had incomplete clinical data). The external validation
dataset comprised 1,032 cases (74 cases and 958 controls), which
were used to evaluate the model’s predictive performance. The
research flow chart is illustrated in Figure 1.

3.2 Univariate analysis and multivariate
logistic regression analysis

Univariate analysis was conducted to compare the cases and the
controls within the model construction dataset (Table 1). Significant
differences between the cases and the controls were observed for sex,
length of stay, hypoproteinemia, shock, ICU admission, sepsis or
septicemia, liver disease, gallbladder disease, cardiovascular disease,
as well as the laboratory baseline ALT, ALP, GGT, AST, CREA, PLT,
and PCT (P < 0.05). The variable coding was shown in
Supplementary Table S1.

A total of 16 variables with significant differences in univariate
analysis were included in the multivariate logistic regression
analysis. Variables such as hypoproteinemia and shock which
showed insignificant P were excluded from the multivariate
logistic regression model. As shown in Table 2, six variables with
statistical significance were finally included in the multivariate
logistic regression model: being male [OR 2.080 (1.050–4.123),
P = 0.036], ICU admission [OR 8.207 (4.094–16.453), P < 0.001],
gallbladder disease [OR 8.240 (3.605–18.832), P < 0.001], baseline
ALP [OR 1.012 (1.004–1.019), P = 0.004], GGT [OR 1.010

TABLE 2 Multiple logistic regression analysis of MiLI related factors in the
model construction dataset.

Variable β OR 95% CI P

Sex (Male) 0.732 2.080 1.050–4.123 0.036

ICU admission 2.105 8.207 4.094–16.453 <0.001

Gallbladder disease 2.109 8.240 3.605–18.832 <0.001

ALP 0.011 1.012 1.004–1.019 0.004

GGT 0.010 1.010 1.005–1.015 <0.001

PLT −0.003 0.997 0.994–0.999 0.020

Note: β, regression coefficient; OR, odds ratio; CI, confidence interval.

FIGURE 2
Nomogram for predicting MiLI.
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(1.005–1.015), P < 0.001], and PLT [OR 0.997 (0.994–0.999),
P = 0.020].

The final prediction model was constructed based on the
variables showed significant relationship with MiLI. As shown in
Figure 2, the prediction model was presented in the form of a
nomogram. Each measurement variable is aligned vertically with the
top reference score line to derive the corresponding score. The total
score is calculated by summing the scores of all variables. The
probability of MiLI occurrence can be determined by matching the
total score vertically with the risk line.

3.3 Validation of the prediction model

The ROC curve of the model construction dataset is shown in
Figure 3A, the prediction model had a c-statistic of 0.837,

sensitivity of 0.742 (95% CI: 0.633~0.851), and specificity of
0.786 (95% CI: 0.765~0.806). The calibration curve of the
model construction dataset is presented in Figure 4A, the
Hosmer-Lemeshow goodness-of-fit test indicated a P-value of
0.935 for the prediction model. The DCA curve of the model
construction dataset is shown in Figure 5A, the DCA curve was
higher than the other two extreme curves between 1% and 70%.
The Bootstrap method was used to extract 1,000 times for internal
verification, and the c-statistic value was 0.821, sensitivity 0.997,
and specificity 0.924. To ensure the reliability of our prediction
model, model built based on construction dataset was also
externally validated. The ROC curve of the external validation
dataset is shown in Figure 3B, with a c-statistic of 0.851, sensitivity
of 0.757, and specificity of 0.831. The calibration curve of the
external validation dataset is presented in Figure 4B, and the
Hosmer-Lemeshow goodness-of-fit test indicated a P-value of

FIGURE 3
The ROC curves for the MiLI prediction model in model construction dataset (A) and external validation dataset (B).

FIGURE 4
The calibration curve for the MiLI prediction model in model construction dataset (A) and external validation dataset (B). Note: The calibration curve
is the black solid line in the figure, the ideal curve is the grey solid line in the figure, and the nonparametric curve is the dashed line in the figure.
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0.084. The DCA curve of the external validation dataset is shown in
Figure 5B, the DCA curve was higher than the other two extreme
curves between 1% and 92%.

4 Discussion

Case reports of MiLI have been reported (Cheung et al., 2021),
but there is a lack of research on the risk factors and predictive
models for MiLI. This study retrospectively collected data on
hospitalized patients using meropenem at two centers. The
analysis showed that being male, ICU admission, gallbladder
disease, higher levels of baseline ALP and GGT, and lower levels
of baseline PLT were the risk factors forMiLI. Based on these factors,
a prediction model for MiLI was established and presented in the
form of a nomogram. The effectiveness evaluation, internal and
external verification showed that the nomogram had a good
predictive accuracy.

Akimoto et al. (2021) extracted data from adult patients across
two databases and found that meropenem was associated with a
higher risk of DILI. According to the DILI criteria, a total of
1,625 hospitalized patients treated with meropenem at the Shiyan
People’s Hospital from January 2018 to December 2022 were
included in the model construction dataset. Among these
patients, there were 62 cases of liver injury and 1,563 cases
without liver injury, resulting in an incidence of MiLI of 3.82%.
This finding is consistent with the incidence of 0.1%–5% in a
previous study (Wu et al., 2019).

In this study, six factors were significant factors for the
incident MiLI. The impact of sex on DILI remains a topic of
debate. Bonkovsky et al. (2014) reported that women exhibit
greater susceptibility to DILI than men when exposed to
certain medications, such as minocycline and furantoin.
However, other studies suggested that the risk of DILI is higher
in males than in females (Zhong et al., 2021; Lin et al., 2024).
Shiraishi et al. (2024) demonstrated that male is an independent

risk factor for liver injury associated with carbapenem drugs; this
indicates that sex should be considered for medication use. In this
study, multivariate logistic regression analysis revealed that male
is an independent factor for MiLI. Among patients treated with
meropenem, the risk of liver damage was found to be 2.08 times
higher in men than in women. The higher risk of DILI in males
may be associated with sex hormone-mediated differences in
hepatic drug-metabolizing enzymes (Yang et al., 2021). Disease
severity was closely associated with the incidence of DILI. Yu et al.
showed that admission to the ICU was a significant risk factor for
the development of DILI in patients treated with tigecycline (Yu
et al., 2022); such finding is in line with the results in our study.
Patients in the ICU are more susceptible to ischemia-hypoxia
reperfusion injury, immune-mediated injury, and systemic
inflammatory responses, all of which may increase the risk of
DILI (Horvatits et al., 2019). Studies have demonstrated that
concomitant biliary disease elevates the risk of DILI (Eder
et al., 2014); this is also consistent with our study.
Cholecystectomy may induce or exacerbate insulin resistance in
susceptible individuals and alter bile acid metabolism, bile
accumulates in the bile ducts, raising the ductal pressure which
compresses the intrahepatic bile ducts, causing poor intrahepatic
bile excretion (Víctor et al., 2017); this may lead to cholesteric liver
injury. Following the administration of meropenem, a portion of
the drug or its metabolites must be excreted via the biliary tract.
Bile duct injuries can easily cause inflammation, which may
directly spread to the liver tissue; this causes in vivo cholestasis
and subsequent liver cell damage (Zhang et al., 2023). It has been
reported that MiLI predominantly manifests as cholestatic liver
injury (Cheung et al., 2021; Tattersall et al., 2018). Cholestasis in
vivo is closely associated with higher levels of baseline ALP and
GGT. Lv et al. (2023) identified baseline ALP level as a significant
factor for tacrolimus-induced DILI. Everhart and Wright (2013)
noted that GGT serves as an independent predictor of virological
response and clinical outcomes in patients with liver disease. In
our study, the higher levels of baseline ALP and GGT were risk

FIGURE 5
Decision curves for the MiLI prediction model in model construction dataset (A) and external validation dataset (B). Note: The DCA curve is the
dashed line in the figure. The two extreme reference curves, the None line and the All line, are the grey solid line and the black solid line, respectively.
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factors for MiLI. Elevated ALP levels are associated with oxidative
stress in the body (Dai et al., 2021). When oxidative stress
manifests in the liver, there is an elevation in reactive oxygen
species (ROS) levels and a diminished capacity of the body’s
antioxidant defense mechanisms; this results in hepatocyte
apoptosis and tissue damage (Villanueva-Paz et al., 2021).
Additionally, GGT serves as a marker of oxidative stress, and
elevated GGT levels cause the metabolism of glutathione (GSH),
and production of ROS and free radicals (Everhart and Wright,
2013; Dominici et al., 2005). GSH has a protective effect on the
liver, and ROS and free radical production have been shown to
have exacerbate liver damage (Press et al., 2023). Consequently,
elevated baseline GGT levels may increase the risk of DILI. In
addition, the analysis presented in this study indicates that the
lower levels of baseline PLT are a significant factor for MiLI. This
finding is consistent with the results reported by Zhang and Liu
(2024) and Wang et al. (2022). Furthermore, PLT levels are
inversely associated with the severity of liver disease (Gao
et al., 2015). Lower levels of PLT are independent predictors
for DILI. Liver damage leads to decreased PLT levels in the
body (Han et al., 2020). Concurrently, the inflammatory
response caused by liver injury causes damages to endothelial
cells and platelets (Christophe and Jean-Louis, 2018); this further
reduce the level of PLT in the body.

Studies have indicated that broad-spectrum antibiotics such as
tigecycline (Yu et al., 2022), amoxicillin-clavulanate, and piperacillin
(Pedraza et al., 2021) may also cause DILI. However, univariate
analysis in this study showed insignificant results. The reasons for
this discrepancy may be related to the differences in patient
demographics, drug metabolism, environmental factors, and
other variables (Li et al., 2022b).

The differentiation, calibration, and clinical applicability of
the prediction model were evaluated using the ROC curve,
calibration curve, and DCA curve (Xie et al., 2024). The
c-statistic value of the ROC curve was 0.837, indicating that
the model demonstrated a good differentiation. The calibration
curve of the prediction model was close to the ideal model
represented by the diagonal dotted line; this shows that the
predicted results of the model were consistent with the actual
observed values. The calibration degree of the model was good.
The DCA curve was higher than the other two extreme curves
within the range of 1%–70%. Patients in this range experienced
some clinical net benefit. The model underwent internal
validation using the bootstrap method. The c-statistic value of
0.821 suggests that the model had a good stability. Furthermore,
the ROC curve, calibration curve, and DCA curve for the external
validation dataset were plotted using the same model. The
c-statistic value for the external validation dataset was 0.851,
reflecting a good accuracy of the prediction model. The
calibration curve of the external verification dataset was also
close to the ideal model represented by the diagonal dotted line;
such finding suggests that prediction model had a good
consistency. The DCA curve of the external validation dataset
was higher than the two extreme curves within the range of 1%–

92%, suggesting the potential clinical application value in this
range. The above results showed that the prediction effect of the
model is good among different hospitals, and it has universal
applicability. This nomogram model can be converted into a

dynamic web-based version for clinical application (Wang et al.,
2024), such as establishing an individualized prediction platform
on the hospital’s official website using this nomogram (Wu et al.,
2022), facilitating the convenient calculation of MiLI probability
in hospitalized patients and prompting clinical staff to
implement measures that ensure the safety of meropenem use.

This study has some limitations. First, it was a retrospective
analysis; Second, the data were collected from two hospitals located
in the same geographic area, which may limit the representativeness
of the sample; Third, we excluded individuals with missing clinical
data, this may introduce selection bias. Potential population
selection bias cannot be excluded and excluding cases with
incomplete data may underestimate the true risk of MiLI.
Additionally, the study lacks prospective validation, and future
studies should be conducted through multicenter prospective
studies to further validate our findings.

5 Conclusion

This study retrospectively collected data from hospitalized
patients treated with meropenem across two centers. Being male,
ICU admission, gallbladder disease, higher levels of baseline ALP
and GGT, and lower levels of PLT were the risk factors for MiLI.
Based on these factors, a risk prediction nomogram model for MiLI
was constructed, and validated internally and externally. In
conclusion, the nomogram prediction model can facilitate the
early identification of MiLI. Such finding maybe useful for the
preventions of MiLI.
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