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Introduction: Spinal cord injury (SCI) leads to widespread cascades of
inflammatory and oxidative factors. This pathological condition damages
nerves and causes neurological disorders. To address these complex
conditions, it is important to identify therapeutic candidates that affect
multiple dysregulated signaling mediators and targets. Some
phytochemicals such as naringin (NAI) with neuroprotective, antioxidant,
and anti-inflammatory effects can be seen as a possible candidate for
treating neurodegenerative diseases.

Purpose: Therefore, this study aims to evaluate the impact andmechanism of NAI
on sensory and motor function in rats with SCI.

Materials and methods: In total, 35 rats were studied in five groups, including
sham, SCI, and three groups treated with intrathecal administration of NAI (5, 10,
and 15 mM). After the injury, sensorimotor behavioral tests and weight changes
were performed for 4 weeks. On the 28th day, the serum of rats was checked to
measure biochemical factors such as catalase, glutathione, and nitrite and the
activity of metalloproteinases 2 (MMP-2) and MMP-9. Also, histological changes
in spinal cord tissue were evaluated weekly for 4 weeks.

Results and discussion: NAI treatment demonstrated significant benefits in rats
with SCI, including reducing pain, improvement in motor performance, and
attenuated animal weight gain. Besides, NAI decreased the lesion area of
spinal tissue and enhanced neuronal survival at both ventral and dorsal horns
of spinal tissue. Furthermore, serum analysis revealed that NAI increased
MMP-2 activity and catalase and glutathione levels while decreasing nitrite
and MMP-9 activity.
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Conclusion: The intrathecal administration of NAI can be proposed as a proper
alternative in the treatment of sensory-motor disorders caused by SCI through
neuroprotective, anti-inflammatory, and antioxidant mechanisms.
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spinal cord injury, naringin, neuropathic pain, inflammation, motor dysfunction,
oxidative stress

1 Introduction

Spinal cord injury (SCI) significantly impairs an individual’s
performance, quality of life, and social independence. There are two
classes of SCI; traumatic and non-traumatic. An external physical
trauma typically causes traumatic SCI and it is more prevalent
(Ahuja et al., 2017), and non-traumatic SCI (New and Biering-
Sørensen, 2017), is caused by degenerative, inflammatory,
neoplastic, and infectious triggers (Buzzell et al., 2019; Musubire
et al., 2019). Depending on the size and location of SCI, it can result
in partial or complete paralysis, sensory dysfunctionality, bowel/
bladder incontinence, and autonomic impairment (Schuld et al.,
2016; Carrasco et al., 2018). The pathophysiology of SCI can be
segmented into two phases. The first phase involves immediate
impacts on the spinal cord, while a range of biochemical cascades
marks the progressive phase. Notably, oxidative stress and
inflammation play crucial roles in the development of tissue
damage during this stage (Alizadeh et al., 2015; Carrasco et al.,
2018; Hayta and Elden, 2018). The primary source of reactive
oxygen species (ROS) after SCI is the activation of immune cells,
such as microglia and infiltrating macrophages. These cells release
pro-inflammatory cytokines, chemokines, and free radicals, leading
to tissue damage and cell death. Oxidative stress further exacerbates
the inflammatory response by activating transcription factors like
nuclear factor kappa B (NF-κB). NF-κB promotes the production of
additional pro-inflammatory mediators, amplifying the
inflammatory cascade. Inflammation, in turn, contributes to
oxidative stress by increasing the production of ROS and
impairing the antioxidant defense mechanisms. After SCI,
inflammatory cells by releasing matrix metalloproteinases
(MMPs) can lead to the activation of inducible nitric oxide
synthase (iNOS), which in turn can lead to the production of
ROS. These processes further contribute to tissue damage,
neuronal cell death, and functional impairment after SCI
(Hellenbrand et al., 2021; Freyermuth-Trujillo et al., 2022).
Accordingly, there is a complex pathophysiological mechanism
behind SCI, which urges the need for finding novel multi-
targeting agents. Hence, it appears that interventions aimed at
mitigating oxidative stress and inflammatory factors have the
potential to enhance the wellbeing of individuals with SCI.

Some phytochemicals have shown a bright future in combating
neurodegenerative diseases by targeting multiple mechanisms.
Naringin (NAI) is a beneficial glycoside flavonoid concentrated
from the peel of citrus fruits and causes its bitter taste. NAI has
been reported to have strong antioxidant, anti-inflammatory, anti-
viral, anti-diabetic, and anticancer properties (Emran et al., 2022;
Stabrauskiene et al., 2022). According to the research, this
component can cross the blood-brain barrier and protect brain
tissue by modulating brain chemistry (Sachdeva et al., 2014; Hassan

et al., 2022). In terms of mechanism, NAI plays critical roles in
various signaling pathways in degenerative diseases through
modulating angiogenesis (Kandhare et al., 2014), inhibiting
apoptotic proteins such as caspases and Bcl-2 family members,
and activating prosurvival pathways like the phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt) pathway, which promotes
cell survival and inhibits apoptosis (Wang et al., 2020). We also
previously showed the potential of naringenin, the aglycone of
naringin, in the improvement of neuropathic pain and motor
dysfunction after SCI (Fakhri et al., 2022c). Particularly, there is
no FDA-approved drug against SCI. While some reports suggested
that methylprednisolone may cause neuroprotective effects, the drug
has shown to be ineffective in reducing neurological impairment and
could even worsen spinal tissue damage, leading to secondary side
effects (Evaniew et al., 2015; Jongen et al., 2016).

Considering the previous neuroprotective potentials of NAI in
other neurodegenerative disease and the naringenin (NAI aglycone)
neuroprotection potential against SCI complications, along with the
absence of any FDA-approved drug in SCI, this study aimed to
assess the effect of intrathecal (i.t.) administration of NAI on motor
and sensory impairments after SCI in rats, unveiling its
neuroprotective, anti-inflammatory, and antioxidant effects.

2 Materials and methods

2.1 Chemicals

Naringin was obtained from Sigma-Aldrich (Sigma Chemical
Co., St. Louis, MO, United States), while cefazolin was sourced from
Exir Company (Iran). Additionally, ketamine and xylazine were
purchased from Alfasan (Alfasan IBV, Turkey). All other chemicals
and reagents used were of analytical reagent grade and procured
from commercial suppliers.

2.2 Animals

For this study, we recruited 35 adult male Wistar rats,
230–250 g, from the reproductive colony at Kermanshah
University of Medical Sciences. The rats were housed in an
environment optimized, featuring a controlled 24-h cycle (light
12 h and dark 12 h) and a consistent temperature of around 24°C.
This study is based on the guidelines of the National Institutes of
Health regarding laboratory care and use approved by the Ethics
Committee for Working with Laboratory Animals in Kermanshah
University of Medical Sciences (IR.KUMS.REC.1400.417). Each
rat was housed in separate clean cages with water and food ad
libitum for further experimental studies.
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2.3 Experimental groups

In total, 35 rats were placed in 5 groups of 7, including
sham, SCI, and NAI-treated with three different doses, obtained
from relative derivatives (Fakhri et al., 2022c). The sham
group underwent laminectomy without any compressive
injury. The SCI group experienced a compressive injury. The
remaining three groups also were subjected to i.t. administration
of NAI (5, 10, and 15 mM, 10 μL) 30 min after the compressive
injury. Sensory and motor behavioral tests were performed
on animals before surgery and every week from days
7–28 after surgery. On day 28, serum and spinal cord tissue
samples were collected and analyzed for molecular and
histopathological changes.

2.4 Spinal cord injury

A mixture of ketamine and xylazine at a dosage of 60/10 mg/kg
(Fakhri et al., 2022c) was utilized to anesthetize the rats. Vertebral
bone removal (laminectomy) was performed at the level of the 8th

and 9th vertebrae of the thoracic region (T8-T9) using tiny rongeur
(Fine Science Tools, United States). Then, the spinal cord tissue was
compressed with an aneurysm clip applying a force of 90 g
(Aesculap, Tuttlingen, Germany) for 1 minute (Fakhri et al.,
2018; 2019). During the surgery, rats were anesthetized and
lidocaine/epinephrine was used for injection around T8-T9 to
avoid possible pain/excessive bleeding sensation. The skin and
muscles were then sutured. After surgery, the rats received
40 mg/kg of intramuscular cefazolin to reduce the risk of
infection and subcutaneous injection of normal saline (2 mL) to
ensure rehydration. Until the bladder reflex returned, animals’
bladders were emptied manually twice in a day (Ahmadpour
et al., 2025).

2.5 NAI injection

I.t. Injection was done using the method of Mestre (Mestre et al.,
1994). To perform the injection, a Hamilton syringe was utilized,
which was linked to a 25-gauge needle through a 10-diameter
polyethylene tube. The needle was carefully placed at an angle of
45° to the spinal cord in the gap between lumbar 6 (L6) and L5. Once
the tail reflex was observed, confirming the accurate injection site,
the drug was then gradually administered into the
subarachnoid space.

2.6 Behavioral assessments

2.6.1 Acetone drop test
For evaluation of cold allodynia, rats were placed in a mesh

chamber and a drop of acetone was applied to the plantar surface of
the hind paw. The rapid evaporation of acetone creates a feeling of
cold and aversive behavior in animals suffering from cold allodynia.
The severity of these reactions is quantified using a 0–4 scale, where
0 indicates no response, 1 represents a startled reaction without
withdrawal, 2 signifies partial withdrawal, 3 denotes prolonged and

repeated withdrawal, and 4 is characterized by paw licking and
flapping (Fakhri et al., 2018).

2.6.2 Hot plate test
The hot plate is a plate heated by an electric current. This test is a

widely used method to evaluate hyperalgesia in rats. In the
experiment, the rats were placed on a heated surface with a
temperature of 50 ± 2°C. The time taken for the rats to lift their
paw or jump from the hot plate was measured as the response
latency to the thermal stimulus with a cut-off of 60 s (Fakhri
et al., 2022c).

2.6.3 Von Frey test
The von Frey test was employed to assess mechanical allodynia

by applying a series of thin filaments with varying forces to the paw
surface between the second and third toes. Each filament was applied
five times to evaluate sensitivity. If the animal responded to a
filament three times, it was noted as a reaction. Paw withdrawal,
tremors, and vocalizations were regarded as indications of
mechanical allodynia (Bagheri Bavandpouri et al., 2024).

2.6.4 BBB test
Basso, Beattie, and Bresnahan (BBB) motor evaluation methods

were performed to determine motor behavior. The movements of
the animals were assessed in a box with a surface area of 90 cm2 and
walls of around 10 cm for 4 min. The BBB scale was determined in
the range zero (complete paralysis of the hind limbs) to 21 (normal
gait). The average scores of both paws were recorded as responses
(Fakhri et al., 2021).

2.6.5 Inclined plane test
The inclined plane test is a behavioral test in rats to assess hind

limbmotor deficits andmuscle strength. The rats were positioned on
an adjustable inclined plane with angles ranging from 0 to 70°. The
angle of the inclined plane was gradually increased until the rat was
unable to maintain its position and slipped. The maximum angle at
which to stay at least for 5 s was recorded as the “slip angle” (Fakhri
et al., 2018).

2.6.6 Weight changes
During 4 weeks, the weight of the rats was recorded weekly.

Fluctuating animal weight changes for each group were obtained
from the difference between the weight of the rats before the injury
and the weight of the rats on each of the days after the surgery/injury
(Fakhri et al., 2019).

2.7 Glutathione activity

To evaluate glutathione levels, we employed the Ellman
technique, which relies on the interaction between glutathione
and Ellman’s reagent, 5,5′-dithio-bis(2-nitrobenzoic acid)
(DTNB). The experimental setup involved adding 50 µL of
phosphate-buffered saline (PBS) at pH 7.4 and 60 µL of rat
serum to each well. Subsequently, they incubated with 100 µL of
DTNB at 37°C for 10 min. The optical density was read at a
wavelength of 412 nm using a microplate reader (Eyer and
Podhradský, 1986).
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2.8 Catalase activity

To assess catalase activity, we utilized the Aebi method, which
relies on the hydrogen peroxide assay. The procedure involved
sequentially adding 20 μL of serum and 100 μL of 65 mM
hydrogen peroxide to the wells, followed by a 4-min incubation
at 25°C. The reaction was stopped by adding 100 μL of 32.4 mM
ammonium molybdate. The final step involved measuring the
concentrations of the yellow molybdate complex and hydrogen
peroxide at 405 nm (Aebi, 1984).

At the end for both glutathione and catalase assays, the
difference in absorption between the sham group and other
groups (SCI or NAI) was calculated using the following formula:

Concentration difference %( ) � Csham –Csample( )/Csham[ ] × 100

2.9 Nitrite test

To assess the activity of nitrite, the Griess method was used.
Initially, serum samples (100 µL) were mixed with sulfanilamide
solution (50 μL, dissolved in 5% HCl) in plate wells and incubated in
the dark for 5 minutes. Following this, naphthyl ethylene diamine
dihydrochloride (NEDD; 0.1% in distilled water) was added in a
volume of 50 μL, and the plate was incubated in the dark at 37°C for
30 minutes. Optical density measurements were taken at 540 nm. In
parallel, a standard curve was constructed using sodium nitrite at
various concentrations (100 µL each) (Sun et al., 2003).

2.10 Zymography

The enzymatic activities of MMP-2 and MMP-9 were evaluated
using gelatin zymography. This involved loading 100 μg of total
serum protein into each sample. The electrophoretic separation was
performed under a constant voltage of 150 V. Post-electrophoresis,
the gels underwent renaturation in a Triton X-100 and Tris-HCl
buffer (pH 7.5) on a shaker. Next, the gels were incubated for 18 h at
37°C in a buffer containing CaCl2, NaN3, and NaCl dissolved in Tris-
HCl. After staining with Coomassie blue, the gels were destained
using a mixture of acetic acid and methanol. The band intensities
were quantified using ImageJ software (Hashemi et al., 2024).

2.11 Histological analysis

For hematoxylin and eosin (H&E) staining of spinal cord tissue,
the animals were first perfused with phosphate-buffered saline (PBS)
and paraformaldehyde. Subsequently, a 1-cm section of the spinal
cord tissue, centered on the injury site, was isolated. After
undergoing processing in various alcohols and embedding in a
paraffin block, the tissue was sliced to a thickness of 4 μm.
Following this, H&E dye was used to stain the tissue. Images of
the stained sections were captured using a Nikon E600 optical
microscope at magnifications of ×4 and ×40. The ImageJ
software was then utilized to analyze the lesion size and count
the number of neurons present in the spinal cord (Bagheri

Bavandpouri et al., 2024). The lesion area was calculated as per
the following formula:

Lesion area: total area of spinal cord - area of spared myelin/total
area of spinal cord × 100.

2.12 Statistical analysis

The obtained data was analyzed using version 9.0 of GraphPad
Prism. A two-way analysis of variance with Bonferroni post hoc was
employed to evaluate the behavioral results, while histological and
biochemical outcomes were assessed using a one-way analysis of
variance with Tukey post hoc. A significance level of p < 0.05 was
used for all calculations. All data were assessed as mean ± standard
error of the mean (SEM).

3 Results

3.1 Behavioral assays

3.1.1 NAI reduced cold allodynia after SCI
According to the obtained data (Figure 1A), it was observed

that in the measurement of cold pain, the paw withdrawal reflex in
the sham group remained unchanged with no response. However,
after injury, the rats strongly reacted to the cold stimulus,
indicating a significant difference compared to the sham group
throughout the 4 weeks (p < 0.001). Furthermore, the group
treated with NAI showed improved outcomes compared to the
SCI group on the 14th, 21st, and 28th days (p < 0.05). Notably, the
most favorable results were observed in the group receiving NAI at
a dose of 10 mM.

3.1.2 NAI reduced heat hyperalgesia after SCI
The data analysis revealed that in the sham group, the delay in

licking the paw (indicating pain threshold from heat) remained
consistent throughout the entire experiment. However, in the SCI
group, there was a notable decline in the delay time for licking the
paw (p < 0.001). Additionally, when comparing the group treated
with NAI, particularly at a 10 mMdose, to the SCI group, there was a
meaningful elevation in the time taken to reach the pain threshold
from the 7th day until the 28th day of treatment (p <
0.05) (Figure 1B).

3.1.3 NAI reduced mechanical allodynia after SCI
The sensitivity to contact stimuli in the sham group remained

relatively stable over 28 days. However, following SCI, there was a
significant difference observed in response (increased sensitivity) to
stimuli compared to the sham group (p < 0.001). Additionally, the
groups treated with NAI (especially the 10 mM dose) exhibited
notable improvements in performance during 28 days, which was a
considerable difference compared to the SCI group (p <
0.05) (Figure 1C).

3.1.4 NAI improved motor behavior after SCI
Motor behavior was assessed following injury using the motor

scale method known as the BBB (Figure 2A). The sham group did
not show any changes in their BBB score (consistent score of 21),
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indicating no motor impairments after the laminectomy
procedure. In contrast, the SCI groups exhibited significant
decreases in motor performance compared to the sham group
(p < 0.001). Treatment with NAI showed promising results in
improving motor performance starting from the first week of
treatment (p < 0.05). Among the different doses tested, the
group treated with a 10 mM dose of NAI demonstrated the
most substantial improvement (p < 0.05).

Besides, the findings of the inclined plane test indicated that the
average resistance angle to falling (70°) remained unchanged in the
control group throughout the study, suggesting no movement
impairment following laminectomy (Figure 2B). However, the
SCI group experienced a significant decrease in their ability to
stand on the ramp, and by day 28, this reduction was significant
compared to the sham group (p < 0.001). Conversely, treatment with
varying doses of NAI, especially the 10 mM dose, enhanced the

FIGURE 1
The impact of NAI on pain-related behaviors after compression SCI was assessed by measuring the paw response threshold to cold (A), thermal (B),
and mechanical (C) stimuli. The data presented are expressed as mean ± SEM (n = 7). ***p < 0.001 vs. sham group and +p < 0.05, ++p < 0.01, +++p <
0.001 vs. SCI group. SCI: spinal cord injury; NAI: naringin (10 µL).

FIGURE 2
The impact of NAI on locomotor activity after compression SCI. Basso, Beattie, and Bresnahan (BBB) score (A) and the inclined plane test (B). The
data presented are expressed asmean ± SEM (n = 7). ***p < 0.001 vs. sham group and +p < 0.05, ++p < 0.01, +++p < 0.001 vs. SCI group and #p < 0.05, ##p <
0.01, vs. NAI 10 mM group. SCI: spinal cord injury; NAI: naringin (10 µL).
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balance of the rats to stand on the ramp from the 7th day after
injury (p < 0.05).

3.2 NAI increased glutathione/catalase and
decreased nitrite levels

The analysis conducted to measure the changes in glutathione
(Figure 3A) and catalase (Figure 3B) revealed a substantial reduction
in their levels after SCI (p < 0.001). However, treatment with NAI
effectively compensated for this decrease in activity. Among the
treatment groups, the highest increase in activity was observed in the
group treated with a dose of 10 mM (p < 0.05). In addition, the SCI
group exhibited a marked increase in nitrite levels compared to the
sham group (p < 0.001, Figure 3C). The administration of NAI led to
a remarkable decrease in nitrite levels compared to the SCI group
(p < 0.001).

3.3 NAI increased the activity of MMP-2,
while decreasing MMP-9 after SCI

Following injury, the SCI group showed an increase in MMP-9
(p < 0.01, Figure 4A) activity and a decrease in MMP-2 (p < 0.001,
Figure 4B) activity when compared to the sham group. However,
with NAI treatment, these alterations were effectively reversed and
brought the levels of both MMP-2 and MMP-9 closer to their initial
states (p < 0.05).

3.4 NAI decreased histopathological
damage after SCI

Figure 5 illustrates the use of H&E staining to assess tissue
damage and histological changes. The findings demonstrate that the
injury group had a larger damaged area compared to the sham group

FIGURE 3
The impact of NAI on changes in serum levels of GSH (A) and CAT (B) and nitrite (C) level after compression SCI. The data presented are expressed as
mean ± SEM (n = 3). ***p < 0.001 vs. sham group and +p < 0.05, ++p < 0.01, +++p < 0.001 vs. SCI group. SCI: spinal cord injury; NAI: naringin (10 µL), GSH:
glutathione; CAT: catalase.
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(p < 0.001, Figures 5A,B). This was accompanied by a reduction in
the number of dorsal (Figures 6A,B) and ventral (Figures 6C,D)
horn neurons (p < 0.001). In contrast, treatment with NAI effectively
decreased the size of the injury site, prevented neuronal death, and
preserved neurons. These beneficial effects were observed across all
doses, particularly with the 10 mM dose, starting from the first
week (p < 0.05).

3.5 NAI attenuated weight changes after SCI

According to the findings, on the 7th day after surgery, only the
sham group showed weight gain, while the other groups experienced

weight loss. The damaged group (SCI) had a more severe weight loss
compared to others (p < 0.001. Figure 7). However, from the 7th day
to the 28th day, there was an overall upward trend in weight changes.
The group receiving NAI showed a steeper slope of weight gain
compared to the SCI group, indicating that the animals in this group
had a better weight gain process (p < 0.05).

4 Discussion

In the current study, we highlighted the effects of NAI on
sensory-motor impairment following compression SCI in rats.
The results indicated that NAI reduced mechanical pain, cold

FIGURE 4
The impact of NAI on MMP-9 and MMP-2 activity after compression SCI. MMP-9 (A) and MMP-2 (B). Data presented as mean ± SEM. **p < 0.01,
***p < 0.001 vs. sham, +p < 0.05 vs. SCI group. MMP: metalloproteinases; SCI: spinal cord injury; NAI: naringin (10 µL).

FIGURE 5
The impact of NAI on %lesion area on the spinal cord tissue after compression SCI. ×4 magnification of spinal cord (A), and lesion area analysis (B).
The data presented are expressed asmean± SEM. ***p < 0.001 vs. shamgroup and +p < 0.05, ++p < 0.01, +++p < 0.001 vs. SCI group. SCI: spinal cord injury;
NAI: naringin (10 µL).
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allodynia, and heat hyperalgesia, and additionally improved motor
dysfunction following SCI. From the mechanistic point, NAI
showed an increase in the activity of anti-inflammatory MMP-2,
while decreasing inflammatory MMP-9. NAI also increased
antioxidative glutathione and catalase and decreased serum
nitrite levels. Of histopathological analysis, our results showed
that administering NAI significantly decreased spinal tissue
lesions, and increased neuronal survival in dorsal (sensory
neurons) and ventral (motor neurons) horns of the spinal cord.
As another result of our study, NAI attenuated weight changes in
rats after SCI.

SCI is a complex condition that leads to various
pathophysiological processes, including oxidative stress and
inflammation. These processes contribute to secondary damages
and worsen the outcomes of SCI. Oxidative stress occurs when there
is a mismatch between the generation of ROS and the body’s

capacity to detoxify those using antioxidants. After SCI, a boost
in ROS production occurs, potentially causing cellular damage and
triggering apoptosis. Glutathione and catalase are two important
antioxidants involved in combating oxidative stress and are
important antioxidants that help counteract ROS. Catalase plays
a crucial role in safeguarding cells from oxidative damage by
catalyzing the decomposition of hydrogen peroxide into water
and oxygen. In SCI, the depletion of glutathione occurs because
of heightened oxidative stress, which in turn intensifies the injury.
Besides, catalase activity is often reduced after SCI, accumulating
hydrogen peroxide and increasing oxidative stress (Jia et al., 2012;
Bedreag et al., 2014). On the other hand, in pathological conditions
like SCI, excessive nitric oxide production leads to nitrosative stress
and tissue damage. This can result in the formation of peroxynitrite,
a harmful molecule, through reactions with superoxide. The
imbalance between ROS and antioxidant defenses causes

FIGURE 6
The impact of NAI on the number of neurons of the spinal cord after compression SCI. Dorsal (A,B), and ventral (C,D) horns. The data presented are
expressed as mean ± SEM. ***p < 0.001 vs. sham group and +p < 0.05, ++p < 0.01, +++p < 0.001 vs. SCI group. SCI: spinal cord injury; NAI: naringin (10 µL).
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oxidative stress and neuroinflammation, contributing to the
progression of SCI (Conti et al., 2007). In the context of SCI,
oxidative stress can cause damage to cellular components and
exacerbate tissue injury. Therefore, maintaining adequate levels of
glutathione, catalase, and nitric oxide is crucial to minimize
oxidative damage and promote healing in the spinal cord
(Espinosa-Diez et al., 2015; Zuo et al., 2023).

MMPs are enzymes that break down extracellular matrix
proteins and are involved in inflammation. Excessive MMP
activity can lead to tissue damage, disrupt the blood-spinal cord
barrier, and increase oxidative stress by producing ROS. Some
MMPs also degrade antioxidant enzymes like superoxide
dismutase and catalase, impairing the body’s ability to counteract
ROS. Targeting MMP-9 for inhibition has been proposed as a
potential therapeutic strategy for SCI, showing promise in
reducing tissue damage and enhancing functional recovery in
animal models (Yu et al., 2008; Zhang et al., 2011). While
MMP-9 is related to elevated inflammation and tissue damage,
MMP-2 is linked to tissue repair and remodeling (Gravandi
et al., 2024).

Indeed, treatment of SCI with currently approved drugs, such
as methylprednisolone, has shown limited long-term efficacy and
carries a high risk of complications (Sultan et al., 2020).
Therefore, investigating and discovering the potential of new
compounds that can bring more effectiveness with fewer side
effects is highly needed. Meanwhile, herbal medicines have been
used for centuries in traditional medicine systems and are known
for their diverse chemical constituents and therapeutic properties
(Firenzuoli and Gori, 2007). Moreover, herbal medicines are
generally considered to have fewer side effects compared to
synthetic drugs, as they are derived from natural sources.
Herbal medicines often contain several active compounds that
can affect several mechanisms simultaneously (Karimi et al.,
2015). Since neurodegenerative diseases such as SCI are often
complex and multi-mechanistic pathological processes (Anjum
et al., 2020), it seems that these compounds can be a suitable
therapeutic approach. NAI is one of the most important natural

products, which has many therapeutic and medicinal effects,
including antioxidant, anti-inflammatory, anti-angiogenic,
anti-diabetic, anti-cancer, and antibacterial effects (Zaidun
et al., 2018; Sharma et al., 2021; Motallebi et al., 2022).

Additionally, targeting oxidative stress pathways such as
glutathione, and catalase may help mitigate the effects of
MMP activity and reduce neurological disorders (Lee et al.,
2011). In this regard, our results indicated that NAI treatment
was effective at all three doses in lowering nitrite levels and
enhancing glutathione activity after SCI. Notably, the 10 mM
dose of NAI demonstrated greater efficacy in promoting catalase
activity compared to the other doses which confirmed the
hormesis theory based on reverse u-shaped dose-response
effectiveness (Fakhri et al., 2022b). Our results also indicated
that the administration of NAI had a direct impact on the
modulation of MMP levels. In this instance, the effectiveness
of the 5 and 15 mM doses was limited, whereas the 10 mM dose
was associated with significant effects. Consequently, the control
of inflammation and oxidative stress resulted in a notable
enhancement of sensory-motor function. Previously, Lee and
colleagues reported that NAI regulated MMP-9 expression (Lee
et al., 2009). A study demonstrated that NAI showed positive
effects on motor performance and neuroprotection in the context
of vanadium-induced neurotoxicity. They mentioned that these
effects were achieved by reducing oxidative stress, inflammation,
and apoptosis (Adekeye et al., 2022). NAI has shown potentials in
protecting dopaminergic neurons in Parkinson’s disease models
by increasing neurotrophic factors such as glial cell line-derived
neurotrophic factor (GDNF) and reducing inflammation. This
neuroprotection could preserve motor function over time (Jung
and Kim, 2014). Our tissue analysis demonstrated that NAI not
only enhances sensory and motor function but also effectively
preserves the integrity of spinal cord tissue and the neurons in
both the dorsal and ventral horns. All three doses effectively
reduced lesion volume from the first week. However, the impact
of NAI on neuronal preservation became more pronounced
starting from the third week. Although the 5 mM dose showed

FIGURE 7
The impact of NAI on changes in body weight in rats undergoing compression SCI. The data presented are expressed as mean ± SEM (n = 7). ***p <
0.001 vs. sham group and +p < 0.05 vs. SCI group. SCI: spinal cord injury; NAI: naringin (10 µL).
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less efficacy, both the 10 and 15 mM doses exhibited substantial
positive effects. Reports have also shown that NAI has a
positive impact on neuron recovery following damage. In
addition, it helps to preserve neurons and protects them from
diseases of the central nervous system (Jung et al., 2014; Emran
et al., 2022).

On the other hand, and in comparison to other models of SCI,
compression SCI possesses minor limitations, similar to those in
SCI patients and is more suitable for translational research (Cregg
et al., 2014). Highlighting major limitations in pre-clinical SCI
research protocols, SCI models usually employ young adult
animals, while clinically engaging individuals with a wide age
range (Stewart et al., 2022). Possible partial (not complete)
damage of neural tracts and inability to directly apply long-
distance axon regeneration are other limitations of pre-clinical
studies. Besides, preclinical models of SCI are usually done during
4 weeks of follow-up with a limited number, which is not in
accommodation with clinical cases with long-lasting
complications. Larger volumes of human gray matter also need
more time toward reinnervation. It slowdowns the spontaneous
recovery procedure in humans after SCI (Bagheri Bavandpouri
et al., 2024). Finally, the pharmacokinetic limitations in the use of
phytochemicals urge the need for providing novel drug delivery
systems with higher efficacy and lower side effects (Fakhri
et al., 2022a).

5 Conclusion

NAI showed promising effects in reducing different types of
pain, improving motor activity, and attenuating weight gain
through anti-inflammatory, antioxidant, and neuroprotective
roles. Future research should focus on long-lasting preclinical
reports, employing different animal models and different routes
of drug administration. Additionally, providing novel delivery
systems and more pre-clinical reports are appreciated to find
the most suitable formulation and evaluate detailed mechanistic
pathways of NAI against SCI. Besides, well-controlled clinical trials
on individuals receiving NAI are needed to confirm the pre-
clinical studies.
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