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Ethnopharmacological relevance: Codonopsis pilosula (Franch.) Nannf. (CP) is
one of the most popular Qi-invigorating herbal medicines and has been
extensively used to promote health and vitality in China for a long time.
Codonopsis pilosula (Franch.) Nannf. polysaccharide (CPP) is the principal
active components of CP, which is considered as the reason for CP
widespread application. However, it has not been revealed that CPP exert a
Qi-invigoration effect by protecting mitochondria and/or improving
mitochondrial function in the existing traditional Chinese medicine theories.

Aim of the study: We extracted CPP from C. pilosula and investigated the effects
of CPP on energy metabolism and mitochondrial protection.

Methods: Based on the mice chronic hypoxia model for imitating the energy
deficiency state of the human body, which was administered with CPP by oral
gavage daily for 10 days, mitochondrial permeability transition (MPT), lipid
peroxidation product malondialdehyde (MDA) in brain, mitochondrial
respiratory function, the levels of adenosine triphosphate (ATP), adenosine
diphosphate (ADP) and adenosine monophosphate (AMP) in liver cells were
assayed. Adenylate energy charge (AEC), total adenylate pool (TAP), ATP/ADP,
and ATP/AMP ratios were calculated.

Results: CPP can inhibit the formation of MDA in mice brains, decrease oxygen
consuming rate and respiratory control ratio (RCR) of liver mitochondria, increase
levels of ATP, TAP and AEC in liver cells under chronic hypoxia condition.

Conclusion: CPP can possess and improve mitochondrial energy metabolism

and bioenergetic levels.

KEYWORDS

Codonopsis pilosula (Franch.) Nannf. polysaccharide, mitochondria, energy metabolism,
mitochondrial respiratory function, anti-hypoxia, adenosine triphosphate
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GRAPHICAL ABSTRACT

1 Introduction

In the field of traditional Chinese medicine (TCM), “Qi” (vital
energy) is deemed as the fundamental essence of vitality, embodying
the capacity to strengthen the physique, invigorate the spleen, tonify
the lung, nourish the blood and engender liquid (Li et al., 2009; Li,
2012), which plays a central role in understanding energy-
dependent body functions, and refers to the vital energies or
“minute substances” that circulate within the body, encompassing
both their physical presence and their functional significance.
Viewing from another perspective, it can be considered an
expression of the operational state of various organs, which in
turn is regulated by complex neuroendocrine mechanisms and
energy transformation processes (Ko and Chiu, 2006). Modern
medicine believes that the biochemical unit of “Qi” is adenosine
5'-triphosphate (ATP), the mitochondrion becomes the intrinsic
source of energy within the cell serving as the cellular powerhouse
for ATP synthesis. Mitochondria are the driving force behind life, as
mitochondrial oxidative phosphorylation (OXPHOS) provides the
main source of energy in the cell. Mitochondria play an essential role
in governing both the vitality and death of eukaryotic cells
(Cadassou and Jordheim, 2023; Strzyz, 2020). Accordingly,
mitochondria represent potential and susceptible hotspots for
damage, as the mitochondrion plays a central role in many of
the metabolic processes or pathways altered in tumorigenesis

(Cadassou and Jordheim, 2023; Schirrmacher, 2020).
Unfortunately, the mitochondria are prone to damage due to the
reactive oxygen species (ROS) generation during energy

Abbreviations: CP, Codonopsis pilosula (Franch.) Nannf.; CPP, Codonopsis
pilosula (Franch.) Nannf. polysaccharide; PG, panax ginseng; PGP, panax
ginseng polysaccharide; TCM, raditional Chinese medicine; MMP/Aym,
mitochondrial membrane potential; MPT, mitochondrial permeability
transition; MPTP, mitochondrial permeability transition pore; MDA,
malondialdehyde; OXPHOS, oxidative phosphorylation; ATP, adenosine
triphosphate; ADP, adenosine diphosphate; AMP, adenosine
monophosphate; AEC, adenylate energy charge; TAP, total adenylate pool;
RCR, respiratory control ratio; P/O, the number of moles of Pi consumed for
each oxygen atom reduced to H,O; POR, P/O ratio; ROS, reactive oxygen
species; SOD, superoxide dismutase; S3, respiratory state 3; S4, respiratory
state 4; GSH, glutathione.
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stimuli under normal

external

transforming  process or
physiological conditions or stressful conditions, when ROS
generation exceeds the capacity of antioxidant defenses, oxidative
stress ensues and has been implicated in cellular degradation during
aging as well as in a variety of disease states (Ko and Chiu, 2006; Lu
et al., 2024). The mitochondrial protection is therefore of crucial
importance.

According to TCM, the “Qi-invigorating” herbs mainly include
Panax ginseng (PG), Codonopsis pilosula (Franch.) Nannf. (CP),
Astragali radix, and Schisandra chinensis, etc. (Ko and Chiu, 2006;
Kwan et al., 2019; Li et al., 2021; Liu et al., 2023; Huang et al., 2018).
Among these, PG, a commonly optimal “Qi-invigorating” herb, can
combat oxidative stress, affect energy metabolism, and enhance
mitochondrial function (Yang et al., 2008; Lan et al., 2022; Ji et al.,
2025). However, PG commonly remains expensive as it requires a
high growth environment, long growth cycle, and its harvest is
difficult, which limits the widespread use of PG. Alternatively, CP,
as a substitute for the more expensive PG, has received widespread
praise in China, because it possesses some pharmacological activities
that PG also provides. CP belonging to the Campanulaceae family,
commonly known as “Dangshen” in China, is a perennial species of
flowering plant native to Northeast Asia, which is a traditional
Chinese tonic medicine with uses for thousands of years (Guo
et al, 2024). CP contains a diverse range of pharmacologically
active natural compounds, such as polysaccharides, saponins,
alkaloids, flavonoids, volatile oil, lignans, terpenoids, etc., and
polysaccharides are the main components (Liu et al, 2023; Guo
et al, 2024; Sun et al, 2019; Ma et al, 2024). Traditional quality
control and evaluation of CP are performed by measuring its
polysaccharides content. CPP has anti-tumor, anti-stress, anti-
oxidation, enhanced immune function and other activities, making
it a key ingredient in CP’s holistic health-promoting effects (Liu et al.,
2023; Ma et al,, 2024; Chu et al., 2024; Gong et al., 2022; Chen et al.,
2024). However, very few reports have systematically measured cell
mitochondrial bioenergetics after CPP treatment.

Our previous research mainly focused on the findings of
which showed that
polysaccharide (PGP) was capable of mitigating mitochondrial

Professor Li Xingtai, Panax  ginseng

injury and swelling, consequently enhancing ATP levels and the
AEC in liver cells under chronic hypoxia conditions (Li et al., 2009).
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Other subsequent studies have corroborated these findings, PGP was
also found to be related to its ability to promote neuronal mitophagic
activity, and the structural degeneration of mitochondria were all
ameliorated (Zhang et al., 2023; Wang et al,, 2021). These results
that PGP protects
mitochondrial swelling and improving energy status (Li et al,
2009; Wang et al.,, 2014). The efficacy of CP and PG is so similar
that they both contain large amounts of polysaccharide, which is one

indicate mitochondria by inhibiting

of their main and key active components, therefore, we guessed that
CPP has an analogous effect to those of PGP. To this end, we
investigated the protective effects of CPP on mitochondria and
ascertained regulation of energy metabolism, further revealed the
influence of Qi-invigoration on mitochondrial function, and
delineated its underlying mechanism of action, laying the
foundation for exploring the essence of “Qi” in the context of
traditional Chinese medicine.

2 Materials and methods
2.1 Animals and materials

All Male mice, weighing 22 + 2.0 g each, provided with unlimited
rodent laboratory chow and drinking water during the experiment
period, were purchased from Shenzhen Top Biotechnology Co., LTD.
ATP, ADP, AMP, TBA, 1,1,3,3-tetracthoxypropane, DL-malate,
L-glutamic acid were purchased from Sigma Chemical (St Louis,
MO, United States). while Coomassie Brilliant Blue G-250 (CBBG-
250) was (Bushs  SG,
Tris(hydroxymethyl)aminomethane(Tris) was acquired from Gibco
BRL (Grand Island, NY, United States). N-2-Hydroxyethylpiperazine-
N'-2-ethane sulfonic acid (HEPES) was provided by Merck
(Darmstadt, Germany). Bovine serum albumin (BSA) was procured

sourced from Fluka Switzerland).

from Boehringer Mannheim Corp. (Indianapolis, IN, United States).
All other chemicals and solvents utilized in this study were of analytical
grade and manufactured in China. The plant materials of the roots of
C. pilosula were harvested from the region of Large Xingan
Mountains, which is located in the most northern border of China,
Heilongjiang Province, and were identified according to the
identification standard of Pharmacopeia of the People’s Republic of
China. The plant materials were thoroughly air-dried and
finely powdered.

2.2 Preparation of CPP

CPP was isolated by hot-water extraction and ethanol
precipitation according to the method of Yang et al. (2008) with
slight modifications. The dried materials of CP were defatted with
95% alcohol, followed by triple extractions with distilled water at a
ratio of 1:10 (g/mL) for a duration of 1 h per extraction in a boiling
water bath. After the mixture had been filtered through gauze to
collect the filtrate, it was thoroughly mixed and then subjected to
evaporation under reduced pressure to concentrate it to a density of
1 g of drug per milliliter. Subsequently, the solution was centrifuged
at 3000 revolutions per minute (rpm) for 10 min to sediment any
particulates and separate the supernatant, which was carefully
collected, and a threefold volume of 95% alcohol was gradually
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added slowly while stirring continuously to precipitate the
polysaccharide, and then refrigerated at 4°C for 24 h, the
polysaccharide pellets were obtained by centrifuging at 5000 rpm
for 10 min. The polysaccharide pellets were completely dissolved in
an appropriate volume of distilled water, deproteinated with Sevag
reagent (CHCl;:n-BuOH = 4:1, v/v) for 30 min under the magnetic
force stirring and the procedure was repeated 3 times, and then
centrifuged to remove insoluble material. Finally, the supernatant
was lyophilized in the freeze-dry apparatus to give CPP with a brown
fluffy shape. The polysaccharides content (92.3%) in extracts was
determined using the phenol-sulfuric acid method.

2.3 Chronic hypoxia model

Model group and CPP group mice were exposed to hypoxia
(10.5% O, 89.5% N,) for 10 days in specially constructed plastic
cages. The cages were sealed at the top by plastic covers. Small
openings were made in the top covers to allow the inflow and
outflow of gases and to accommodate water bottles. The oxygen
content in the chambers was monitored using a Clark O, electrode
inserted through an opening in the top cover. Total gas flow was set
at about 1.5 L/min to maintain 10.5% O, in the cage and prevent
excessive accumulation of moisture and ammonia. Soda lime was
put into the chambers to absorb the CO, which was breathed out by
mice. The cages were daily accessed to refresh the bedding and
replenish food supplies. Mice in the CPP group received oral gavage
at dose of CPP (200, 300 mg/kg/day), in contrast, mice in the model
group were administered an equivalent volume of normal saline
solution, mice in the normal group were housed in standard open
cages (21% O,) and given normal saline to serve as a control.

2.4 |Isolation of liver mitochondria

Mitochondria were obtained using methods described in the
literature referred to Fink et al. (2005). Mice livers were swiftly
excised immediately and immersed in precooled normal saline to
cleanse the surface of residual blood, then placed in an ice-cold
isolation medium composed of 0.25 M sucrose, 0.5 mM EDTA and
3 mM HEPES, adjusted to pH 7.4, and homogenized with a
motorized Teflon pestle on wet ice. Post homogenization, the
samples underwent centrifugation at 1,000 x g for 10 min at 4°C.
The supernatants were carefully removed and further centrifuged at
10,000 x g for 10 min. The resulting pellets were then washed twice
with the isolation medium and recentrifuged at 10,000 x g for
10 min per wash. After the final wash, mitochondria were
resuspended in the isolation medium and kept on ice until
further use. Protein concentrations were determined using the
Bradford method assay, with BSA serving as the standard reference.

2.5 Evaluation of MPT

Liver mitochondria were isolated and resuspended (0.25 mg of
protein/mL) in an incubation medium (250 mM sucrose, 1 mM
P;-Tris, 10 mM Tris-MOPS, 5 mM glutamate-Tris, 2.5 mM malate-
Tris, pH 7.4, 25°C). 150 pM Ca** was added followed by CPP or
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ruthenium red (0.3 or 0.5 pM) (the model group was excluded).
Experiments were started by the addition of 0.5 mg of mitochondrial
protein. The final volume was 2 mL. MPT was monitored as the
absorbance (A) decrease of the mitochondrial suspension at 540 nm
at 0, 2, 5, 10, 15, and 30 min (Walter et al., 2000; He et al., 2000).

2.6 Mouse brain homogenate lipid
peroxidation assay

Mice were humanely euthanized by cervical dislocation, after
which their brains were rapidly extracted, weighed and prepared
into 10% (w/v) homogenates with ice-cold normal saline at 0°C to
preserve the integrity of the tissue and cellular components. Lipid
peroxidation was monitored in terms of MDA using thiobarbituric
acid colorimetry (Ohkawa et al, 1979). Briefly, to 0.4 mL
homogenate was added 1.5 mL 20% [v/v] acetic acid buffer
(pH 3.5), 0.2 mL of 8.1% [w/v] sodium dodecyl sulphate, 1 mL
of 0.67% TBA (w/v) and 0.4 mL water, the tubes were incubated at
95°C for an hour, cooled with running tap water, and were extracted
with 5 mL n-butanol. After centrifugation (2,000 x g, 10 min), the
absorbance of the butanol phase was read at 532 nm. MDA were
determined by linear regression analysis of a standard aliquot using
1,1,3,3-tetracthoxypropane as a standard.

2.7 Measurement of liver mitochondrial
respiratory function

Liver mitochondrial respiratory function was measured utilizing
the method described by Estabrook. Oxygen consumption was
measured at 30°C within a sealed, stirred, and thermostatted glass
vessel, fitted with a Clark-type oxygen electrode, in a 2.0 mL
respiration medium buffer (pH 7.4), which was composed of
225 mM sucrose, 1 mM EDTA, 5 mM MgCl,, 15 mM KCl,
15 mM KH,PO,4, 50 mM Tris,5 mM L-glutamic acid, 10 mM
DL-malate, and 5 mg/mL mitochondrial protein. Respiratory
state 3 (S3) was defined as the oxygen (O,) consumption rate of
mitochondria in the presence of substrate after the addition of
0.25 mM ADP, a potent stimulator of mitochondrial respiration.
Respiratory state 4 (S4) was characterized as the oxygen (O,)
consumption rate when all the ADP has been phosphorylated.
The rates of S3 and S4 can be precisely determined by analyzing
the OXPHOS curve. Respiration rates as nanomoles of oxygen atom
consumed per minute per milligram of protein. The RCR was
calculated as the ratio of S3 to S4 respiration rates, which
provided insight into the coupling efficiency of OXPHOS. The
P/O (the number of moles of Pi consumed for each oxygen atom
reduced to H,O) ratio is equivalent to the number of ADP molecules
phosphorylated  per atom reduced,

oxygen reflecting  the

stoichiometry of ATP synthesis in relation to oxygen reduction.

2.8 Measurement of ATP, ADP, and AMP in
liver cells by HPLC

The measurement of ATP, ADP, and AMP in liver cells was
conducted based on our previously established methodology (Li
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et al,, 2009), by gradient RP-HPLC (Spherisorb C18 reversed-phase
chromatographic column, 4.6 mm x 250 mm, 5 pm particle size)
with an ultraviolet detector at ambient temperature, and with mobile
phase flow rate of 0.8 mL/min. The gradient system utilized two
mobile phases: buffer A, a 0.05 M KH2PO4-K2HPO4 solution
adjusted to pH 6.0, and buffer B, which was buffer A
supplemented with 10% methanol (v/v). The gradient elution
procedure was as follows: from 0 to 3 min, buffer A served as
the mobile phase; between 3 and 6 min buffer A was gradually
reduced from 100% to 0% while buffer B increased from 0% to 100%;
between 6 and 9 min, buffer B was the sole mobile phase; and after
9 min, buffer A was reintroduced as the sole mobile phase, with the
total run time being 12 min, when the detection wavelength was set
at 254 nm. The contents of ATP, ADP, and AMP within liver cells
were determined by computing the peak areas obtained from
chromatographic analysis with those of standard nucleotide
solutions of established concentrations. The TAP and AEC were
subsequently calculated to provide a comprehensive assessment of
the cellular energy state, using the following formulas respectively:

TAP = [ATP] + [ADP] + [AMP]
AEC = ([ATP] + 0.5[ADP])/TAP

2.9 Statistical analysis

Data were presented as means + SEM, and statistical differences
among groups were evaluated using one-way analysis of variance
(ANOVA), complemented by the least significant difference (LSD)
post hoc test for multiple comparisons. These analyses were
conducted using the SPSS 16.0 statistical software package for
Windows (SPSS Inc., Chicago, Illinois, United States). The results
were considered statistically significant at a probability (P) value
threshold of less than 0.05.

3 Results

3.1 CPP inhibited Ca?*-induced liver
MPT in vitro

As is well known, mitochondrial energy metabolism is a complex
system in where biochemical reactions are coupled to membrane
electrophysiology, the normal function of mitochondria is highly
dependent on their fluidity and integrity. The opening of the
mitochondrial permeability transition pore (MPTP) significantly
reduces mitochondrial membrane potential (MMP/Aym), further
damaging mitochondrial function (Li et al, 2009; Li, 2012)
Mitochondrial calcium overload can trigger the opening of the
MPTP,
mitochondria due to water influx, and rupture of the mitochondrial

causing uncoupling of OXPHOS, swelling of the
outer membrane (Carraro and Bernardi, 2023; Bauer and Murphy,
2020). Here, we extracted CPP from CP using combined hot-water
extraction with ethanol precipitation (Figure 1A), and then isolated the
mice liver mitochondria by differential centrifugation and constructed
the Ca’-induced MPTP openness model. The MPTP can be
monitored via mitochondrial permeabilization to sucrose based on
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the changes of absorbance at 540 nm (Carraro and Bernardi, 2023;
Bauer and Murphy, 2020). The harvested mitochondria treated with
CPP or Ca™ blocker ruthenium red (RR) were challenged with a Ca**
load of 150 M. In the model group, Ca** can decrease significantly the
absorbance of 540 nm on 2 min, which caused a detectable MPTP,
indicating the rapid and large amplitude mitochondrial swelling
induced by Ca®* (Figure 1B). Interestingly, the effects of Ca®* on
MPTP were completely blocked by 0.5 uM RR and partially blocked by
0.3 uM RR (Figure 1B). Fortunately, CPP also obviously inhibited
Ca*-induced MPTP openness, and the inhibitory potency was
the
concentration of CPP was higher (Figure 1B). No significant

stronger when the incubation time was longer and
difference was observed between the CPP group (100 mg/L) and
the normal group (Figure 1B), suggesting CPP can completely resist the
toxicity of Ca** overload on mitochondria, allowing mitochondria to

maintain normal function.

3.2 CPP decreased MDA formation under
chronic hypoxia in vivo

Most ROS formation occurs at the intracellular oxygen-
consumed site, which means that the predominant site of ROS
generation is mitochondria (Fuhrmann and Briine, 2017). When
mitochondria undergo OXPHOS, the aberrant O, reactions during
electron transport induce ROS byproduct generation. In addition,
the production rate of ROS is positively correlated with the
concentration of environmental O,. The ROS overproduction can
cause peroxidation of the polyunsaturated fatty acids (PUFA) in the
mitochondrial membrane, leading to the formation of lipid
peroxides such as MDA (Valgimigli, 2023; Hajieva et al.,, 2023).
The MDA, owing to its high cytotoxicity and inhibitory action on
protective enzymes, is a biomarker of the cellular ferroptosis (Cui
et al., 2022). Therefore, the MDA level is an important marker of
mitochondrial function. We established the saline or CPP-treated
mice chronic hypoxia model (10.5% O,) and the saline-treated
normal O, (21% O,) mice group model, and then analyzed the
MDA level of these mice brain mitochondria. The MDA level in the
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chronic hypoxia model group was significantly lower than that in the
normal O, group, as the decrease in O, significantly reduced ROS
generation, further diminishing MDA production. Notably, CPP
administration extremely inhibited MDA formation in brain
mitochondria and exhibited concentration dependence under the
chronic hypoxic condition (Figure 2), indicating the antioxidant
activity of CPP in mitochondria.

3.3 The effects of CPP on liver mitochondrial
respiratory function in vivo

The liver is very instrumental in metabolic processes, pivotal for
sustaining energy levels and ensuring structural stability of the body.
The mitochondria isolated from hepatocytes are widely used in
many biochemical studies. To assay the CPP protection of
respiratory function, we detected S3 (O,
consumption rate after adding ADP) the S4 (O,
consumption rate after conversion ADP to ATP via OXPHOS
reaction) of liver mitochondria from chronic hypoxia mice model
and then calculated the RCR values and P/O ratio (POR). Compared
to normal group mice, hypoxic mice (model group) showed a
significant decrease in S3, RCR and POR (Figures 3A-C),
suggesting a decrease in oxygen consumption rate and a robust
in the rate of ATP generation through ADP
phosphorylation during the exposure in chronic hypoxia. CPP
could further reduce these parameters (Figures 3A-C), whereas
there was no significant effect on S4 (P > 0.05) (Figure 3D).

mitochondrial
and

reduction

3.4 The effects of CPP on energy state of
mice hepatocyte under chronic hypoxia
in vivo

ATP is a direct supplier of energy required within cells.
Insufficient supply of ATP can have serious adverse consequences
on energy dependent metabolic pathways, and energy depletion can
lead to cell death. The abovementioned studies showed that CPP can
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reduce the O, consumption rate of mitochondria under hypoxic
conditions, but it is unclear whether this process will affect the
generation of mitochondrial ATP. Our research identified that
hypoxia led to a marked fall in cellular ATP and ADP levels
(Figures 4A,B), and a rise in cellular AMP levels (Figure 4C)
associated with reductions in ATP/ADP and ATP/AMP ratios,
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alterations in ATP/ADP ratio could substantially impact the MMP
(AY ). The cellular AMP/ATP ratio serves as a biomarker, indicative
of metabolic stress. Through the catalytic action of adenylate kinase
(AK), any reduction in the cellular ATP/ADP ratio is mirrored by a
corresponding decrease in the ATP/AMP ratio. Hypoxia induces a
significant decline in the ATP/AMP ratio, which was observed to drop
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from 10.46 under normoxic conditions to 3.22 under hypoxic
conditions, while the ATP/ADP ratio decreased from 1.39 to 1.18
(Figures 4F,G). These findings indicate that the hypoxia significantly
altered the cellular energy state.

The AEC serves as a quantitative indicator that delineates the
proportion of ATP and its precursors within the adenine nucleotide
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system, offering a linear measure of the metabolic energy status
within cells. TAP is another gauge of cellular energy status, which
was observed to be decreased in liver cells of the model group
compared with the normal group in our study (Figure 4D).
Furthermore, the AMP level in the model group was observed to
be twice as high as that in the normal group (Figure 4C). Treatment
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with CPP (300 mg/kg/day) could increase ATP, ADP, TAP levels
and ATP/ADP, ATP/AMP ratio, AEC of liver cells compared to the
model group (Figures 4A,B,D-G). The data showed CPP to be an
enhancer of ATP production under hypoxia-induced anti-ATP
circumstance, while ATP levels were drastically lowered by
hypoxia but CPP stimulated an increased output of ATP.
Notably, ATP/AMP ratio in the CPP (300 mg/kg/day) group is
increased over 2-fold than the model group (Figure 4G), indicating
that CPP-treated mice mitochondria exhibited higher production
capacity efficiency under chronic hypoxia, despite the lower O,
consumption rate.

4 Discussion

In the hub of cellular bioenergetics, mitochondria are key players
in regulating cellular energy, which underlies the metabolic and
functional changes of cells (Infantino et al., 2021). Mitochondria are
important and pivotal regulators of cell death, responding to a wide
variety of stress signals, including loss of growth factors, hypoxia,
oxidative stress, and DNA damage. Mitochondria are also
considered the pacemakers of tissue aging due to the continuous
production of free radicals, oxygen, and nitrogen free radicals and
related reactive species, and to the selective oxidative damage that
leads to mitochondrial dysfunction (Fuhrmann and Briine, 2017).
Modern TCM science has established a certain connection between
mitochondrial protection and nourishing “Qi,” which is the most
vital force for retaining the physiological functions of the human
body (Li et al., 2009; Li, 2012; Huang et al., 2019; Valcarcel-Jimenez
et al, 2017). For instance, the PGP improved the tolerance of
mitochondria to oxidative damage through the inflammatory
response, oxidative damage and signaling pathway, just as
increasing TAP, MMP and antioxidant capacity reflected by
superoxide dismutase (SOD), glutathione (GSH) and so on (Li
et al, 2021; Wang et al, 2021, Huang et al, 2019). CP is also
known for its ability as a substitute of costly PG, given PG’s well-
established antioxidant and mitochondrial protective properties.
Among them, CPP is the primary active components of CP, the
quality of CPP was evaluated by HPGPC profiling and
chemometrics, which showed that CPP could be further purified
and two different molecular weight polysaccharides (CP-1 and CP-
2) were obtained, which contained 80.32% and 79.05% of total
sugars, with the average molecular weights of 2568.51 kDa and
320 kDa (Liu et al, 2025). CPP
heteropolysaccharide, including arabinose, glucose, rhamnose,

is a typically acidic

galactose, mannose, glucuronic acid and galacturonic acid in the
mole percentages of 13.9, 29.8, 4.6, 14.0, 2.2, 1.2% and 34.3% (mol%)
respectively (Yang et al., 2008; Yang et al.,, 2024). Although recent
studies demonstrated that CPP protected the mitochondrial
membrane integrity of the sheep sperm after preservation at 4°C
(Wang et al., 2024), CPP may inhibit hepatocellular carcinoma
growth and reestablish the immune balance (Chen et al., 2024; Tang
et al., 2021; Li et al., 2024), and CPP increased NAD+, NAD+/
NADH, and PGC-la related to NAD+, thus partially recovering
ATP (Li et al.,, 2024; Hu et al., 2021), it is still unclear whether CPP
can also achieve the “Qi-invigoration” through mitochondrial
protection in TCM theory. The integrity of mitochondria is a
prerequisite for the energy production through OXPHOS.
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Furthermore, mitochondrial calcium overload might trigger the
opening of the MPTP, causing uncoupling of OXPHOS, swelling
of the mitochondria due to water influx, and rupture of the
mitochondrial outer membrane (Bauer and Murphy, 2020). Our
study demonstrated that CPP can inhibit MPTP openness during
Ca**-challenge. CPP can scavenge superoxide anion and hydroxyl
radicals, enhancing the SOD activity (Ma et al., 2024; Chen et al,,
2024; Feng and Zhang, 2020). The inhibition of CPP on MPTP
might be closely related to its scavenging activity on ROS and the
inhibition on lipid peroxidation, this indicates that CPP may protect
mitochondria by scavenging ROS and antioxidation properties.

Oxidizing agents and ROS lead to the opening of MPTP, whose
immediate consequence is the collapse of A¥m, besides increasing
matrix volume, leading to major modifications of mitochondrial
function and structure that eventually jeopardize the maintenance
of cell viability. And lipid peroxides (such as MDA) can increase
membrane permeability, leading to mitochondrial swelling. The
present results showed that CPP was a potent inhibitor of MDA,
which could decrease lipid peroxides extent of brain. Previous reports
CPP can scavenge superoxide anion and hydroxyl radicals, enhance
the SOD activity and decrease MDA content in mouse brain.
Mitochondrial oxidative stress has been implicated in cell death
(Chen et al, 2024; Orrenius et al, 2007), high levels of pro-
oxidants produced by mitochondria can induce apoptosis by
changing cellular redox status, depleting reduced GSH, reducing
ATP levels, and decreasing reducing equivalents such as NADH
and NADPH (Orrenius et al, 2007). Either Qi deficiency or
hypoxia can markedly inhibited the activity of SOD and GSH (Li
etal., 2020), decrease ATP, TAP and AEC, increase AMP content, and
these severe cases cause the excessive decrease of ATP levels, leading to
rapid cell necrosis. Our investigation found that CPP (300 mg/kg/day)
can further decrease state 3 respiration, RCR, and POR of liver
mitochondria compared to the control group in our experimental
model. We think that the treatment of CPP reduces the energy
consumption of the body during hypoxia, thus playing a role in
nourishing “Qi.” When hypoxia occurs, hypoxia-inducible factor 1
(HIF-1) is a pivotal modulator of the metabolic reprogramming
(Fuhrmann and Briine, 2017; Infantino et al., 2021), the utilization
rate of oxygen and ATP production efficiency are significantly
improved, and the production of oxygen byproduct ROS is
significantly inhibited during electron transfer. Although the results
of these experiments demonstrate the efficacy of CPP, it should be
noted that direct hypoxia markers, such as HIF-1a expression would
strengthen model validation, these assays were not included here, this
limitation will incorporate analysis in future studies.

Researchers have elucidated a secondary mechanism of
respiratory control in eukaryotic cells (Kadenbach et al, 2010),
which is regulated by the intramitochondrial ATP/ADP ratio.
Under conditions of high ATP/ADP ratio, OXPHOS is inhibited
due to the allosteric binding of ATP to a specific subunit of Complex
IV, and this inhibition can be counteracted or reversed by increased
ADP concentrations, thus modulating the rate of OXPHOS in
response to cellular energy demands. Cell energy metabolism is
further regulated by AEC. We also discovered that CPP could
increase the levels of ATP and TAP in hypoxic liver cells, reduce
AMP levels, and consequently increase ATP/ADP, ATP/AMP ratios
and AEC (i.e, increase cellular bioenergetics). We consider this is the
result from the alleviation of feedback inhibition on OXPHOS, which
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which feedback inhibit OXPHOS by decreasing RCR, S3 and POR of liver mitochondria, this may further decrease Aym to reduce ROS generation. This
outcome is attributed to the enhancement of mitochondrial energy metabolism and the elevation of cellular bioenergetic levels.

in turn ameliorates mitochondrial energy metabolism and elevates the
bioenergetic level (Kadenbach, 2020).
functions, including ATP synthesis, ion homeostasis, metabolites

Critical mitochondrial

transport, ROS production, and cell death are highly dependent on
MMP (Solaini et al., 2007; Kowaltowski and Abdulkader, 2024). The
energy state of the mitochondria can retro-regulate the nuclear-
encoded energy genes. Variations in the

mitochondrial respiratory chain are accompanied by changes in

activity of the

“energy-state messengers,” which encompass ROS (such as the
diffusive H,0,), mitochondrial and cytosolic calcium, NADH/
NAD+, ATP/ADP, GTP, AMP, cyclic AMP (cAMP), Aym and
ApH (Benard et al, 2010). In addition, an increase in Aym,
whether caused by impaired OXPHOS or by an overabundance of
nutrients relative to ADP, will result in aberrant electron migration in
the electron transport chain and elevated ROS production (Wallace,
2005). From both an economic and health perspectives, multicellular
organisms necessitate a regulatory mechanism that operates
independently of the Mitchell theory (chemiosmotic theory), while
maintaining the Aym at moderately low levels of 120-140 mV
(Begum and Shen, 2023), thereby optimizing the efficiency of
OXPHOS. Surprisingly, the German scientist Kadenbach et al.
(2010) have proposed an innovative mechanism that bypasses the
Mitchell theory, in which a high ATP/ADP ratio exerts feedback
inhibition on CcO (complex V) (Kadenbach, 2020), and maintains a
low Aym value, thereby preventing ROS generation and preserving
the high efficiency of OXPHOS. This novel mechanism represents a
new extension of Mitchell theory, known as “The second mechanism
of respiratory control,” offering a fresh perspective on how cells
modulate their respiratory activity.

Mitochondria play a pivotal role in governing the cellular life and
death by intricately manipulating and regulating several critical factors,
such as bioenergetics, the MPTP, and the mitochondrial redox-status
(Guo, 2021; Meng et al., 2025; Purandare et al., 2023; Zorova et al.,
2018). Mitochondria consume over 90% of the oxygen utilized in cells
and are the major source of cellular ROS production, which are
produced in substantial quantities through aberrant O, reactions
with the components of the electron transport chain, which is
stringently controlled in physiological conditions. And the majority
of ROS production remain tightly confined inside intact mitochondria,
they appear to be more susceptible to bear the brunt of the free radical
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damage observed in cells during aging. This susceptibility is evident in
the increased oxidative stress observed in aging cells, which is associated
with a decline in respiratory function and is a key factor. This
phenomenon can be a result of an escalating cycle, whereby
impaired mitochondria leakage increased levels of free radicals,
thereby causing further self-inflicted damage as well as extending
the deleterious effects to the rest of the cell The rate of
mitochondrial respiration and the associated of ROS production are
substantially influenced by the coupling state of the mitochondria,
which refers to the efficiency with the electron transport chain generates
ATP relative to the amount of oxygen consumed. And mitochondrial
metabolism can be both advantageous and detrimental to these
processes, which keep a balance that the dualities of mitochondria is
an adaptive homeostasis mechanism (Valcarcel-Jimenez et al., 2017; Yu
and Pekkurnaz, 2018; Wu et al, 2022). In the current study, CPP
demonstrated the ability to reduce the oxygen-consuming rate and
RCR in liver mitochondria, thereby increasing hypoxia tolerance and
prolonging the survival time of mice. This improvement observed in
mitochondrial function is attributed to CPP’s capacity to bolster cellular
bioenergetics, thereby optimizing the mitochondria’s role in energy
metabolism and cellular resilience under oxygen-deprived conditions.
We consider that this effect is interpreted as a reduction in the basal
metabolic rate, which can be seen as a protective adaptive mechanism.
Patients with Qi deficiency, who exhibit increased susceptibility to
and  diminished
sufficient
expenditure. According to the current study, we propose that CPP

fatigue energy levels, require nutritional

supplementation, rest and a reduction in energy
can mitigate the symptoms associated with Qi deficiency by enhancing
mitochondrial bioenergetics, while higher levels of bioenergy will exert
a feedback inhibition on OXPHOS, potentially contributing to the
metabolic conservation and cellular protection (Kadenbach, 2020).
Consequently, This study significantly expands Kadenbach’s “New
extension of the Mitchell Theory” through systematic analysis of
multiple bioenergetic parameters. This not only provides compelling
evidence supporting the contention that “the second mechanism of
respiratory control constitutes a novel extension of the Mitchell Theory
in OXPHOS,” but also proposes a potential intervention strategy by CP
for cellular bioenergetic enhancement.

However, we have recognized some limitations of this research. as
a theoretical basis and novel ideas were provided for Qi-invigoration,
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using mitochondrial bioenergetics as a target, this study is subject to
these inherent limitations. First, while therapeutic efficacy is
holistically assessed within the paradigm of TCM, the experimental
design employed conventional single-variable control methodologies
predominant in contemporary Western scientific paradigms. Second,
the absence of MMP measurements using JC-1 or TMRE fluorescent
probes to quantify CPP’s effects on MMP stabilization and ROS
reduction (Kowaltowski and Abdulkader, 2024; Popgeorgiev et al.,
2024), this may fall short of elucidating the intricate synergies.
Although this investigation establishes a theoretical foundation for
Qi-invigoration strategies targeting mitochondrial bioenergetics, these
inherent constraints suggest that complete elucidation of multilevel
therapeutic synergies may require further integrative research
approaches.

5 Conclusion

In summary, we proved that CPP had the pharmacological
antioxidation and mitochondrial
that  the of
mitochondrial energy metabolism and bioenergetic levels via CPP

activities of antihypoxia,

protection, and concluded enhancement

administration may be the biological mechanisms to invigorate
Qi (Figure 5).
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