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Background: Pediatric inflammatory bowel disease (IBD), especially Crohn’s
disease, significantly affects gut health and quality of life. Although gut
microbiome research has advanced, identifying reliable biomarkers remains
difficult due to microbial complexity.

Methods:We used RNA-seq-basedmicrobial profiling andmachine learning (ML)
to find robust biomarkers in pediatric IBD. Microbial taxa were profiled at phylum,
genus, and species levels using kraken2 on Crohn’s disease and non-IBD ileal
biopsies. We performed abundance-based analyses and applied four ML models
(Logistic Regression, Random Forest, Support Vector Machine, XGBoost) to
detect discriminative taxa. An independent cohort of 36 pediatric stool
samples assessed by 16S rRNA sequencing validated top ML results.

Results: Traditional abundance-based methods showed compositional shifts but
identified few consistently significant taxa. ML models had better discriminatory
performance, with XGBoost outperforming others and pinpointing
Orthotospovirus and Vescimonas as key genera. These findings were
confirmed in the validation cohort, where only one traditionally noted genus,
Actinomyces, maintained significance.

Discussion: Integrating conventional omics with AI-driven analytics boosts
reproducibility and clinical relevance of microbial biomarker discovery,
opening new possibilities for targeted therapies and precision medicine in
pediatric IBD.
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Introduction

Pediatric inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and
ulcerative colitis (UC), remains a formidable clinical and research challenge due to its
complex etiology, variable presentation, and substantial impact on growth and
development. Unlike adult-onset IBD, pediatric IBD can have more extensive intestinal
involvement and a higher disease burden, often manifesting as delayed puberty, impaired
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growth, and reduced quality of life. Early and accurate diagnosis,
alongside effective therapeutic interventions, is crucial for mitigating
long-term complications and improving patient outcomes. However, the
current diagnostic paradigm—primarily reliant on invasive endoscopic
examinations and histopathological assessments—offers limited non-
invasive biomarkers capable of reliably differentiating pediatric IBD from
other gastrointestinal conditions.

Advancements in omics technologies, particularly RNA-
sequencing (RNA-seq), have substantially enhanced our
understanding of the gut microbiome’s role in health and disease
(Beaudry et al., 2016; Lloyd-Price et al., 2016). By capturing the
functional and taxonomic composition of microbial communities,
RNA-seq has facilitated the identification of candidate biomarkers
and putative drug targets (Franzosa et al., 2014). Yet, while such
abundance-based analyses have highlighted certain taxa,
reproducibility and consistency across independent cohorts
remain vexing issues. Many proposed microbial biomarkers fail
to display stable, cross-study validation, hampering their clinical
applicability and limiting insights into potential therapeutic
mechanisms (Haberman et al., 2014; Shapiro et al., 2018).

Although advancements in omics-based technologies have yielded
valuable insights into the gut microbiome’s contribution to IBD,
traditional abundance-based approaches often fail to identify
reproducible biomarkers, resulting in a “reproducibility crisis.” This
reproducibility crisis underscores the need for integrative strategies
that extend beyond conventional abundance-based approaches.
Artificial intelligence (AI) and machine learning (ML) offer a
powerful complement to traditional methods, capable of discerning
subtle patterns and complex interactions within large, multi-
dimensional datasets (Topol, 2019; Beam and Kohane, 2018). ML
models, such as Random Forest, Support Vector Machines (SVM),
and gradient-boosting algorithms like XGBoost, can sift through vast
numbers of features—including microbial taxa at various taxonomic
levels—and prioritize the most informative markers with high predictive
value. Applying similar strategies to pediatric IBD could enhance early
diagnosis, uncover novel therapeutic targets, and inform personalized
interventions (Esteva et al., 2019).

The gut microbiome’s complexity in pediatric IBD is further
complicated by age-related factors. Children’s microbiotas are
dynamic, influenced by diet, early-life exposures, and ongoing
maturation of the immune system (Yatsunenko et al., 2012). Such
complexity demands robust analytical tools that can integrate
biological knowledge with computational efficiency. Traditional omics
approaches offer depth and mechanistic understanding, while ML
provides scalability, pattern recognition, and improved predictive
performance when confronted with heterogeneous and noisy data
(Franzosa et al., 2019; Laukens et al., 2016).

Moreover, identifying biomarkers that translate into actionable drug
targets requires a comprehensive approach that moves beyond static
abundancemeasures. RNA-seq data can revealmicrobial gene expression
patterns, shedding light onmetabolic pathways and potential therapeutic
mechanisms (Paramsothy et al., 2017). By focusing on microbial taxa
consistently linked to pediatric IBD, researchers may pinpoint targets for
microbiome-modulating therapies—such as probiotics, prebiotics, fecal
microbiota transplantation (FMT), or even metabolite-targeted
interventions—that hold promise in complementing or enhancing
existing pharmacological treatments (Sainath et al., 2020; Sinha
et al., 2017).

Building on previous efforts to integrate computational and
experimental methods in microbiome research, this study
demonstrates the potential of combining RNA-seq-based
microbial profiling with machine learning (ML) to enhance
biomarker reproducibility and identify promising therapeutic
targets in pediatric IBD. In this study, we combined traditional
RNA-seq microbial profiling with ML-driven approaches to
systematically identify reliable microbial signatures of pediatric
IBD. By contrasting abundance-based statistical methods with
multiple ML classifiers—including Logistic Regression, Random
Forest, Support Vector Machine (SVM), and XGBoost—we
aimed to address the synergistic value of integrating
complementary methodologies. Ultimately, this approach seeks to
enhance reproducibility in biomarker discovery and inform
precision medicine strategies for pediatric IBD.

Materials and methods

Study cohorts and sample collection

We analyzed ileal biopsy RNA-seq data obtained from pediatric
patients diagnosed with Crohn’s disease (CD) and age-matched non-
IBD controls. The primary dataset comprised 245 pediatric ileal biopsy
samples originally described in publicly available repositories
(GSE93624) (Schloss et al., 2011). In addition to this primary
dataset, an independent validation cohort was assembled comprising
36 pediatric stool samples (19 IBD, 17 non-IBD), collected prospectively
and processed using 16S rRNA gene sequencing to test the
reproducibility of identified microbial biomarkers (Caporaso et al.,
2012). Our protocols to include: (i) standardized fasting
requirements (at least 8 h prior to biopsy) when clinically
permissible, (ii) avoidance or documentation of probiotics and
specific medications within 4 weeks prior to sampling, and (iii)
adherence to uniform dietary guidelines where possible. Non-IBD
controls included children undergoing ileal biopsy for reasons
unrelated to IBD who exhibited normal histopathology and no signs
of inflammatory disorders (Supplementary Table S1). Samples were
immediately flash-frozen and stored at −80°C to preserve microbial
integrity. Stool collection also followed standardized protocols,
including instructions for home collection kits, immediate cooling,
and rapid transfer to the lab, where samples were stored at −80°C
before 16S rRNA gene sequencing. Patients were enrolled following
informed consent and in accordance with the ethical guidelines and
approval of the Tianyou Hospital Affiliated to Wuhan University of
Science and Technology Review Board.

RNA-seq data processing and
microbial profiling

Raw paired-end RNA-seq reads were quality-checked using
FastQC and filtered to remove low-quality reads and adapter
contamination with Trimmomatic (Bolger et al., 2014), applying
default parameters for Illumina data. Host reads were removed by
mapping against the human reference genome (GRCh38) using
Hisat2 (Kim et al., 2015), retaining only non-host reads for
downstream microbiome profiling. Microbial sequences were
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taxonomically classified at phylum, genus, and species levels using
kraken2 (Wood and Salzberg, 2014) with a comprehensive reference
database, ensuring robust identification of bacterial, viral, and fungal
taxa. To generate a normalized microbial abundance table, we
calculated the relative abundance of each taxon by dividing raw
counts by the total number of microbial reads per sample. Only taxa
present in at least 10% of samples were retained to minimize the
influence of rare and potentially spurious features.

Alpha and beta diversity analyses

To assess within-sample microbial diversity (alpha diversity), we
computed the Shannon index using vegan R package functions
(Oksanen 2020). Between-sample compositional differences (beta
diversity) were evaluated using the Bray-Curtis dissimilarity metric,
followed by Principal Coordinates Analysis (PCoA) for
visualization. Group comparisons were performed using
PERMANOVA (adonis function in vegan) to test for significant
shifts in community structure (Anderson, 2017).

Traditional abundance-based comparisons

To identify differentially abundant taxa between pediatric CD
and non-IBD controls using conventional approaches, we employed
non-parametric tests (Wilcoxon rank-sum) on relative abundance
data, adjusting for multiple comparisons with the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995). Taxa
displaying a false discovery rate (FDR)-adjusted
p-value <0.05 were considered statistically significant. Selected
taxa were visualized with boxplots and stacked barplots to depict
compositional differences at phylum and genus levels
(Wickham, 2016).

Machine learning approaches for
biomarker discovery

To enhance biomarker discovery, we applied four ML
algorithms: Logistic Regression, Random Forest, SVM, and
XGBoost. We performed hyperparameter tuning via grid search
and 5-fold cross-validation for each model. For example, our SVM
tested multiple kernel types (linear, polynomial, radial basis), while
our XGBoost pipeline varied learning rates (0.01–0.3), max_depth
(Franzosa et al., 2014; Haberman et al., 2014; Shapiro et al., 2018;
Topol, 2019; Beam and Kohane, 2018; Esteva et al., 2019;
Yatsunenko et al., 2012; Franzosa et al., 2019), and
regularization parameters (lambda, alpha). Model performance
was evaluated on a 70/30 train/test split, with Area Under the
Receiver Operating Characteristic Curve (AUC), accuracy,
sensitivity, and specificity as key metrics (Chen and Guestrin,
2016). Feature selection was conducted using a forward selection
strategy, gradually adding taxa that improved classification
performance until no further gain was observed. Models were
evaluated on the testing set, and their performance was compared
based on AUC, accuracy, sensitivity, and specificity (Kuhn, 2008).
The best-performing model was then applied to identify the most

informative taxa for distinguishing pediatric CD from non-IBD
controls (Supplementary Table S2).

Independent validation and
reproducibility testing

To validate the identified biomarkers, we analyzed the
independent pediatric cohort of 36 stool samples processed via
16S rRNA amplicon sequencing. This cohort underwent similar
quality control and taxonomic assignment steps using QIIME2 and
DADA2 (Callahan et al., 2016), ensuring consistent methods for
feature representation. The taxa highlighted by ML-based
approaches were examined in this validation cohort to assess
reproducibility. Taxa derived from traditional abundance-based
methods were also tested, facilitating a direct comparison of
stability and clinical relevance (Segata et al., 2011).

Statistical analyses and software

All statistical analyses were performed in R (version 4.2.2).
Multiple packages, including phyloseq for microbiome data
handling (McMurdie and Holmes, 2013), vegan for diversity
analyses (Oksanen 2020), and caret for machine learning
workflows (Kuhn and Johnson, 2013), were employed.
Visualization was completed using python3 for differential
abundance results. Unless otherwise stated, p-values were two-
tailed, and p < 0.05 was considered significant.

Results

Microbial community composition at
phylum and genus levels

Compositional profiling of pediatric Crohn’s disease and non-
IBD ileal biopsy samples revealed distinct microbiome signatures
at both the phylum and genus levels (Figure 1). While the overall
phylum distribution appeared dominated by a few core taxa in
both groups, subtle shifts were evident, suggesting alterations in
microbial community structures associated with disease status. At
the genus level, stacked barplots indicated that certain taxa were
enriched in either pediatric IBD or non-IBD controls, yet the
magnitude and consistency of these differences varied
across samples.

Alpha and beta diversity analyses at the
genus level

Alpha diversity metrics, such as the Shannon index, showed no
significant differences between pediatric IBD and non-IBD groups
(Figure 2A). Both cohorts exhibited comparable within-sample
microbial complexity, implying that reduced richness or evenness
may not be a defining feature of pediatric IBD in this dataset.
Conversely, beta diversity analyses using Bray-Curtis distances
suggested mild compositional shifts (Figure 2B). Principal
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Coordinates Analysis (PCoA) showed a trend of clustering by
disease status, albeit with notable overlap, highlighting the
subtlety of the microbial distinctions.

Identifying taxa with traditional abundance-
based methods

Traditional abundance-based comparisons identified a
shortlist of genera that appeared differentially abundant

between pediatric IBD and non-IBD samples. Among these,
Actinomyces and Streptantibioticus emerged as candidates of
interest (Figure 3). Boxplots of these genera revealed that
Actinomyces displayed a more consistent pattern of
enrichment in pediatric IBD, whereas Streptantibioticus
showed differences but lacked robust statistical significance
or consistency. These findings underscored the challenges
inherent in relying solely on abundance-based methods,
as initial signals may not always translate into stable
biomarkers.

FIGURE 1
Phylum and Genus Composition. Stacked barplots comparing the relative abundance at phylum level (A) and genus level (B) between Crohn’s
disease and non-IBD control groups.

FIGURE 2
Alpha and Beta Diversity at Genus Level. (A) Violin plot of Shannon index shows no significant differences between groups. (B) PCoA plot (Bray-
Curtis) indicates no clear clustering by disease status.
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FIGURE 3
Genus-Level Boxplots fromTraditional Abundance Analyses. Boxplots for selected genera revealActinomyces and Streptantibioticus as differentially
abundant, but only Actinomyces is significant.
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Machine learning-based
biomarker discovery

To enhance biomarker reproducibility, multiple machine
learning (ML) classifiers were employed at both genus and
species levels (Figure 4). While Logistic Regression, Random
Forest, and SVM provided modest improvements over
traditional methods, XGBoost outperformed all other models,
demonstrating higher accuracy and a more pronounced ability to
discriminate pediatric IBD from non-IBD controls. Feature
importance analyses identified Orthotospovirus and
Vescimonas at the genus level as key discriminators
(Figure 5). Unlike many taxa highlighted by conventional
abundance approaches, these XGBoost-selected genera
exhibited robust and reproducible differences, suggesting they
may serve as reliable biomarkers.

Independent validation in a separate
pediatric cohort

To test the reproducibility and clinical relevance of the identified
biomarkers, we examined an independent cohort of 36 pediatric
stool samples using 16S rRNA sequencing (Figure 6).
Orthotospovirus and Vescimonas maintained consistent trends in
this external dataset, supporting their status as stable biomarkers.
Notably, among the taxa initially suggested by abundance-based
methods, only Actinomyces retained its observed pattern. This
independent validation emphasized the value of combining
traditional and ML-driven approaches to achieve reproducible
and clinically meaningful results.

Discussion

This study demonstrates how integrating traditional omics
analyses with AI-driven machine learning can refine the search
for robust microbial biomarkers and potential therapeutic targets in
pediatric IBD. While traditional abundance-based comparisons

provided an initial shortlist of candidate taxa, their
reproducibility proved limited. Actinomyces stood out as the sole
traditional candidate maintaining consistent patterns across
datasets, underscoring the rarity of stable biomarkers emerging
from conventional methods alone. Our findings underscore
XGBoost’s advantages for this dataset, including its capacity to
handle imbalanced classes, accommodate complex feature
interactions, and integrate regularization to prevent overfitting.
These attributes appear especially beneficial in microbiome
studies where underlying microbial signals may be subtle or
masked by high inter-individual variability. Identifying
Orthotospovirus and Vescimonas as key discriminators speaks to
the capacity of ML tools to capture complex interactions that might
be overlooked by simpler statistical approaches. By systematically
incorporating feature selection, cross-validation, and performance
metrics, the ML framework not only improved classification
accuracy but also enhanced the likelihood that identified taxa
reflect underlying disease mechanisms rather than spurious
associations.

The independent validation further corroborated the strength of
ML-driven discoveries. While one genus from the traditional
approach retained its trend, the consistent appearance of
Orthotospovirus and Vescimonas across cohorts underscores
their potential involvement in pediatric IBD pathogenesis.
Orthotospovirus, traditionally known as a plant-infecting viral
genus, may have unrecognized roles in human health through
complex interactions within the gut ecosystem, while
Vescimonas, a relatively understudied bacterial genus, could
influence immune regulation or mucosal barrier integrity (De
Oliveira et al., 2018; Huang et al., 2024). Such biomarkers can
serve as entry points for investigating how shifts in the microbial
community affect mucosal inflammation and immune modulation,
ultimately guiding microbiome-targeted therapies—whether
through dietary modifications, microbial transplantation, or
metabolite-based interventions. By bridging traditional
abundance-based analyses with cutting-edge computational tools,
this integrated strategy refines biomarker discovery and underlines
the importance of validating candidate biomarkers in independent
cohorts. Harnessing the combined strengths of established biological

FIGURE 4
Machine Learning-Based Classification. ROC curves for Logistic Regression, Random Forest, SVM, and XGBoost at genus (A) and species (B) levels.
XGBoost outperforms others.
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FIGURE 5
Key Genera Identified by XGBoost. Boxplots show Orthotospovirus (****) and Vescimonas (**) as top discriminators. These taxa exhibit robust
differences between Crohn’s disease and controls.
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methods and advanced machine learning offers a clearer path
toward reproducible targets, promising improved early diagnosis,
personalized treatments, and better outcomes for pediatric
IBD patients.

As we continue to refine these computational methods, future
work may delve deeper into functional characterizations of the
identified taxa, examine temporal dynamics of the pediatric
microbiome, and assess the efficacy of targeted interventions
informed by these biomarkers. By doing so, we move closer to an
era where precision medicine—fueled by robust microbial
biomarkers and guided by integrative analytic frameworks—can
transform the management of pediatric IBD.
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