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Background: Ubiquitination, a critical post-translational modification, plays a
pivotal role in regulating protein stability and activity, influencing various aspects
of cancer development, including metabolic reprogramming, immune evasion,
and tumor progression. However, the specific role of ubiquitination in
hepatocellular carcinoma (HCC), particularly in relation to the tumor
microenvironment (TME), remains poorly understood. This study aims to
systematically explore the role of ubiquitination in shaping the TME of HCC,
with a focus on its impact on cancer progression and immune modulation.

Methods: We performed bioinformatics analysis by integrating multiple publicly
available HCC datasets to assess the ubiquitination status across various cell types
in the TME, including plasma cells, fibroblasts, endothelial cells, and epithelial-
mesenchymal transition (EMT) cells. Ubiquitination scores were calculated to
categorize these cell types, and survival data, along with spatial transcriptomics,
were employed to evaluate how different levels of ubiquitination influence HCC
progression. In vitro experiments, such as transwell, CCK8, and wound healing
assays, were used to further investigate the role of the key ubiquitination gene
UBE2C in HCC phenotypes.

Results: Our study revealed that ubiquitination-related genes are significantly
upregulated in HCC tissues, with high expression levels correlating with poor
prognosis in patients. Pathway analysis showed that these genes are enriched in
key processes such as cell cycle regulation, DNA repair, metabolic
reprogramming, and p53 signaling. These pathways contribute to the TME by
promoting tumor cell proliferation, facilitating matrix remodeling, and enhancing
angiogenesis. Notably, UBE2C, a critical ubiquitination enzyme, appears to play a
key role in immune evasion, potentially by inhibiting anti-tumor immune
responses and reducing the immune system’s ability to recognize and
eliminate tumor cells. Furthermore, experimental data confirmed that UBE2C
overexpression promotes HCC cell proliferation, invasion, andmetastasis, further
supporting its role in tumor progression and TME remodeling.
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Conclusion: This study reveals themultifaceted regulatory roles of ubiquitination in
HCC. Ubiquitination not only supports proliferation and anti-apoptotic functions
within tumor cells but also promotes tumor progression by modulating the activity
of immune and stromal cells. Among all ubiquitination-related genes, UBE2C
emerges as a potential prognostic biomarker and therapeutic target in HCC,
offering new directions for precision treatment of HCC in the future.
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent
malignant tumors worldwide, characterized by a high incidence and
mortality rate (Yang et al., 2014; Xiong et al., 2024; Lu et al., 2023).
According to the World Health Organization (WHO), HCC ranks
as the fourth leading cause of cancer-related deaths globally,
accounting for over 800,000 deaths annually, with particularly
high incidence rates in Asia and Africa (Bray et al., 2018). The
primary risk factors for HCC include chronic infections with
hepatitis B virus (HBV) and hepatitis C virus (HCV), long-term
alcohol abuse, and fatty liver disease (El-Serag, 2012; Friedman et al.,
2018). Due to the frequent late-stage diagnosis of HCC, treatment
outcomes are often poor, with high recurrence rates and a
persistently low 5-year survival rate.Consequently, research into
early diagnostic methods and novel therapeutic strategies for
HCC is of critical importance (Comprehensive and Integrative
Genomic Characterization of Hepatocellular CarcinomaCancer
Genome Atlas Research Network, 2017; Fan T. et al., 2024).

Ubiquitination is a prevalent post-translational modification in
which ubiquitin molecules are covalently attached to target proteins,
thereby regulating their stability, activity, and cellular localization
(Sun et al., 2020; Sun and Zhang, 2022). This process typically
involves a cascade of reactions orchestrated by E1 ubiquitin-
activating enzymes, E2 ubiquitin-conjugating enzymes, and
E3 ubiquitin ligases (Zhang and Jiang, 2021). Ubiquitination
plays key roles in various biological processes, including cell cycle
regulation, DNA repair, and signal transduction. Meanwhile,
deubiquitinating enzymes (DUBs) can reverse this process by
removing ubiquitin, maintaining protein homeostasis. An
imbalance in ubiquitination and deubiquitination can lead to the
development of various diseases, including cancer (Zhang et al.,
2023; Chen Y. et al., 2024).

In recent years, growing evidence has highlighted the critical role
of ubiquitination in the initiation and progression of hepatocellular
carcinoma (HCC) (Gong et al., 2024; Liu Z. et al., 2024; Zhao et al.,
2024). For instance, MDM2, a key E3 ligase, regulates the
degradation of p53 via ubiquitination, thereby affecting HCC cell
proliferation and apoptosis (Shi and Gu, 2012). Furthermore, certain
deubiquitinating enzymes (DUBs), such as USP7 and USP10,
influence HCC cell growth by modulating cell cycle and
apoptosis-related proteins (Li et al., 2023; Li and Liu, 2020;
Henningsen et al., 2021). Dysregulated ubiquitination in HCC is
not only closely associated with the malignant biological behaviors
of tumors but also contributes to resistance against anticancer drugs,
further complicating treatment.Given its pivotal role in HCC,

ubiquitination is increasingly regarded as a potential therapeutic
target (Chang and Ding, 2018). However, its impact on the tumor
microenvironment (TME) of HCC remains poorly understood.
Therefore, elucidating the intrinsic link between ubiquitination
and alterations in the HCC tumor microenvironment is essential
for advancing precision treatments for HCC (Lv et al., 2020).

2 Materials and methods

2.1 Cell culture

Human hepatocellular carcinoma (HCC) cell lines, including
Huh7 and Hep3B, were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; HyClone) supplemented with 10% fetal bovine
serum (FBS; Hyclone), 100 U/L penicillin, and 100 mg/L
streptomycin (Thermo Fisher), at 37°C in a 5% CO2

environment. Lipofectamine 3000 (Invitrogen, Carlsbad, CA,
United States) was employed for transfection of Negative Control
(NC) and DKC1 siRNA (RiboBio, Guangzhou, China) into the HCC
cells, following the manufacturer’s instructions.

2.2 shRNA knockdown

Plasmids expressing shRNA, specifically designed to target
UBE2C, were carefully constructed with the assistance of
GenePharma. During cultivation, the cells were treated with viral
supernatants and polybrene (Sigma Aldrich) in the culture medium.
After 24 h of incubation, the cells were transferred to fresh medium
containing 2.0 μg/mL of puromycin. The efficiency of UBE2C
knockdown was confirmed 2 days later using qRT-PCR analysis.

2.3 qPCR assay

Total RNA extraction was carried out utilizing the RNA Eazy
Fast Tissue/Cell Kit (TIANGEN Biotech) in accordance with the
manufacturer’s guidelines. Subsequently, cDNA synthesis was
performed using the FastKing RT Kit (TIANGEN Biotech),
adhering to the provided protocol. Real-time PCR analysis was
conducted with the application of the SuperReal PreMix Plus
(TIANGEN Biotech) reagent, implemented on the StepOnePlus
Real-Time PCR System. The PCR reaction encompassed an
initial pre-denaturation phase at 95°C for 15 min, followed by 40
amplification cycles, comprising denaturation at 95°C for 10 s,
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annealing at 72°C for 20 s, and extension at 60°C for 20 s. Primer
sequences utilized were procured from Sangon Biotech. (Species of
Human Origin) UBE2C Forward Primer: 5′-GACCTCTCCTTG
TTGCTGCC-3′, reverse primer 5′-GTCCAGGTCATTGGGCTG
AC-3’; PCR signals 2-44−ΔΔCT was used to calculate the
expression of genes mRNA levels. The following sequences were
used: 5′-CCTCTCCTTGTTGCTGCCG-3′ for human
UBE2C shRNA.

2.4 Transwell assay

Cell migration and invasion of HCC cells were evaluated using
the Transwell assay. Briefly, 5 × 10̂4 cells were seeded into Transwell
chambers coated with Matrigel (BD Biosciences, San Jose, CA) for
invasion or uncoated for migration. The upper chamber was filled
with serum-free medium, while the lower chamber contained
complete DMEM medium. After 24 h of culture, the cells that
had migrated or invaded through the membrane were fixed with 4%
paraformaldehyde and stained with 0.1% crystal violet. Cell
numbers were subsequently quantified using a light microscope
(Thermo Fisher, Waltham, MA, United States).

2.5 CCK-8 assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK8)
assay. After 24 h of transfection, cells were seeded into 96-well plates at
a density of 2500 cells per well in 100 µL of complete medium and
incubated at 37°C. Following each experiment, 10 µL of CCK8 reagent
(Beyotime, Shanghai, China) was added to each well, and the cells
were further incubated for 4 h at 37°C. The optical density value
(OD450) was then measured using a microplate reader.

2.6 Wound healing assay

The migratory behavior of Huh7 and Hep3B cells was analyzed
using a wound healing assay, which offered detailed observations of
their movement patterns. Cells, post-transfection, were grown in a
six-well plate and maintained at 37°C until they reached about 80%
confluence. A sterile 200 μL pipette tip was then utilized to make a
precise linear scrape through the layers of cells to establish a uniform
wound. Subsequent to this, the wells were washed twice with
phosphate-buffered saline (PBS) to remove any detached cells,
and the medium was replaced with serum-free medium. The
closure of the wound was observed and documented at 0 h and
24 h using an inverted microscope (Olympus, Japan), allowing for
measurement of the migration distance covered by the cells across
the wound area.

2.7 Clonogenic formation

600 cells were seeded in 6-well plates. These plates were then
placed in the incubator for 14 days until clones formed, each
consisting of at least 50 cells. Subsequently, the colonies were
stained using a 0.1% crystal violet solution.

2.8 Protein expression and
immunohistochemistry

We used the CTPAC database to validate the difference in the
expression of UBE2C protein in hepatocellular carcinoma tissues
and normal liver tissues. The expression levels of UBE2C in
hepatocellular carcinoma tissues and normal tissues were verified
by immunohistochemical sections from the HPA database.

2.9 Data sources

This study utilized single-cell sequencing data from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/), specifically the
dataset GSE149614, which contains sequencing data from
10 hepatocellular carcinoma (HCC) patients. We selected non-
tumor and primary tumor samples for analysis. Spatial
transcriptomics data were obtained from the primary HCC tissue
section GSM6177612. Additionally, RNA-seq data for pancreatic
cancer, comprising 424 samples and associated survival data, were
acquired from the TCGA cohort via the UCSC Xena platform
(https://xena.ucsc.edu/) for survival analysis. We retrieved a set of
78 ubiquitination-related genes from the GO database (https://
geneontology.org/).

2.10 Quality control, dimensionality
reduction, clustering, and cell type
identification

After importing the raw single-cell sequencing data, we
performed initial processing using the Seurat package (version
4.3.0), including quality control, dimensionality reduction, and
visualization (Hao et al., 2021). To ensure data reliability, we
applied stringent quality control criteria, selecting cells with gene
expression levels between 500 and 6000 and mitochondrial gene
expression below 15%. The data were normalized and standardized
using the NormalizeData and ScaleData functions, followed by
principal component analysis (PCA) with the RunPCA function
for dimensionality reduction. To integrate data from different
sources, we used the Harmony package (version 1.2.0) for batch
effect correction. The top 20 principal components were then
selected for clustering at a resolution of 0.3, resulting in 17 cell
clusters. Based on liver tissue marker genes from the Cellmarker
website and differential expression analysis for each cell cluster using
the FindAllMarkers function, we categorized cells into three main
types: hepatocytes, stromal cells, and immune cells. Subsets were
extracted and re-processed with similar steps to refine subcluster
identification, followed by a second round of cell annotation to
achieve a final classification (Gu et al., 2024).

2.11 Ubiquitination scoring

Using the 78 ubiquitination-related genes retrieved from the GO
database, we applied five algorithms—AUCell, UCell, singscore,
ssGSEA, and AddModuleScore—to score ubiquitination levels in
the single-cell dataset. Scores were standardized using the scale
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function and normalized using the normalize function to ensure
comparability across methods, yielding a comprehensive
ubiquitination score for each cell. Based on median
ubiquitination scores, cells were divided into high and low
ubiquitination groups, focusing on hepatocytes, plasma cells,
fibroblasts, endothelial cells, and effector memory T cells (Hao
et al., 2021; Yu et al., 2012).

2.12 Cell-cell communication analysis and
copy number variation (CNV) analysis

To explore cell interactions within the HCC tumor
microenvironment, we conducted cell-cell communication
analysis using the CellChat package, involving ligand-receptor
matching, network construction, signaling pathway analysis,
hierarchical and centrality analysis (Jin et al., 2021). This
revealed interaction mechanisms and differences between high
and low ubiquitination cells and other cell types. We performed
CNV analysis using the copykat function from the CopyKAT
package to predict cellular malignancy (Chi et al., 2022).

2.13 Differential expression analysis

We used the FindMarkers function to analyze gene expression
differences between tumor and normal tissues, retaining only
upregulated genes. By intersecting differentially expressed genes
with the ubiquitination gene set, we identified ubiquitination-
related differentially expressed genes. To investigate differences
between high and low ubiquitination cells, we visualized
differential gene expression between these groups (Chi et al., 2023).

2.14 Enrichment analysis

To investigate functional differences between cells with varying
ubiquitination levels, we conducted GO and KEGG enrichment
analyses. Genes upregulated in high-ubiquitination cells, identified
using the FindMarkers function, were used for enrichment analysis.
The clusterProfiler package facilitated retrieval of gene sets from
GO, KEGG, and GSEA databases and visualized the results.
Additionally, the GSVA package, combined with the
HALLMARK gene set, was used to identify tumor-related
biological processes. For functional enrichment, we used the bitr
function from clusterProfiler to convert gene symbols to ENTREZ
IDs, then applied the compareClusterfunction to perform KEGG
enrichment, revealing functional impacts of ubiquitination on
hepatocytes within the tumor microenvironment (Yu et al., 2012).

2.15 Metabolic analysis

Metabolic states were analyzed using the scMetabolism package,
generating a heatmap of metabolic scores. The AUCell method
within the sc.metabolism.Seurat function assessed metabolic
activity, with KEGG database-specified pathways for metabolic
pathway enrichment. This analysis provided insights into the

metabolic mechanisms and differences among cells, offering clues
to their functional roles in the tumor microenvironment.

2.16 Evaluation of infiltration and prognostic
analysis for cells with high and low
ubiquitination levels

Using the FindMarkers function, we identified marker genes for
cells with high and low ubiquitination levels and conducted ssGSEA
scoring on TCGA data to classify patients into high and low
infiltration groups. Survival analysis, using the survival and
survminer packages, was performed to predict and evaluate
prognostic differences based on infiltration levels. Survival curves
were fitted using the survfit function, and Kaplan-Meier survival
plots were generated with ggsurvplot to analyze the impact of
infiltration levels on prognosis (Chen H. et al., 2024).

2.17 Deconvolution analysis of spatial
transcriptomics data

Quality control was performed on spatial transcriptomics data
using the Seurat package, excluding ribosomal and mitochondrial
genes. After normalization with the SCTransform function and
PCA-based dimensionality reduction, clustering with the top
20 principal components yielded 7 cell clusters (Luo et al., 2024).
The scMetabolism package, in conjunction with the KEGG database,
utilized the AUCell method to assess metabolic pathways of
ubiquitination genes, exploring cellular functional characteristics.
Spatial deconvolution was conducted with the SpaceXR package
using annotated single-cell data to infer spatial distribution and
analyze cell communication patterns, with spatial dependencies and
cellular responses in pancreatic cancer tissues analyzed using the
mistyR package (He et al., 2024).

2.18 Expression, prognostic, and clinical
analysis of key ubiquitination gene UBE2C

After intersecting differential genes, we identified six key genes,
with UBE2C emerging as the most significant through prognostic
analysis. Differential expression analysis was performed on TCGA
data, validated by three GEO datasets: GSE14520, GSE39791, and
GSE54236. Based on UBE2C expression, patients were stratified into
high and low expression groups for survival analysis, highlighting
the prognostic impact of this pivotal ubiquitination gene in HCC.
Kaplan-Meier survival curves were generated using data from
multiple sources. Additionally, we conducted KM curve analysis
to evaluate UBE2C expression in immune and stromal cells in
relation to survival and clinical outcomes, complemented by
KEGG enrichment analysis for UBE2C (Jiang et al., 2024).

2.19 Statistical analysis

All statistical analyses were conducted using R version 4.3.3 (64-
bit) and associated packages. The Wilcoxon rank-sum test was used
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FIGURE 1
Single-cell data quality control, dimensionality reduction clustering, and cell type identification. (A): Sample characteristic violin map after quality
control, including gene number, count number, and mitochondrial proportion. (B): Cell distribution map of different sample sources. (C): Cell cluster
distribution umap map. (D): Cell distribution umap map of different tissue type sources. (E): Characteristic expression of nCount_RNA umap plot. (F):
preliminary cell type identification result display plot, different colors represent different cell types. (G): stromal cell subpopulation distribution umap
plot. (H): immune cell subpopulation distribution umap plot. (I): final cell type identification result display plot. (J): cell type percentage histogram. (K):
heatmap of genes with the top five expression by each cell type.
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for differences between groups of continuous variables, and
Spearman correlation analysis was used to assess correlations
between variables. Statistical significance was set at P < 0.05.

3 Results

3.1 Data collection and quality control

In this study, we analyzed single-cell transcriptomic data (ID:
GSE149614) from the GEO database, comprising 18 tumor and
corresponding normal liver tissue samples from 10 hepatocellular
carcinoma (HCC) patients. To ensure high-quality single-cell data
analysis, we implemented strict quality control measures across all
samples. Various quality metrics, including UMI counts and the
expression levels of mitochondrial and hemoglobin genes
(Figure 1A), were assessed to exclude aging cells, erythrocytes,
and mitochondrial signals. Additionally, the Harmony algorithm
was applied to remove batch effects from sequencing, ensuring that
the results reflected only biological differences between
samples (Figure 1B).

Following dimensionality reduction and clustering, we applied
UMAP to organize the 61,776 quality-controlled cells into
16 distinct clusters (Figure 1C). We also examined data
distribution differences across samples (Figure 1D), between
tumor and normal tissues (Figure 1E), and the density variation
in mRNA expression (Figure 1F).Initial cell type identification was
performed by detecting marker genes for specific cells using the
“FindAllMarkers” function. Cells were classified based on marker
gene expression patterns and the upregulation of genes within each
cell cluster (Figure 1G). Figure 1H highlights the distribution
differences of various cell types between tumor and normal
tissues, while the marker genes for each cell cluster are visualized
in a heatmap (Figure 1I).For abundant immune cell populations,
including myeloid cells, B cells, and T/NK cells, we conducted sub-
clustering analysis using a resolution of 0.1. This analysis identified
subtypes such as plasma cells, CTLs, EMTs, Tregs, and macrophages
(Figures 1J). Finally, we summarized the distribution differences of
all identified cell types between tumor and normal
tissues (Figure 1K).

3.2 Identification of high-ubiquitination cells

To identify cells with high expression of ubiquitination-related
genes, we employed multiple scoring methods to evaluate
ubiquitination levels across various cell types, including effector
memory T cells, plasma cells, CTLs, Tregs, NK cells, macrophages,
endothelial cells, hepatocytes, fibroblasts, and monocytes. The
ubiquitination scores were visualized using UMAP plots for both
normal and tumor samples (Figures 2A,B).Next, we performed a
significance analysis of ubiquitination scores across different cell
types under normal and tumor conditions. The results revealed that
ubiquitination scores were significantly higher in tumor samples,
suggesting a potential role for ubiquitination in tumor progression
(Figure 2C).To further investigate ubiquitination characteristics
within the HCC tumor microenvironment, we categorized cells
into high- and low-ubiquitination groups based on their

ubiquitination scores and conducted a cell communication
analysis. High-ubiquitination hepatocytes (UbqhighHep)
exhibited the strongest cellular communication signals
(Figure 2D). Additionally, we visualized overall communication
interactions between cells with differential ubiquitination,
highlighting active interactions among endothelial cells and
fibroblasts (Figure 2E). Finally, comparative analysis of
communication signals across all cells revealed pronounced
signaling between endothelial and fibroblast cells under high
ubiquitination conditions (Figure 2F).

3.3 Ubiquitination in hepatocytes within the
tumor microenvironment

To investigate ubiquitination characteristics in hepatocytes
within the HCC tumor microenvironment, we divided
hepatocytes into high- and low-ubiquitination groups based on
ubiquitination scores (Figure 3A). We found that hepatocytes in
tumor samples had higher ubiquitination levels compared to normal
samples (Figures 3B,E). In Figures 3C,D, we compared metabolic
differences between hepatocytes with different ubiquitination levels,
discovering that metabolic pathways and cellular processes in
hepatocytes were influenced by ubiquitination in liver cancer.
Hepatocytes with high ubiquitination showed increased activity
in metabolic pathways, such as amino acid metabolism and one-
carbon metabolism. GO enrichment analysis indicated that
hepatocytes with high ubiquitination scores were more active
throughout the cell division process, with higher levels of
proteolysis and translation (Figures 3F,I). Figure 3G presents the
results of GSVA enrichment analysis, indicating that ubiquitination
primarily affects the cell cycle. To explore heterogeneity between the
two groups, we performed GSEA analysis, revealing functional
differences in hepatocytes with high and low ubiquitination
scores (Figure 3H). We observed that the high-ubiquitination
group showed enhanced expression of cell cycle-related genes.
These results suggest that ubiquitination likely influences proteins
involved in proteolysis, affecting the normal cell cycle and leading to
the transformation of normal cells into malignant ones in HCC
development.To investigate the prognostic impact of ubiquitination
in HCC, we further analyzed the expression levels of ubiquitination-
related genes, finding that most genes were upregulated in HCC
tissues (Figure 3L). Survival curves indicated that patients with high
ubiquitination levels had shorter overall survival (OS) and
progression-free survival (PFS) compared to those with low
ubiquitination levels (Figures 3J,K).

3.4 Ubiquitination in plasma cells within the
tumor microenvironment

To study the ubiquitination characteristics of plasma cells in the
HCC tumor microenvironment, we categorized plasma cells into
high- and low-ubiquitination groups based on ubiquitination scores
(Figure 4A). Plasma cells in the tumor group exhibited higher
ubiquitination levels compared to normal samples (Figure 4B).
Figure 4C shows the results of GSVA enrichment analysis,
revealing that ubiquitination affected physiological processes
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related to metabolism, inflammation, and the cell cycle. GO
enrichment and KEGG analysis showed that plasma cells with
high ubiquitination scores were active in ribosome biogenesis,
protein processing, and metabolic pathways (Figures 4D,F).
Figure 4E presents the results of KEGG enrichment analysis,
indicating that ubiquitination also significantly impacted the cell
cycle. In Figures 4G,H, we compared metabolic differences in
plasma cells under different ubiquitination states, finding that
metabolic pathways and cellular processes in plasma cells were

affected by ubiquitination in liver cancer. To examine the
prognostic effect of ubiquitination on HCC, we further analyzed
the expression levels of ubiquitination-related genes. Genes like
MKI67, UBE2C, and UBE2I were upregulated in samples with
higher ubiquitination levels, and ubiquitination-related genes
were also widely upregulated in tumor samples (Figures 4I,J).
Survival curves revealed that patients with high ubiquitination
levels had shorter OS and PFS compared to those with low
ubiquitination (Figure 4K, L).

FIGURE 2
Ubiquitination scoring, cell communication. (A) ubiquitination scoring bubble plot, horizontal coordinate indicates scoring method, vertical
coordinate indicates cell type, the lighter the color the higher the score. (B) umap plot of ubiquitination scoring results, displayed by tissue type. (C) violin
plot of the difference between ubiquitination scores of the normal group and tumor group, where “****” indicates a p-value <0.001 and “****” indicates a
p-value <0.0001, the more asterisks, the smaller the p-value, and the more significant the difference. (D): Chordal plot of cellular communication
based on ubiquitination level. (E): Hierarchical plot of cellular communication. (F): Scatter plot of intercellular signaling, with each point representing one
kind of cell and the horizontal and vertical axes indicate the ability of that kind of cell to send and receive signals, respectively.
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FIGURE 3
Hepatocyte characterization based on ubiquitination level Hepatocytes (A): umap plot of the distribution of hepatocytes with high and low
ubiquitination levels. (B): Difference in the percentage of hepatocytes with high and low ubiquitination levels in normal and tumor tissues. (C, D):
Metabolic heatmap of hepatocytes with high and low ubiquitination levels. (E): Hepatocyte copy number variability analysis results. (F): GO enrichment
analysis results plot. (G): KEGG enrichment analysis result graph. (H): Hepatocyte pathway comparison result between high ubiquitination level and
low ubiquitination level in tumor tissues. (I): Differential gene enrichment analysis of hepatocytes with high and low ubiquitination level. (J, K): KM curves
of overall survival and progression-free survival of hepatocytes under the difference of ubiquitination level. (L): Differential genes related to ubiquitination
of hepatocytes in normal tissues and tumor tissues.
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FIGURE 4
Plasma cell characterization based on ubiquitination level. (A), umap plot of plasma cell distribution under the difference of ubiquitination level. (B),
plot of high and low ubiquitination scores into the percentage of fibroblasts in normal and tumor tissues. (C), comparison of plasma cell pathways with
high ubiquitination scores and low ubiquitination scores in tumor tissues. (D), results of GO enrichment analysis. (E), results of KEGG enrichment analysis.
(F), results of high and low ubiquitination score plasma cells differential gene enrichment analysis. (G, H): metabolic heatmap of plasma cells with
high and low ubiquitination levels. (I): diagonal plot of differential genes of plasma cells with high versus low ubiquitination scores in tumor tissues. (J):
ubiquitination-associated differential genes of plasma cells in normal versus tumor tissues. (K, L): km curves of overall and progression-free survival for
plasma cells with high and low ubiquitination scores.
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FIGURE 5
Fibroblast characterization based on ubiquitination level (A) umap plot of the distribution of fibroblasts with high and low ubiquitination levels. (B)
plot of the percentage of fibroblasts with high and low ubiquitination levels in normal and tumor tissues. (C) comparison of fibroblast pathways in tumor
tissues with high and low ubiquitination levels. (D, E) metabolic heatmap of fibroblasts with high and low ubiquitination levels. (F) GO functional
enrichment analysis dot plot. (G) KEGG enrichment analysis dot plot. (H) Diagonal dot plot of fibroblast differential genes at high and low
ubiquitination levels. (I, J) Survival KM curves of fibroblasts with overall survival and progression-free survival under ubiquitination differences. (K)
Differential genes related to ubiquitination in fibroblasts in normal and tumor tissues.
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FIGURE 6
Endothelial cell characterization based on ubiquitination level. (A): Distribution of endothelial cells based on differences in ubiquitination level. (B):
Percentage of endothelial cells in normal vs. tumor tissues under differences in ubiquitination level. (C, D): Metabolic heatmap of endothelial cells with
high and low ubiquitination scores. (E): Comparison of endothelial cell pathways with high vs. low ubiquitination levels in tumor tissues. (F): Comparison
of endothelial cell pathways with high vs. low ubiquitination levels in tumor tissues. Level versus low ubiquitination level endothelial cell differential
gene diagonal dot plot. (G): KEGG enrichment analysis result plot. (H): GO enrichment analysis result plot. (I, J): Survival KM curves of endothelial cell
overall survival and progression-free survival under the difference of ubiquitination level. (K): Difference in expression of ubiquitinylation-related
differential genes in endothelial cells in normal and tumor tissues plot.

Frontiers in Pharmacology frontiersin.org11

Yang et al. 10.3389/fphar.2025.1545472

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545472


3.5 Fibroblast ubiquitination in tumor
microenvironment

To investigate the ubiquitination characteristics of fibroblasts in
the liver cancer tumor microenvironment, we classified fibroblasts
into high-expression (UbqhighFib) and low-expression
(UbqlowFib) groups based on ubiquitination scores (Figure 5A).
Fibroblasts in the tumor group exhibited significantly higher
ubiquitination levels compared to the normal group (Figure 5B).
Gene Set Variation Analysis (GSVA) enrichment analysis
(Figure 5C) highlighted the role of ubiquitination in key
biological processes, including oxidative phosphorylation and
apoptosis. Metabolic analysis revealed that high-ubiquitination
fibroblasts exhibited active metabolic pathways (Figures 5D,E).
GO and KEGG pathway analyses showed that high-
ubiquitination fibroblasts were involved in biological processes
such as small GTPase signaling, immune response, protein
autophagy, and chromatin regulation (Figure 5F). KEGG
enrichment analysis (Figure 5G) identified significantly affected
pathways in high-ubiquitination fibroblasts, including the cell
cycle, ubiquitin-mediated protein degradation, and apoptosis.The
volcano plot (Figure 5H) displayed the differential expression of
ubiquitination-related genes between the high- and low-
ubiquitination groups, with genes such as UBE2E2, UBE2C, and
UBE2E1 showing significant upregulation in the high-
ubiquitination group. Survival analysis revealed that patients with
high-ubiquitination fibroblasts had shorter overall survival (OS) and
progression-free survival (PFS), suggesting that high ubiquitination
may be associated with poor prognosis in liver cancer patients
(Figures 5I,J). Figure 5K shows that the expression levels of key
ubiquitination-related genes (e.g., UBE2E2, UBE2C, UBE2E1,
UBE2A) were significantly upregulated in the high-
ubiquitination group.

3.6 Endothelial cell ubiquitination in tumor
microenvironment

To explore ubiquitination in endothelial cells within the HCC
tumor microenvironment, we categorized endothelial cells into
high-expression (UbqhighEndo) and low-expression
(UbqlowEndo) groups based on ubiquitination scores
(Figure 6A). Analysis showed that endothelial cells in tumors had
higher ubiquitination levels compared to those in normal tissue
(Figure 6B). Metabolic heatmaps (Figures 6C,D) displayed the
enriched metabolic pathways in high and low ubiquitination
endothelial cells, linking ubiquitination to metabolic activity in
pathways like nitrogen metabolism, ketone synthesis, and amino
acid metabolism. GSVA enrichment analysis (Figure 6E)
demonstrated that ubiquitination influenced multiple biological
processes and signaling pathways, including oxidative
phosphorylation, cell cycle, inflammatory response, PI3K-Akt
signaling, and TGF-beta signaling. The volcano plot (Figure 6F)
indicated that genes like METTL7A were significantly upregulated
in the high-ubiquitination group. KEGG pathway analysis
(Figure 6G) showed significant enrichment in protein
degradation, TNF signaling, and NF-kappa B signaling pathways.
GO enrichment analysis (Figure 6H) further highlighted

ubiquitination’s potential role in immune regulation and cell
differentiation, affecting functions such as monocyte
differentiation, histone modification, and T cell differentiation.
Survival analysis (Figures 6I,J) revealed that patients with high-
ubiquitination endothelial cells had shorter OS and PFS, suggesting
that endothelial cell ubiquitination might be linked to poor
prognosis in HCC. Figure 6K presents key ubiquitination-related
genes (e.g., UBE2E2, UBE2J2, ATXN3, UBE2I) that were
significantly upregulated in high-ubiquitination endothelial cells,
emphasizing their potential role in regulating metabolism, signaling,
and immune functions, potentially affecting tumor progression and
patient prognosis.

3.7 EMT cell ubiquitination in tumor
microenvironment

To investigate the ubiquitination characteristics of epithelial-
mesenchymal transition (EMT) cells in the HCC tumor
microenvironment, we categorized EMT cells into high-
expression (Ubqhigh EMT) and low-expression (Ubqlow EMT)
groups based on their ubiquitination scores (Figure 7A). The
results demonstrated that EMT cells within tumors exhibited
significantly higher levels of ubiquitination compared to those in
normal tissues (Figure 7B). GSVA enrichment analysis (Figure 7C)
linked ubiquitination to a range of biological processes, including
metabolism, cell cycle regulation, and inflammation. Metabolic
pathway analysis (Figures 7D,E) revealed distinct enrichments in
metabolic pathways: the low-ubiquitination group showed activity
in glycosaminoglycan and fatty acid metabolism, while the high-
ubiquitination group was enriched in amino acid, carbohydrate, and
nucleotide metabolism. KEGG pathway analysis (Figure 7F)
indicated that high-ubiquitination EMT cells were particularly
enriched in cell cycle regulation, ubiquitin-mediated protein
degradation, DNA replication, and repair pathways, highlighting
the critical role of ubiquitination in EMT cell proliferation and
genomic stability.GO enrichment analysis (Figure 7G) further
highlighted ubiquitination’s importance in cell division and
genome regulation, with processes like chromosome segregation,
microtubule binding, spindle assembly, and DNA repair
prominently featured. The volcano plot (Figure 7H) showed
differential gene expression, with UBE2C and UBE2S
significantly upregulated in high-ubiquitination EMT cells.
Survival analysis (Figures 7I,J) indicated that patients with high-
ubiquitination EMT cells had significantly lower OS and PFS,
suggesting that EMT cell ubiquitination status might correlate
with poor prognosis in HCC. Figure 7J shows key ubiquitination-
related genes upregulated in high-ubiquitination EMT cells, further
emphasizing the specific role of ubiquitination in EMT cells.

3.8 Spatial transcriptomics and
ubiquitination in HCC

To further explore the ubiquitination characteristics in HCC, we
conducted deconvolution analysis on spatial transcriptomics data.
We downloaded spatial transcriptome sequencing data
(GSM6177612) from HCC tumor tissue sections derived from
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primary HCC tumor areas. After performing dimensionality
reduction and clustering of the spatial transcriptomic data, we
used UMAP for visualization, which generated seven distinct cell

clusters (Figures 8A,B). Figure 8C shows the spatial distribution of
all the identified cell clusters.We evaluated ubiquitination-related
gene scores for each cluster (Figure 8D) and analyzed metabolic

FIGURE 7
Characterization of effector memory T cells based on ubiquitination level. (A): EMT distribution map based on the difference of ubiquitination level.
(B): Percentage of EMT cells with high and low ubiquitination levels in normal and tumor groups. (C): Comparison of EMT cell pathways with high and low
ubiquitination levels in tumor tissues. (D, E): Metabolic heatmap of high and low ubiquitination levels of EMT cells. (F): KEGG enrichment. (G): Results of
the analysis of KEGG enrichment. (G): GO enrichment analysis result graph. (H): Diagonal dot plot of differential genes of EMT cells with high and low
ubiquitination levels in tumor tissues. (I, J): Survival KM curves of overall survival and progression-free survival of EMT cells under the difference of
ubiquitination levels.
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FIGURE 8
Differential expression and prognostic analysis of UBE2C. (A): Forest plot of hazard ratios and 95% confidence intervals for multiple genes, the
vertical dashed line at hazard ratio = 1 serves as a reference line and indicates no effect. Hazard ratios to the right indicate increased risk, and those to the
left indicate decreased risk. (B): Intersection of gene sets taken for each survival stage. (C): Differences in UBE2C expression between tumor and normal
tissues in the TCGA cohort. (D): Analysis of the paired differences in UBE2C expression between tumor and normal tissues in the TCGA cohort. (E):
Differences in UBE2C expression in TCGA cohort at high/low tumor grades. (F): Differences in UBE2C expression at various stages and prognostic analysis
in the TCGA cohort. (G): Differences in UBE2C expression at high/low tumor grades.UBE2C expression differences in each stage. (G): UBE2C expression
differences in tumor vs. normal group in GEO dataset. (H): Number of surviving vs. dead samples with different UBE2C expression levels performing chi-
square test. (I): Kaplan-Meier survival analysis of three survival stages (OS, DSS, PFI). (J): Kaplan-Meier survival of the four patient groups analysis, where
Q1 represents the 25% of samples with the highest expression and Q4 represents the 25% of samples with the lowest expression. (K): meta-analysis of
single-factor cox survival analysis for multiple datasets.
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FIGURE 9
Expression differences and prognostic analysis of UBE2C (A) Forest plot with hazard ratios and 95% confidence intervals for multiple genes, with the
vertical dashed line at hazard ratio=1 as a reference line, indicating no effect. A hazard ratio to the right indicates an increased risk, while a left hazard ratio
indicates a reduced risk. (B): Intersection of genes in each survival period. (C): Differences in the expression of UBE2C in tumors and normal tissues in
TCGA cohorts. (D): Paired analysis of the expression of UBE2C in tumors and normal tissues in the TCGA cohort. (E): Differences in the expression of
UBE2C in high/low tumor grades in TCGA cohorts. (F): Differences in the expression of UBE2C in each stage in the TCGA cohort. (G): Differential
expression of UBE2C in the GEO dataset between tumor and normal groups. (H): Chi-square test was performed on the number of surviving and dying
samples at different UBE2C expression levels. (I): Kaplan-Meier survival analysis for 3 lifetimes (OS, DSS, PFI). (J): Kaplan-Meier survival analysis of four
groups of patients, where Q1 represents the 25% of the samples with the highest expression and Q4 represents the 25% of the samples with the lowest
expression. (K): Meta-analysis of multi-dataset univariate COX survival analysis.

Frontiers in Pharmacology frontiersin.org15

Yang et al. 10.3389/fphar.2025.1545472

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1545472


differences, finding that clusters 0, 1, 2, and 7 exhibited high
metabolic activity (Figure 8E). The deconvolution analysis
provided single-cell annotation results at the spatial level (Figures
8F,G). We further analyzed the intensities of glycolytic and oxidative
phosphorylation pathways in different regions (Figures 8H,I) and
examined spatial cell proximity relationships, revealing cell
interaction signals at the spatial transcriptomic level (Figures 8J,K).

3.9 Prognostic value of ubiquitination-
related genes in HCC

To evaluate the prognostic significance of ubiquitination-related
genes in HCC, we analyzed key ubiquitination-related gene
expression in tumor versus normal samples, using TCGA and
GEO data to assess expression levels and their relation to patient

FIGURE 10
(A, B): Survival curves of different subgroups of UBE2C expression (C) Bar graph of KEGG enrichment analysis results.
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survival. Figure 9A shows the hazard ratios (HR) and p-values for
various ubiquitination-related genes (e.g., UBE2C, USP48, BRCA1,
CDCA3), indicating that high expression of these genes correlates
with an increased risk of tumor progression, suggesting their
potential role as prognostic markers in HCC. Figure 9B shows a
Venn diagram comparing DSS (disease-specific survival), OS, and
PFS, highlighting the significant role of UBE2C across survival
metrics. Violin and paired-difference plots (Figures 9C–F) display
UBE2C expression differences between normal and tumor tissues
and its expression trends across stages, with UBE2C significantly
upregulated in tumor and advanced-stage tissues, suggesting its
association with malignancy in HCC. Figure 9G shows the density
distribution of UBE2C in high- and low-expression groups, further
indicating its expression patterns in HCC. Survival differences based
on CHMP4B expression showed a significant association between
UBE2C expression levels and survival status (Figure 9H). Survival
curves (Figures 9I,J) indicated shorter OS, DSS, and PFS in high
UBE2C-expressing groups, supporting a link between high UBE2C
expression and poor prognosis. A meta-analysis of UBE2C in
various datasets (Figure 9K) using a random effects model
confirmed that high UBE2C expression significantly increased
HCC mortality risk (HR = 1.25), reinforcing its adverse impact
on prognosis.

Finally, we examined the impact of UBE2C expression levels in
conjunction with the activity of different cellular
components—specifically immune and stromal cells—on patient
survival outcomes. As illustrated in Figure 10A, the overall survival
(OS) curves reveal a distinct pattern: Patients with high UBE2C
expression and low immune activity exhibited the lowest survival
rates, whereas those with low UBE2C expression and high immune
activity demonstrated significantly higher survival. This suggests
that a combination of high UBE2C expression and low immune
activity may serve as a robust indicator of poor prognosis.Similarly,
Figure 10B presents the OS curves based on UBE2C expression and
stromal cell activity. Here, patients with high UBE2C expression and
high stromal activity had the lowest survival, while those with low
UBE2C expression and low stromal activity had higher survival
rates. This highlights the potential prognostic significance of UBE2C
in conjunction with stromal activity, further underscoring the
complex interplay between UBE2C, immune cells, and stromal
cells in influencing patient outcomes (Figure 10C).

3.10 Downregulation of UBE2C expression
level significantly inhibited the proliferation,
invasion and migration of hepatocellular
carcinoma cells

Considering the importance of UBE2C, we verified its role in
hepatocellular carcinoma through a series of in vitro experiments.
First, we reduced the expression of UBE2C and showed that
knockdown of UBE2C significantly inhibited the activity of
hepatocellular carcinoma cells by CCK8 assay (Figure 11A). To
investigate the relationship between UBE2C and hepatocellular
carcinoma migration, we performed a wound healing assay and
showed that knockdown of UBE2C significantly inhibited the
invasive migration of these cells (Figure 11B). To investigate the
correlation between UBE2C and hepatocellular carcinoma

proliferation, we performed a plate cloning assay, and the results
showed that knockdown of UBE2C significantly inhibited the
proliferative ability of hepatocellular carcinoma cells
(Figure 11C).Transwell assay also showed that UBE2C enhanced
the invasive migration of tumor cells (Figure 11D). Finally, CPATC
database and immunohistochemical analysis confirmed elevated
protein expression of UBE2C in these tissues (Figures 11E,F). In
conclusion, UBE2C enhances the invasive migration of
hepatocellular carcinoma cells and correlates with the malignant
features of hepatocellular carcinoma.

4 Discussion

In recent years, ubiquitination, a crucial post-translational
modification, has garnered increasing attention for its role in
liver cancer (HCC) (Lu et al., 2023; Hu et al., 2021; Liu F. et al.,
2024). Ubiquitination regulates protein stability, activity, and
subcellular localization by tagging target proteins with ubiquitin
chains, playing a pivotal role in various biological processes,
including cell cycle regulation, apoptosis, metabolic
reprogramming, and DNA repair (Sun et al., 2020; Cai et al.,
2018). The ubiquitin-proteasome system (UPS) is a key pathway
in many cancer cells, responsible for degrading tumor suppressor
proteins and promoting oncogene expression, making abnormalities
in ubiquitination a potential driver of HCC cells’ resistance to
conventional treatments (Liao et al., 2020). Dysfunctions in
deubiquitinating enzymes (DUBs) and E3 ligases in HCC cells
can lead to resistance to chemotherapy and targeted therapies
(Fang et al., 2023).

Our study systematically analyzed the role of ubiquitination in
the HCC tumor microenvironment, focusing on its expression
characteristics across different cell types (e.g., plasma cells,
fibroblasts, endothelial cells, EMT cells) and its association with
patient survival. Ubiquitination exhibited distinct functions in
various cell types. For example, plasma cells with high
ubiquitination showed significant activity in ribosome biogenesis,
protein processing, and metabolic pathways, suggesting that
ubiquitination may support HCC cell growth and survival
through these biological processes (Tang et al., 2022; Yang et al.,
2023). Similarly, active ubiquitination in fibroblasts may facilitate
tumor dissemination and invasion by promoting cell proliferation
and matrix remodeling. Moreover, the ubiquitination status of
endothelial and EMT cells was closely linked to cell cycle
regulation and DNA repair pathways, indicating that
ubiquitination may promote HCC progression in these cells by
enhancing cell proliferation and genome stability. Ubiquitination
participates in the process of angiogenesis by affecting the
proliferation, migration, and lumen formation of endothelial
cells. E3 ubiquitin ligases, such as ID1 (inhibitor of
differentiation 1), may regulate angiogenesis by modulating the
cell cycle of endothelial cells and signaling pathways related to
VEGF (vascular endothelial growth factor). Additionally,
ubiquitination plays an important role in the matrix remodeling
of endothelial cells, contributing to the stabilization and maturation
of newly formed blood vessels.These findings highlight the multi-
level regulatory role of ubiquitination within the HCC tumor
microenvironment, mediating various signaling pathways and
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biological processes across different cell types (Villalba et al., 2013).
Among ubiquitination-related genes, UBE2C emerged as a
significant prognostic predictor. UBE2C, a key E2 ubiquitin-
conjugating enzyme, was notably upregulated in HCC tissues and
strongly associated with poor patient prognosis. Our subgroup
analysis revealed that high UBE2C expression, in combination
with low immune activity or high stromal activity, significantly
decreased survival rates. This suggests that UBE2C may promote
tumor progression by inhibiting anti-tumor immune responses and
enhancing stromal cell activity (Zhang et al., 2018; Yuan et al., 2022).

Additionally, pathway enrichment analysis revealed that UBE2C
is involved in several critical pathways related to tumor growth and
progression, including cell cycle regulation, p53 signaling, DNA
damage repair, and metabolic control. These pathways are crucial
for tumor cell proliferation, genomic stability, and metabolic
reprogramming, further underscoring the central role of UBE2C
in the development of HCC (He et al., 2023). Immune analysis also
suggested that UBE2C may promote HCC progression through
multiple mechanisms. Overexpression of UBE2C could suppress
the anti-tumor immune response, impairing immune cells’ ability to

recognize and eliminate tumor cells, thus allowing tumor cells to
evade immune surveillance (Li et al., 2020). Moreover, high UBE2C
expression in stromal cells was linked to the remodeling of the tumor
microenvironment, suggesting that UBE2C may promote
angiogenesis and matrix remodeling by modulating the activity of
fibroblasts and endothelial cells, ultimately driving tumor invasion
and metastasis (Jin et al., 2020). These findings indicate that UBE2C
may serve as a promising therapeutic target in the treatment of
hepatocellular carcinoma (HCC). Given its high specificity in the
ubiquitination process as an E2 ubiquitin-conjugating enzyme, it is
feasible to develop inhibitors that specifically target the active site of
UBE2C. This targeted approach can minimize non-specific effects
on other cellular functions, thereby enhancing the efficacy of the
treatment. Furthermore, considering UBE2C’s significant role in
modulating the activity of immune and stromal cells within the HCC
microenvironment, combination therapies that incorporate
immune checkpoint inhibitors or stromal-targeting agents may
synergistically augment the effectiveness of UBE2C inhibitors.

Despite highlighting the critical role of ubiquitination in HCC,
our study has several limitations. Although this research utilizes data

FIGURE 11
In vitro experiments to validate the role of UEB2C in hepatocellular carcinoma. (A) CCK8 assay for cell viability of UEB2C. (B) Wound healing assay.
(C) Plate cloning assay. (D) Transwell assay (F) Transwell assay. (E) CTPAC database to verify the protein expression of UEB2C. (F) Protein expression of
UEB2C verified by IHC. * denotes p-value less than 0.05, *** denotes p-value less than 0.001.
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from public databases, providing a relatively large sample size, the
substantial heterogeneity among HCC patients may affect the
generalizability of our findings. Variations in tumor
characteristics and microenvironmental conditions across patients
could lead to differences in how ubiquitination impacts HCC
progression (Raevskiy et al., 2023). Additionally, public database
data often lack key clinical information, such as detailed disease
progression and treatment history, which may limit the accuracy
and clinical relevance of our analysis (Fan Y. et al., 2024; Pan et al.,
2024). Moreover, given that ubiquitination is a dynamic and highly
complex regulatory mechanism, future studies should consider
employing proteomic approaches, such as mass spectrometry, to
directly assess ubiquitination levels, offering a more precise
evaluation of its role in HCC.

5 Conclusion

In this study, we systematically investigated the role of
ubiquitination in the tumor microenvironment of hepatocellular
carcinoma (HCC), revealing its expression characteristics in
different cell types and its relationship with patient prognosis.
The findings suggest that the role of ubiquitination in
hepatocellular carcinoma progression is not only limited to the
regulation of cell cycle, apoptosis and metabolic pathways, but also
promotes tumor growth and metastasis by influencing tumor cell
proliferation, invasion and immune escape. For example, highly
ubiquitinated fibroblasts may promote tumor spread by promoting
cell proliferation and stromal remodeling, while highly
ubiquitinated endothelial and epithelial-mesenchymal transition
(EMT) cells promote HCC progression by regulating cell cycle
and DNA repair pathways.
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