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Objective: This study aims to explore potential ischemia-reperfusion injury (IRI)
predictive biomarkers related to disulfidptosis following lung transplantation.

Methods: The study utilized datasets from the GEO database, specifically
GSE145989 and GSE127003, which include samples of lung cold ischemia and
reperfusion following transplantation. Differential expressed analysis and
functional enrichment analysis were conducted to identify key genes
associated with lung transplant IRI. Multiple machine learning algorithms
(Generalized Linear Model, Support Vector Machine, and Random Forest)
were applied for joint screening, leading to the construction of a predictive
model. The CIBERSORT method was used to assess the infiltration levels of
immune cells in lung tissue samples post-transplant. Finally, cell line and animal
experiments were carried out to validate the effectiveness and applicability of
the model.

Results: A total of 14,592 hub differential-expressed genes were identified,
showing significant changes in cold ischemia and reperfusion samples. Using
the three machine learning algorithms for joint analysis, a predictive model
composed of SLC7A11 and LRPPRC was constructed. This model
demonstrated excellent predictive efficacy across multiple datasets, with area
under the curve (AUC) values of 0.742 and 0.938, respectively. Additionally,
significant differences in neutrophils and macrophages were observed in lung
transplant cold ischemia and reperfusion samples. Based on the differential genes
associated with disulfidptosis and utilizing the CMap database, we identified two
potential drugs targeting IRI: olanzapine and vortioxetine. Ultimately, cell line and
animal experiments validated the predictive model’s reliability and potential
clinical value, revealing that disulfidptosis presents in IRI, and high
SLC7A11 expression promotes IRI, while low LRPPRC expression contributes
to its occurrence.
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Conclusion: SLC7A11 and LRPPRC can serve as predictive biomarkers for IRI
following lung transplantation.
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Highlights

• Innovation: Leveraging three machine learning algorithms
(Generalized Linear Model, Support Vector Machine, and
Random Forest), we constructed a robust prediction model
with high predictive accuracy (AUC = 0.742 in the training
cohort and 0.938 in the validation cohort).

• Biological Insight: Experimental findings reveal SLC7A11 and
LRPPRC as central regulators in IRI, offering newmechanistic
insights into ferroptosis and immune cell dynamics.

• Clinical Translation: Identification of candidate drugs such as
olanzapine and vortioxetine via the Connectivity Map
database underscores the translational potential of our
findings in guiding therapeutic strategies.

Introduction

For end-stage lung disease, lung transplantation is the only
definitive treatment option. Ischemia-reperfusion injury (IRI) is
often regarded as a major factor contributing to primary graft
dysfunction (PGD), significantly impairing the quality of lung
transplant procedures (Chen-Yoshikawa, 2021). The lung is a
unique organ characterized by a dual blood supply system
composed of pulmonary vessels and the bronchial system.
During transplantation, the interruption of bronchial blood
supply makes the distal airways more susceptible to ischemic
injury. Moreover, during the ischemic phase, the production of
reactive oxygen species (ROS) due to various factors leads to severe
inflammatory changes, ultimately resulting in cell death in the donor
allograft (de Perrot et al., 2003; Capuzzimati et al., 2022).
Transcriptomics provides a snapshot of all RNA transcripts
present in a cell, organ, or other biological systems (Lowe et al.,
2017). By incorporating transcriptomic data, key biomarkers
associated with IRI can be identified to form predictive models.
This undoubtedly offers transplant surgeons a convenient tool for
prediction.

Cell death is one of the primary mechanisms underlying
ischemia-reperfusion injury in lung transplantation (Wong and
Liu, 2021). Studies have shown that cell death occurs widely
during IRI. Wong’s research compared the gene expression
profiles of human lung tissues collected at the end of the cold
ischemia time (CIT) with those collected from the same donor’s lung
after reperfusion, revealing that the enrichment of cell death and
inflammation-related gene clusters is one of the most critical events
during lung transplantation (Wong et al., 2020). Disulfidptosis, a
newly recognized form of cell death (Liu et al., 2023), has yet to be
extensively studied in the context of lung transplant IRI. The
occurrence of disulfidptosis is dependent on significant depletion
of reduced nicotinamide adenine dinucleotide phosphate (NADPH)
in environments lacking glucose, leading to the abnormal

accumulation of disulfides (Machesky, 2023). The transplantation
process itself often involves insufficient glucose supply,
compounded by the extensive production of ROS during
ischemia-reperfusion, which results in NADPH depletion (Gielis
et al., 2015). Consequently, disulfidptosis may also play a role
in lung IRI.

A predictive model for IRI following clinical lung transplantation
was developed using disulfidptosis-related genes and various machine
learning algorithms. Differentially expressed genes (DEGs) in human
allograft lung samples before and after transplantation were analyzed
using data from the Gene Expression Omnibus (GEO) database.
Three machine learning (ML) algorithms were employed to identify
biomarkers associated with disulfide cell death from the DEGs, which
were then experimentally validated. This study was conducted in
accordance with the Declaration of Helsinki.

Materials and methods

Data source and acquisition

The overall design of this research suggested in Figure 1.
The datasets included in this study were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/), specifically
GSE145989 and GSE127003. All expression levels were subjected
to log2 (x+1) transformation and normalization. Disulfidptosis-
related genes acquired from Liu’s research (Liu et al., 2023). The
code used for machine learning analysis and model construction is
available at [https://github.com/xsddg/mach-learn/blob/bf0b74d1ac
d4e1962c29741b2bb017b9c06b2b40/geoCRG22.model(1).R#L4].

Identification of DEDRGs

We utilized the “limma” package and “Wilcoxon test” to
compare 1-h and 2-h reperfusion samples in the lung
transplantation (LTx) cohort against cold ischemia samples,
identifying differentially expressed disulfidptosis-related genes
(DEDRGs) through their intersection with known disulfidptosis
genes. This analysis revealed genes that are differentially
expressed during ischemia and across different reperfusion
time points.

Enrichment analysis

To explore the function of these biomarkers in post-LTx
samples, the “c2.cp.kegg.v2022.1. Hs.symbols.gmt” were used as
predefined sets to detect significantly enriched pathways with p <
0.05, FDR <25%, and |NES|>1. The top eight gene sets were
visualized using “enrichplot” (ver. 1.18.3) in the R package.
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Machine learning

In this study, we utilized three machine learning
algorithms—random forest (RF), support vector machine (SVM),
and generalized linear models (GLM) to analyze differentially
expressed hub genes related to ischemia-reperfusion injury in
lung transplantation. For multi-DEDRG selection, simultaneous
feature selection was performed using all three methods, with the
intersections considered as significant features. Predictive
classification models were created based on the selected features
using binary classification. Resilient network linear regression was
employed to identify relevant differentially expressed genes via the
“glmnet” package in R, with a specified regularization parameter λ
and a probability threshold of >0. The SVM utilized the ‘e1071’ R
package for feature selection, applying a polynomial kernel function.
The RF method effectively predicted continuous variables, yielding
predictions with enhanced efficacy, sensitivity, and precision.

Model validation and nomogram
construction

The external validation dataset used was GSE127003, which
includes paired samples and transcriptomic data from lung
transplant recipients after cold ischemia and reperfusion,

provided by Toronto General Hospital (Wong et al., 2020). This
dataset was incorporated to demonstrate the predictive efficacy of
the findings from the training cohort in an external context, thereby
enhancing the generalizability of the model.

Drug sensitivity

Differentially expressed hub DEGs were submitted to the Broad
Institute’s Connectivity Map (http://www.broadinstitute.org)
database for enrichment analysis (Lamb et al., 2006). The DEGs
were used to search for small molecule drugs that may be beneficial
for the treatment of IRI. Drugs with negative scores were identified
as potentially advantageous for IRI treatment.

Constructing animal model

Male mice weighing 15–20 g were purchased from the Animal
Experiment Center of Xi’an Jiaotong University. The mice were
housed in a standard environment at 24°C with a 12-h light/dark
cycle, and they had access to food and water ad libitum. Every effort
was made to minimize the number of animals used and to reduce
their suffering. This study was approved by the Animal Experiment
Ethics Committee of Xi’an Jiaotong University. Animal care and all

FIGURE 1
Flowchart of the study.
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experimental procedures were conducted in accordance with the
guidelines of the institutional ethics committee.

Specifically, mice were anesthetized with an intraperitoneal
injection of water and chloral hydrate (1.5 g/kg). Tracheal
intubation was performed, and the mice were ventilated with
specific parameters: a tidal volume (TV) of 8 mL/kg and a
respiratory rate of 80 breaths per minute (Harvard University,
Massachusetts, United States). For the I/R model, a left
thoracotomy was subsequently performed, and the left
pulmonary hilum was occluded for 90 min. After 90 min of
occlusion, the sutures were released to restore blood flow and
ventilation to the lung during reperfusion. The sham-operated
group underwent a sham surgery, where the left pulmonary
hilum was similarly encircled with sutures but not occluded,
maintaining bilateral ventilation for a total of 210 min (Wang
et al., 2024).

Cell culture study

BEAS-2B cell line was cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS)
and 100 U/mL penicillin/streptomycin solution (GIBCO,
Gaithersburg, United States) in a humidified incubator at 37°C
with 5% CO2.

To generate stable cell lines with knockout of SLC7A11 and
LRPPRC, BEAS-2B cells were transfected with sgSLC7A11 and
sgLRPPRC constructs, 72 h later, single antibiotic-resistant
positive cells were sorted and seeded into a 96-well plate.
Surviving knockout clones were screened by immunoblotting
using the corresponding antibodies.

IRI models in BEAS-2B celline

According to Dong’s research (Dong et al., 2021). BEAS-2B cells
were cultured with deoxygenated glucose-free Hanks’ Balanced Salt
Solution (Beyotime Institute of Biotechnology, Jiangsu, China) and
incubated in a hypoxic chamber including 95% N2 and 1% O2 at
37°C for 8 h. After that, cells were incubated with normal culture
medium at 37°C for 12 h under normoxic conditions, with or
without N-acetyl-cysteine (NAC) (2 mM) for indicated time.

Cell counting kit-8 assay

To measure cell viability, 3,000 indicated cells were seeded in a
96-well plate per well 24 h before treatment. Upon treatment with
the appropriate conditional medium where indicated, each well was
replaced with fresh medium containing Cell Counting Kit-8 (CCK8)
reagent. After incubation for 60 min at 37°C, each well’s absorbance
at a wavelength of 540 nm was measured using a microplate reader.

Western blotting

As previously described, (Zhang et al., 2024), protein extracts
were resolved by SDS-PAGE and transferred to a PVDF membrane

(Milipore) using standard techniques. The primary antibodies
and concentrations used for Western blotting were: SLC7A11 (1:
1,000, CST, 12,691) and LRPPRC (1:1,000, Proteintech, 21175-
1-AP).

Result

Identification of Hub-DEGs

In the comparison of 1-h reperfusion versus cold ischemia, we
identified 1,277 differentially expressed genes. In the comparison of
2-h reperfusion versus cold ischemia, we identified
7,667 differentially expressed genes. By merging the differentially
expressed genes from these two time points, we ultimately obtained
a total of 8,159 differentially expressed hub genes (Figures 2A,D,G).
Regardless of the time point, the DEGs are predominantly enriched
in the TNF signaling pathway, apoptosis-related pathways, and cell
cycle regulation pathways. Additionally, GO analysis revealed
significant enrichment of differentially expressed genes in the
context of macromolecule synthesis. Moreover, we observed
fluctuations in the number of enriched genes within the TNF
signaling pathway, apoptosis-related pathways, and cell cycle
regulation pathways (Figures 2B,C). Specifically, there were
77 genes enriched in the TNF pathway at 1 h, while 92 genes at
2 h; this change may reflect the dynamic response of cells to
inflammatory signals following CIT treatment. Similarly, in the
apoptosis-related pathways, the number of enriched genes was
61 at 1 h, decreasing to 85 at 2 h, suggesting that the regulation
of apoptotic signaling may be time-dependent. Similar fluctuations
were also noted in the cell cycle regulation pathway, further
emphasizing the complex influence of CIT treatment on cellular
physiological states. Detailed information on gene enrichment is
provided in Supplementary Table S2.

Selection of DEGs using machine learning
algorithms

In this study, we identified 14 differentially expressed
ferroptosis-related genes (Figure 3A). These genes are
considered hub ferroptosis genes associated with ischemia-
reperfusion injury following lung transplantation. We annotated
their positions and created a corresponding chromosomal location
map (Figure 3B). There is a broad correlation among these hub
ferroptosis genes, with FLNA and TLN1 showing the strongest
correlation (cor = 0.48), while SLC3A2 also demonstrated a strong
correlation with FLNA (cor = 0.40) (Figure 3C). We employed
three machine learning methods to screen these 14 hub genes and
evaluated their predictive performance (Figures 3D–F).
Ultimately, the results from the GLM, RF, and SVM were
presented using a Venn diagram. Upon identifying the
overlapping DRGs, we confirmed two biomarkers: LRPPRC and
SLC7A11 (Figure 3G). The AUC value for SLC7A11 was 0.640, and
for LRPPRC, it was 0.698 (Figure 3H). The ROC curve
demonstrated that the machine learning model based on these
two biomarkers effectively distinguished between post-LTx and
pre-LTx samples (AUC = 0.742) (Figure 3I).
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Nomogram and validation

A nomogram was constructed based on the expression of
SLC7A11 and LRPPRC, along with calibration and decision curve
analyses (Figures 4A–C). This nomogram, integrating the
expression levels of SLC7A11 and LRPPRC, allows for specific
predictions of IRI-risk in patients. The calibration and decision
curve analyses demonstrated that this model possesses strong
predictive ability and clinical applicability. Subsequently, we
performed a bioinformatics analysis of the expression of genes
associated with these two models in the GSE145898 (Figure 4D)
and GSE127003 datasets (Figure 4E). The results indicated that
SLC7A11 was expressed at higher levels in the reperfusion

samples, while LRPPRC had higher expression levels in the
non-reperfusion samples. Finally, we validated this model
using GSE127003, revealing that the AUC for SLC7A11 was
0.758, while the AUC for LRPPRC was 0.918 (Figure 4F). The
overall AUC of our model in GSE127003 was 0.938, which
demonstrates the excellent predictive performance of this
model (Figure 4G).

Immune cell infiltration analysis

There was an increase and a larger proportion of neutrophil in
morphologically diverse samples (Figure 5A). In datasets

FIGURE 2
Enrichment analysis of differentially expressed genes (DEGs). (A) Volcano plot showing 1,277 DEGs comparing 1-h reperfusion samples with CIT
samples. (B)Gene Ontology (GO) analysis of DEGs at 1 h. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs at 1 h. (D) Volcano plot
showing 7,667 DEGs comparing 2-h reperfusion samples with CIT samples. (E) GO analysis of DEGs at 2 h (F) KEGG analysis of DEGs at 2 h. (G) Venn
diagram illustrating the overlap of DEGs from 1-h and 2-h analyses, identifying hub DEGs associated with ischemia-reperfusion injury (IRI). (H) GO
analysis of hub DEGs related to IRI. (I) KEGG analysis of hub DEGs related to IRI. The X-axis of the volcano plots represents log2 fold change (FC), while the
Y-axis represents the log-transformed adjusted P values (p < 0.05).
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GSE145989 and GSE127003, a comparison was made between CIT
and 2-h reperfusion samples. Significant differences were observed
between the two groups in plasma cells, memory CD4+ T cells,
M2macrophages, natural killer cells, both activated and resting mast
cells, and neutrophils (p < 0.05). In both datasets, the infiltration
levels of NK cells, macrophages, and neutrophils showed significant
differences between the CIT and reperfusion groups (Figures 5B,C).
The expression of SLC7A11 was more closely correlated with
neutrophil infiltration, while the expression of LRPPRC showed
almost no correlation with the aforementioned immune
cells (Figure 5D).

Drug sensitivity screening

To identify candidate small molecule drugs for the treatment of
IRI, all DEDRGs were classified into upregulated and downregulated
groups and uploaded to the CMAP database. Ultimately, five classes
of small molecules that may have a modulating effect on IRI
following lung transplantation were identified: Adrenergic
receptor antagonist, MTOR inhibitor, Dopamine receptor
antagonist, EGFR inhibitor, Serotonin receptor agonist
(Figure 6A). Further analysis was conducted on the targets of
two drugs—vortioxetine and olanzapine—to construct a

FIGURE 3
Identification of predictive markers through comprehensive analysis. (A) Heatmap of differentially expressed hub genes associated with
disulfidptosis. (B)Chromosomal locations of the disulfidptosis-related hub genes. (C)Correlation analysis among the disulfidptosis-related hub genes. (D)
Box plots showing sample residuals across four different machine learning models. (E)Cumulative residual distribution for eachmachine learningmodel.
(F) Receiver operating characteristic (ROC) analysis of fourmachine learningmodels based on 5-fold cross-validation in the testing cohort. (G) Venn
diagram of genes identified in the IRI model. (H) ROC curves demonstrating the predictive efficacy of SLC7A11 and LRPPRC for IRI. (I) Predictive
performance of the IRI prediction model comprising SLC7A11 and LRPPRC (AUC = 0.742).
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correlation network with the genes involved in our model (Figures
6B,C). An enrichment analysis of the aforementioned drug targets
showed significant enrichment in the Neuroactive ligand-receptor
interaction and Calcium signaling pathway. Additionally, GO
analysis indicated that the targets of these drugs were

significantly enriched in G protein-coupled receptor signaling
pathway (Figures 6D,E). This suggests that these drugs may
exert their effects on IRI following lung transplantation by
participating in the aforementioned biological processes and
pathways (Figure 2).

FIGURE 4
Nomogram construction and model validation. (A) Nomogram of diagnostic biomarkers for predicting the occurrence of IRI. (B) Calibration curve
assessing the predictive power of the nomogram model. (C) Decision curve analysis (DCA) curve evaluating the clinical utility of the nomogram model.
(D,E) Expression levels of SLC7A11 and LRPPRC in datasets GSE145989 and GSE127003. (F) ROC curve of SLC7A11 and LRPPRC in GSE145989. (G) ROC
curve of the IRI prediction model in GSE127003 (AUC = 0.938).
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Experimental validation

In our constructed mouse model of lung IRI, we observed that
the expression levels of SLC7A11 in the lung tissue of the IRI group
were higher than those in normal lung tissue. However, the
expression of LRPPRC was higher in normal tissue compared to
IRI tissue, with statistical significance (Figures 7A,B). Further
comparisons of the expression differences of these two genes
were conducted between the ischemic and reperfusion groups in
cell lines. Compared to normal pulmonary epithelial cells,
SLC7A11 exhibited elevated expression levels in both the
ischemic and reperfusion groups, while LRPPRC only
significantly higher in normal group (Figures 7C,D).
Subsequently, we established stable knockout cell lines for
SLC7A11 and LRPPRC and performed CCK8 assays to assess cell
viability (Figure 7E). The results indicated that IRI damage severely
compromised cell viability, reducing it to approximately 30%
(Figure 7F). After the knockout of LRPPRC, the cell viability in
the IRI group was significantly reduced (Figure 7G). However, after
knocking out SLC7A11, cell viability significantly increased,
restoring to about 70% (Figure 7H). Disulfidptosis is
characterized by increased disulfide bonds within cytoskeletal

proteins such as Drebrin, which could be monitored by
electrophoretic mobility shift under non-reducing conditions (Liu
et al., 2023). Indeed, We found that IRI resulted in obvious migration
retardation of Drebrin in lung tissue from IRI mouse models
(Figure 7I). Furthermore, disulfidptosis inhibitor NAC significantly
rescued cell viability caused by IRI (Figure 7J). These findings, in
conjunction with the bioinformatics analyses and animal experiment
results, suggest that SLC7A11 and LRPPRC may play a promoting
role in lung IRI damage. This provides strong experimental support
for the predictive stability of our model, indicating that the
measurement of SLC7A11 and LRPPRC expression could serve as
a predictor of IRI following lung transplantation.

Discussion

This study integrates disulfidptosis-related genes and machine-
learning algorithms to develop personalized and precise predictive
model for IRI in patients following lung transplantation. The specific
conclusions of the study are as follows: First, a predictive model for
post-transplant IRI was constructed based on SLC7A11 and
LRPPRC, demonstrating strong predictive performance. Second,

FIGURE 5
Immune cell infiltration analysis. (A) Bar plot depicting the abundance of enriched immune cells in lung transplantation samples. (B,C) Violin plots
illustrating the distribution of enriched immune cells in training and validation groups. (D) Correlation analysis between biomarkers and immune cell
populations, with immune cell names on the X-axis and biomarker genes on the Y-axis. Red indicates positive correlations, while blue indicates negative
correlations; deeper colors reflect stronger correlations (*p < 0.05, **p < 0.01, ***p < 0.001).
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SLC7A11may influence neutrophil infiltration, which in turn affects
lung IRI. Additionally, through the screening of disulfidptosis-
related genes, two potential therapeutic agents, olanzapine and
vortioxetine, were identified, which may have beneficial effects on

IRI following lung transplantation. Finally, experimental validation
confirmed that disulfidptosis occurs in IRI, SLC7A11 and LRPPRC
promote lung IRI, indicating that they could serve as potential
therapeutic targets for IRI after lung transplantation.

FIGURE 6
Drug sensitivity analysis. (A) Identification of the top five drug classes with the highest sensitivity, based on upregulatedDEGs and theCMap database.
(B) Correlation network between the predictive model and drug targets for olanzapine. (C) Correlation network for vortioxetine. (D) Enrichment analysis
of drug targets using GO analysis. (E) Enrichment analysis of drug targets using KEGG analysis.
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Reperfusion injury is unavoidable post-transplantation (Chen-
Yoshikawa, 2021). Although some methods validated in animal
models have shown promise in reducing the severity of IRI, it

continues to pose significant challenges for transplant surgeons
in clinical settings (Almeida et al., 2020; Gouchoe et al., 2024).
Integrating various machine learning approaches can consolidate

FIGURE 7
In vitro validation of the role of SLC7A11 and LRPPRC. (A,B) Immunoblot analysis and quantification of SLC7A11 and LRPPRC expression in lung
tissues from normal and IRI mousemodels. (C,D) Immunoblot analysis and quantification of SLC7A11 and LRPPRC in normal and IRI BEAS-2B cell lines. (E)
Knockout of LRPPRC and SLC7A11 in stably transfected cell lines was verified. (F) CCK-8 assay showing cell viability in normal controls. (G) Cell viability in
LRPPRC knockout cells. (H)Cell viability in SLC7A11 knockout cells. (I) The use of reducing and nonreducing immunoblot analysis in lung tissue from
mouse models with or without IRI produced the migration retardation of Drebrin. (J) Cell viability in NC, IRI, IRI + NAC cells.
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the key features identified by different methods. By combining
multiple algorithms, we can develop a consensus model for IRI
predicting, simplifying the model and enhancing its portability by
reducing the dimensionality of variables-an advantage of
comprehensive machine learning analysis.

The activation of disulfidptosis may require three criteria: (1)
high expression of SLC7A11; (2) glucose deprivation conditions that
block glucose metabolism and promote the production of reduced
NADPH through the pentose phosphate pathway (PPP) (Gouchoe
et al., 2024); and (3) abnormal disulfide bond formation between
actin cytoskeletal proteins. When all these conditions are met,
excessive accumulation of disulfide bonds occurs, leading to the
formation of disulfide bonds between actin cytoskeletal proteins,
actin contraction, and detachment from the plasma membrane,
ultimately resulting in cell shrinkage and death (Liu et al., 2023). A
characteristic of IRI is the rapid accumulation of reactive oxygen
species (ROS) shortly after reperfusion, accompanied by an increase
in the activity of ROS-generating enzymes (Chatterjee et al., 2014).
NADPH oxidase is the only known enzyme responsible for
producing ROS, and it is widely expressed in alveolar epithelial
cells (Panday et al., 2015). During IRI, the production of ROS
consumes a significant amount of NADPH, leading to a decline
in the cell’s antioxidant capacity and exacerbating oxidative stress.
Our experimental data have confirmed that SLC7A11 is highly
expressed in reperfusion samples, consistent with sequencing
analysis results. Furthermore, the knockout of
SLC7A11 significantly restored cell viability after IRI damage,
suggesting that SLC7A11 may influence lung IRI. However,
whether it impacts IRI through the regulation of disulfidptosis
still requires further experimental validation. By using cell
experiments, we witnessed the occurrence of disulfidptosis during
IRI, and disulfidptosis inhibitor NAC could partially rescue the cell
viability. According to Liu’s study, the inactivation of LRPPRC
synergistically induces cell death in conjunction with glucose
starvation (Liu et al., 2023). Additionally, our study found lower
levels of LRPPRC in cell lines and animal models undergoing IRI.
This indicates that LRPPRC may be involved in disulfidptosis in the
IRI environment by affecting glucose metabolism. In fact, after lung
transplantation, the ischemic process creates a naturally glucose-
deprived environment, which undoubtedly provides the necessary
conditions for the occurrence of disulfidptosis. In our study, both
cell lines and animal models of IRI were used to support the
occurrence of disulfidptosis under IRI. Therefore, the potential
mechanism of disulfidptosis in IRI during lung transplantation
should be further studied in the future.

In the study of IRI, the significant increase in DEGs with
prolonged reperfusion time provides crucial insights into the
molecular mechanisms underlying I/R injury. Notably, the
enrichment analysis of the MAPK signaling pathway at both the
1-h and 2-h reperfusion time points highlights its critical role in both
early and later stages of injury. Research indicates that
erythropoietin (EPO) can alleviate acute lung injury caused by
I/R by blocking the p38 MAPK signaling pathway (Jia et al.,
2021). Furthermore, inhibiting p38 MAPK can reduce the high
permeability of the blood-gas barrier, thereby mitigating lung
ischemia-reperfusion injury (Wang et al., 2020). These findings
confirm the research value of the MAPK signaling pathway in
lung I/R injury, suggesting that attention should be paid to the

regulation of this pathway in clinical interventions, allowing for
targeted protective measures at different time points to effectively
reduce the extent of injury.

During the cold ischemia and reperfusion phases, the immune
cell profile exhibits differences, primarily involving natural killer
(NK) cells, macrophages, mast cells, and neutrophils. The
infiltration of M2 macrophages during the cold ischemia phase is
significantly greater than that during the reperfusion phase.
Quercetin has been shown to upregulate M2 markers and
downregulate M1 markers, with this effect mediated via the
PI3K/Akt/NF-κB signaling pathway (Li et al., 2023).
Tetrahydrocurcumin (THP) induces the polarization of
M1 macrophages to M2 by inhibiting the TLR4/NF-κB/
NLRP3 signaling pathway, thereby alleviating acute lung injury
caused by limb ischemia-reperfusion in rats (Li et al., 2023).
Furthermore, we observed a significant correlation between the
expression of SLC7A11 and neutrophil infiltration. IRI-mediated
damage is associated with neutrophil infiltration, and inhibiting this
infiltration can prevent IRI after transplantation (Shepherd et al.,
2022). It may be possible to influence neutrophil infiltration and
thereby control IRI damage by suppressing SLC7A11 expression.
However, these conclusions are based on a single dataset, and the
specific changes in immune cells related to the expression of model-
associated genes in lung transplant samples require validation
through multiple transcriptomic datasets and experiments.
Additionally, the conclusions derived from the CIBERSORT
algorithm are estimations based on gene expression, and their
precision remains insufficient.

In this study, we identified several potential candidate drugs
through the screening of genes associated with disulfidptosis
Olanzapine is an antipsychotic medication widely used for the
treatment of schizophrenia and bipolar disorder, and its
neuroprotective potential has garnered increasing attention.
Research has indicated that olanzapine-induced hypothermia
provides protective effects against renal injuries in rats subjected
to asphyxiation-induced cardiac arrest (Tungalag et al., 2022).
Vortioxetine, a novel antidepressant, has also been shown to
possess neuroprotective effects. Studies have reported that
vortioxetine mitigates neuronal injury caused by ischemia-
reperfusion damage by inhibiting the PERK/eIF2α/ATF4/CHOP
signaling pathway (Emam et al., 2021). Furthermore, vortioxetine
may influence ferroptosis by reducing the overexpression of
NADPH oxidase 2 (Caruso et al., 2021), thereby decreasing the
production of reactive oxygen species (ROS). In recent years, the
research strategy of “repurposing old drugs” has emerged as a
prominent area of interest. Our IRI prediction model reveals
significant interactions with the targets of these two drugs,
suggesting the presence of potential unknown mechanisms and
research gaps. In the future, our research team will conduct in-
depth investigations into the drugs identified in this study, aiming to
provide new theoretical foundations and practical guidance for the
treatment of cell death and IRI damage following lung
transplantation.

Our study has several limitations. First, the limited sample size
included in our validation study may restrict the generalizability of
the results. Therefore, a larger sample size is necessary to
comprehensively identify key genes associated with lung IRI.
Additionally, for machine learning applications, it is essential to
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train predictive models using multi-center sequencing data to
improve their predictive capabilities. A limitation of our study is
the absence of detailed clinical background information, including
the type of pulmonary disease, patient age, and concurrent
medications. This may introduce potential confounding factors
and limit the generalizability of the identified biomarkers. Future
studies involving well-annotated clinical cohorts are warranted.
Finally, while the disufidptosis-related genes identified in our
study are based on existing literature, continuous exploration and
updates are required to refine and expand this knowledge base.

Conclusion

In conclusion, we identified two final hub genes as
disulfidptosis-related biomarkers for IRI during lung
transplantation using various machine learning algorithms.
SLC7A11 and LRPPRC were confirmed to be highly expressed
after reperfusion in both animal and cell experiments, providing
new insights into the role of immune cells in IRI during lung
transplantation.
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