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Objective: Population pharmacokinetic (PPK) model is capable of identifying the
factors that influence the variability of pharmacokinetic (PK) profiles and the
degree of their influence, effectively reduces unexplained variability, and
demonstrates excellent predictive ability. PPK model has been successfully
constructed in several populations for a variety of drugs. However, no study
has yet conducted a bibliometric analysis of publications related to the PPK
model. This study aims to provide a comprehensive overview of the research
progress and hotspots in the field of PPK model research through
bibliometric methods.

Methods: A systematic search of the Web of Science database was conducted to
collect articles and reviews related to the PPK model between 2000 and 2024.
We then analyzed the data using Bibliometrix R package, Microsoft Office Excel,
CiteSpace and VOSviewers.

Results: Between 2000 and 2024, we identified a total of 6,125 papers and
128,856 citations. The average annual growth rate of the relevant publications
was 10.35%, showing continued growth momentum. These research outputs are
concentrated in North America, Western Europe, and East Asia, with USA leading
the way with 2,340 publications and having the highest H-index (93) and total
citations (54,965). Uppsala University and British Journal of Clinical
Pharmacology are the institutions with the highest publication output and the
most influential journals, respectively. Most of the funding agencies are from the
USA and the subject categories for most publications are Pharmacology
Pharmacy. In terms of author contributions, professor Karlsson MO is the
leader in the field with 149 publications. In addition, wo found that “critically ill
patients,” “tacrolimus,” “machine learning,” “external evaluation,” “polymyxin b,”
“voriconazole,” “extracorporeal membrane oxygenation,” “dose optimization”
and “model-informed precision dosing” are current research hotspots and
future research trends.
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Conclusion: This study is the first comprehensive overview of the development of
PPKmodel and research hotspots using bibliometricmethods. Our findings provide
researchers, especially beginners, with insights into the application area of PPK
model, helping them to grasp key information in the field.

KEYWORDS

population pharmacokinetic model, bibliometrics, visualization analysis,
CiteSpace, VOSviewer

1 Introduction

The Population pharmacokinetic (PPK) model is an advanced
quantitative analysis tool that is primarily used to evaluate typical
Pharmacokinetics (PK) parameters and the between-subject
variability (BSV) and within-subject variability (WSV) in the
processes of drug absorption, distribution, metabolism, and
excretion (ADME). It also helps in identifying and quantifying
key covariates that affect population PK parameters, such as
demographic characteristics and biochemical indicators (Ette and
Williams, 2004). It is essentially a data-driven model that relies on
inputting a certain amount of clinical or experimental data into a
model and calculating that data to predict the behavioral patterns of
a drug in different individuals or groups of individuals (Goutelle
et al., 2022). Compared to the traditional PK approach, the PPK
model has significant advantages. The traditional PK approaches
typically require dense data (≥6 samples per participant), and these
sample data are usually screened through strict inclusion and
exclusion criteria elements to minimize BSV. This not only
increases the cost of the analysis, but also causes the
inconvenience to participants. In contrast, the PPK model can
handle sparse data (each participant only needs to provide one to
a few samples). Moreover, participants are generally closer to the
real population treated with the target medication, so the PPKmodel
can better estimate BSV while also being more cost-effective and
efficient (Ette and Williams, 2004; Kiang et al., 2012). In addition,
thanks to its ability to quantitatively describe the relationship
between drugs, organisms and diseases, the PPK model has been
widely used in a variety of practice areas such as the quantitative
design of clinical trials for new drugs, the optimization of clinical
dosage delivery, and the development of individual medication
regimens (Kleinberg, 2003; Kiang et al., 2012).

Over the past 20 years, the field of PPK model applications has
experienced sustained and measurable growth, and a large number
of relevant research results have been published in numerous
academic journals. However, the ensuing problem is that the
rapid growth in the number of publications makes it increasingly
difficult for researchers to keep abreast of the latest research
advances and findings in this PPK modeling research area in the
first instance. Although many reviews and meta-analyses of the PPK
model have been published, most of these studies have focused on
generalizing the model to specific populations or drugs (Peng et al.,
2022; Li X. et al., 2024; Yang et al., 2024). There is no comprehensive
analysis of PPK model application related research on development
trends, research hotspots, and future directions.

Bibliometrics has received widespread attention in recent years.
As a methodology that allows rapid quantitative and qualitative
analysis of scientific results and research developments,

bibliometrics plays a key role in assessing the quantity and
quality of publications, including books and journal articles
(Thompson and Walker, 2015; Tao et al., 2020; Romanelli et al.,
2021). Bibliometrics, through the use of statistical and mathematical
methods, is able to construct a knowledge map of a specific field of
research, thereby identifying trends in the development and
predicting future emerging trends within those fields (Thompson
and Walker, 2015; Wang et al., 2019; Li et al., 2020). It has been
shown that the visual analysis of the knowledge structure and
current research hotspots of a specific field can not only clearly
reveal the research progress and technological development path of
the field, but also provide a theoretical foundation and research
direction for future research in the field (Yang et al., 2021).

In this study, we will use bibliometric methods to conduct a
comprehensive analysis of publications with PPK model from
2000 to 2024. The analysis specifically covers a number of
aspects such as annual publications, countries, institutions,
authors, source journals, references and author keywords, all of
which will be presented through visualizations. Our aim is to sort out
trends in the number of publications on PPK model applications,
identify key contributors to the field (including countries, journals,
institutions, and authors), as well as reveal current research hotspots
and potential emerging topics that may be addressed in the future.
The kind of comprehensive analysis will provide valuable insights to
researchers new to the field and help them better understand the
current state of application and future direction of PPK modeling.

2 Methods

2.1 Data source and search strategy

Web of Science (WoS) is one of the most comprehensive and
authoritative databases of scholarly information in the world. It
contains more scientific publications than any other database, covers
over 12,000 high-quality journals, and provides detailed citation
records. As a result, WoS is by far the most commonly used database
for bibliometric research (Wu et al., 2021a; Pei et al., 2022). In our
study, all scientific publication data were derived from WoS,
ensuring the quality and reliability of the research materials.

We set the search strategy to TI = (“population
pharmacokinetic* model*” OR “PPK model*” OR “popPK
model*” OR “population PK model*” OR NONMEM OR “non-
linear mixed effects model*” OR “Model-informed Precision
Dosing”) OR AB = (“population pharmacokinetic* model*” OR
“PPK model*” OR “popPK model*” OR “population PK model*”
OR NONMEM OR “non-linear mixed effects model*” OR “Model-
informed Precision Dosing”) OR AK = (“population
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pharmacokinetic* model*” OR “PPK model*” OR “popPK model*”
OR “population PK model*” OR NONMEM OR “non-linear mixed
effects model*” OR “Model-informed Precision Dosing”). We then
excluded publications including meeting abstract, early access,
proceeding peer, correction, letter, editorial material, expression
of concern, retracted publication, book chapters, software review
and non-English words of literature types from the search results. It
is then exported as “full record and cited references” and saved in
plain. txt format (Wu et al., 2021b). Finally, these files were imported
into the CiteSpace software and then analyzed for duplicate
publications.

2.2 Data analysis and software tools

We used Bibliometrix R package (4.3.0) (Aria and Cuccurullo,
2017) and Microsoft Office Excel to analyze and report on basic
quantitative data such as the number of publications per year, the
number of publications per country and per institution, the
distribution of journals, the contribution of authors, and
citations. We also successfully extracted the Hirsch index
(H-index) (Ioannidis et al., 2019; Shen et al., 2022) of countries,
institutions, journals and authors using the “Citation Report”
function in the WoS database. Journal impact factor (JIF)
(Garfield, 2006; Atallah Á et al., 2020) and Quartile in category
(Q1, Q2, Q3 and Q4) were also captured in the 2023 Journal
Citation Report.

We used VOSviewer (veision 1.6.20) (van Eck and Waltman,
2010), CtieSpace (6.4. R1) (Synnestvedt et al., 2005; Chen et al.,
2014) and Origin 2024, three software programs frequently used in
bibliometrics, for visualization and analysis (Wu et al., 2021c).

VOSviewer is a powerful tool for extracting key parameters from
scientific publications to support analyses such as co-authorship, co-
citation, and co-occurrence (Yeung and Mozos, 2020; Wu et al.,
2021a). It provides a variety of intuitive visualization network view
options, including Basic Network Visualization, Overlay
Visualization, and Density Visualization. The software is known
for its easy-to-use process and the beauty of the generated graphics
(van Eck and Waltman, 2010). In this study, the software was
primarily used for country co-authorship analysis, institution co-
authorship analysis, author co-authorship analysis, author co-
citation analysis, and author keyword co-occurrence analysis.

Another widely recognized bibliometric software is CiteSpace,
developed by Chen. As one of the current mainstream tools for the
visual analysis of scientific literature, CiteSpace is widely used to
explore the knowledge structure, distribution, and development
trends in specific research fields. In our study, CiteSpace was
used to conduct timeline of the reference co-citation network, a
dual-map overly of scientific journals and identify the top
25 references with the strongest citation bursts. Additionally, the
software Origin was used to create the visualization map of
international collaboration analysis among different countries.

3 Results

The initial search conducted in the WoS database yielded
6,837 relevant publications. Following the implementation of
exclusion criteria, 712 records were systematically removed from
the analysis. Consequently, a total of 6,125 publications were
retained for final examination, comprising 5,841 research articles
and 284 review articles. A detailed schematic representation of the
inclusion/exclusion protocol is provided in Figure 1, which outlines
the complete selection workflow.

3.1 Global trend in publication outputs
and citations

The number of publications over a given period of time is an
important and meaningful indicator of the status and trends of the
field of study over that period of time. Figure 2A shows the global
trend in the annual number of PPK model-related publications and
citation from 2000 to 2024. Although the number of publications
fluctuates and declines at certain points in time, the decline is not
significant and the overall trend is upward. The average annual growth
rate was calculated on the basis of formula “[(number of documents in
the last year ÷ number of documents in thefirst year)1/(last year −first year) – 1] ×
100” (Guo et al., 2020) and resulted in 10.35%. The annual
publication output first exceeded 100 publications in 2004 and
surpassed 200 publications by 2012. Notably, a marked
acceleration in research productivity emerged from 2016 onward,
with annual publications exceeding 300 by 2018. Despite transient
declines observed in 2020 and 2023, scholarly output reached an
unprecedented peak in 2024 (n = 542), accounting for 8.85% of the
cumulative publications. As of 31 December 2024, the aggregated
citation count attained 128,856 citations (102,859 excluding self-
citations), with an average of 21.04 citations per publication. The
annual growth rate of citations is 33.96%.

FIGURE 1
Flowchart for the data selection process.
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3.2 Analysis of national publication volume
and cooperation

By systematically combing global publication data, we identified a
total of 108 countries that have published corresponding academic
literature in the field of PPK model research. Table 1 lists the top
10 countries with the most publications. The United States of America
have the most publications (2,340, 38.20%), followed by Netherlands
(814, 13.29%), the China (780, 12.73%), France (643, 10.50%), and
England (640, 10.45%). The United States of America not only
dominate in terms of the number of publications, but also in terms
of academic impact, with the highest H-index (93) and total citations
(TC) (54,965). For Average Citations per Item (ACI), Switzerland tops
the list with 36.69, followed by Swedenwith 35.55 and theAustralia with
29.48. Figure 2B shows the annual number of publications in the top
10 most productive countries. As can be seen in the figure, the United
States of America have maintained its leadership in the number of
publications in this area. China shows a significant growth trend in the
number of its publications from 2019. By calculating the average annual
growth rate, we find that China has the highest average annual growth
rate of 25.14%, followed by Netherlands (12.32%) and
England (11.28%).

Figure 2C visualizes how scientific cooperation between the top
30 countries in terms of the number of publications worldwide. The
line between countries represents the cooperative relationship
between two countries, and the thickness of the line reflects the
frequency of cooperation between countries. The United States of
America collaborated most frequently with other countries, working
most closely with England, the Netherlands, Switzerland, Germany,
and Canada, collaborating on 279, 228, 208, 162, and
148 publications, respectively. Figure 2D is an overlay
visualization map of country co-authorship analysis. Each node
in the network view represents a country, and the size of the node is
proportional to the number of publications. It is also marked with
different colors according to the average year of the country’s
emergence, with a gradual transition from dark purple to bright
yellow. The dark purple color indicates countries that have started
research in the field of PPK model earlier, while the bright yellow
color represents countries that are newer to the research. It can be
seen that China, Malaysia and India appear as bright yellow nodes in
the network view, indicating that these three countries are emerging
forces in research in the field of PPK modeling, and although their
research activities may have begun in a later year, they have quickly
established cooperative relationships with other countries.

FIGURE 2
(A) The global trend in the annual number of PPKmodel-related publications and citation from 2000 to 2024; (B) The annual number of publications
in the top 10 most productive countries; (C) Scientific cooperation between the top 30 countries in terms of the number of publications worldwide; (D)
Overlay visualization map of country co-authorship analysis generated by VOSviewer software.
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3.3 Analysis of institutional output and
cooperation

From the point of view of institutional contribution, about
5,428 institutions have conducted research related to the PPK model.
Table 2 lists the top 10 institutions with themost publications in the PPK
model application area. Uppsala University topped the list with
329 publications, followed by Leiden University and Erasmus MC
with 261 and 184 publications respectively. The total number of
publications from these 10 institutions represents 28.52% of the total
number of publications in the entire field of study. Seven of these
10 institutions are fromEurope, including five from theNetherlands and
one each from Sweden and France. The remaining three institutions are
from the United States of America, China and Australia. When
evaluating the two metrics, H-index and ACI, we found that Uppsala
University ranked first with an H-index of 54, followed by Erasmus MC
and Leiden University with 47 and 45 respectively. In terms of ACI,

Uppsala University came first with an ACI value of 42.82, followed by
Queensland University and Leiden University with 37.42 and
29.36 respectively.

In addition, in order to analyze in depth the cooperation between
institutions, we conducted an institution co-authorship analysis using
the Vosviewer software. As shown in Figure 3A, the figure presents a
visualization of institutions with at least 50 publications. There are a
total of 63 institutions in the network diagram and they are classified
into different clusters based on the strength of cooperation between
them. Nodes of the same color indicate that they belong to the same
cluster, and there are five clusters in the network graph, with the red
cluster having the highest number of institutions at 31. Figure 3B shows
the Overlay visualization map of institution co-authorship analysis,
from which nodes marked in dark purple can be identified, such as
Uppsala University, Queensland University, Pfizer and Suny Buffalo
institutions’ researchers were early participants in research related to the
PPKmodel. In contrast, researchers at institutions represented by nodes
assigned a bright yellow color, such as Capital Medicine University,
Fudan University, Shandong University and Certara, are likely to be
more recent participants in studies related to the PPK model.

3.4 Analysis of most funding agencies

Supplementary Figure S1 represents the top 10 funding agencies in
the PPK model research area, with the United States Department of
Health Human Services ranking first with 561 studies funded. Of these
10 agencies, four are from the United States of America, one each from
China, Australia, and England, and the rest are
pharmaceutical companies.

3.5 Analysis of article output and impact
of journals

In terms of publication journals, about 595 journals published
studies related to PPK model. Table 3 lists the top 10 journals with

TABLE 1 Top 10 countries with the most publications.

Rank Country Counts H-index TC ACI

1 United States of
America

2,340 93 54,965 23.49

2 Netherlands 814 66 20,891 25.66

3 China 780 35 7,679 9.84

4 France 643 57 15,811 24.59

5 England 640 57 14,871 23.24

6 Sweden 456 57 16,210 35.55

7 Germany 453 53 11,827 26.11

8 Australia 418 57 12,323 29.48

9 Switzerland 401 47 9,500 36.69

10 Japan 367 38 5,983 16.30

Abbreviations: ACI, average citations per item; TC, total citations.

TABLE 2 Top 10 institutions with the most publications.

Rank Institution, country Counts H-index TC ACI

1 Uppsala Univ, Sweden 329 54 14,087 42.82

2 Leiden Univ, Netherlands 261 45 7,662 29.36

3 Erasmus MC, Netherlands 184 47 4,126 22.42

4 Paris Cite Univ, France 167 40 4,225 25.30

5 Queensland Univ, Australia 154 44 5,762 37.42

6 Radboud Univ Nijmegen, Netherlands 140 29 2,865 20.46

6 Utrecht Univ, Netherlands 140 34 3,669 26.21

7 Fudan Univ, China 129 22 1,665 12.91

8 Certara, United States of America 123 19 1,465 11.91

9 Groningen univ, Netherlands 120 32 3,076 25.63

Abbreviations: ACI, average citations per item; TC, total citations.
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the most publications. The British Journal of Clinical Pharmacology
ranked first with 459 publications, followed by Antimicrobial Agents
and Chemotherapy and Clinical Pharmacokinetics with 430 and
415 publications respectively. For H-index and ACI, Antimicrobial
Agents and Chemotherapy ranked first with 59 and
32.06 respectively. It was followed by Clinical Pharmacokinetics
and British Journal of Clinical Pharmacology with H-index and ACI
of 57 and 27.04 and 51 and 25.40 respectively. Notably, Clinical
Pharmacokinetics had the highest JIF of 4.6 in 2023. In terms of
journal ratings, four journals were categorized as Q1 while among
the remaining journals categorized as Q2, Q3 and Q2/Q3 there were
2, 3 and 1 respectively. For the geographical distribution of journals,
the United States of America lead the way with five journals,
followed by England with two journals. New Zealand,
Switzerland and Germany contributed 1 journal each.

Figure 3C shows the dual-map overlay of academic journals,
which clearly depicts the distribution of topics in journals involved
in PPK model research. After importing the dataset into the atlas,
citation trajectories are produced, and they are visualized as colored
paths in the figure (Chen and Leydesdorff, 2014; Wang et al., 2024a).

This approach gives us a clear picture of the way knowledge flows
between different fields of study. The mapping shows the following
four core citation paths, with the green path indicating that most
articles published in Medicine/Medical/Clinical journals may tend
to cite articles published in Molecular/Biology/Genetics and Health/
Nursing/Medicine journals. Yellow paths indicate that most articles
published in Molecular/Biology/Immunology may tend to cite
articles published in Molecular/Biology/Genetics and Health/
Nursing/Medicine journals.

3.6 Analysis of the subject
categories analysis

In the WoS database, every article is categorized into at least one
subject category. Supplementary Figure S2 provides a visual
overview showing the top 10 subject categories in terms of
number of publications. We can see that the Pharmacology
Pharmacy subject category leads the way with 4,897 publications.
It is followed by Microbiology and Infectious Diseases with 785 and

FIGURE 3
(A)Network visualizationmap of institution co-authorship analysis generated by VOSviewer software; (B)Overlay visualizationmap of institution co-
authorship analysis generated by VOSviewer software; (C) The dual-map overlay of academic journals generated by CiteSpace software.
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498 publications respectively. This result indicates that PPKmodel is
mainly applied to the research area of Pharmacology Pharmacy.

3.7 Analysis of author’s article output,
cooperation and co-citation

The number of publications by authors is an important
indicator of how active they are in the academic field and how
much they contribute. In the study, more than 25,244 authors
contributed 6,125 scholarly articles. Table 4 lists the top 10 authors
with the most publications. Among them, Karlsson MO topped the
list with 149 publications, with an H-index of 32 and an ACI of

42.23. In second place was Knibbe CAJ with 96 publications with
an H-index and ACI of 35 and 35.24 respectively. Huitema ADR
was ranked third with 93 publications and its H-index and ACI
were 28 and 26.70 respectively. We find that European scholars
dominate the list, with seven authors on the list, five from the
Netherlands, one from Sweden and one from Belgium. Of the
remaining three authors, they are from China, Australia and the
United States of America.

Figure 4A shows the network visualization map of author co-
authorship analysis. There are 93 nodes in the network graph,
which are divided into 13 clusters including green cluster
dominated by Karlsson MO, blue cluster dominated by Knibbe,
CAJ and Allegaert K, purple cluster dominated by Huitema ADR

TABLE 3 Top 10 journals with the most publications.

Rank Journal Counts H-index JIF(2023) JRC
(2023)

Country TC ACI

1 British Journal of Clinical Pharmacology 459 51 3.1 Q2 England 11,657 25.40

2 Antimicrobial Agents and Chemotherapy 430 59 4.1 Q1 United States of
America

13,785 32.06

3 Clinical Pharmacokinetics 415 57 4.6 Q1 New Zealand 11,221 27.04

4 Journal of Clinical Pharmacology 395 40 2.4 Q3 United States of
America

7,056 17.86

5 Journal of Pharmacokinetics and
Pharmacodynamics

240 35 2.2 Q3 United States of
America

5,523 23.01

6 Therapeutic Drug Monitoring 221 35 2.8 Q2 United States of
America

4,616 20.89

7 European Journal of Clinical Pharmacology 198 35 2.4 Q3 Germany 4,351 21.97

8 Journal of Antimicrobial Chemotherapy 196 36 3.9 Q1 England 4,460 22.76

9 Cancer Chemotherapy and Pharmacology 166 33 2.7 Q2/Q3 United States of
America

4,020 24.22

10 Frontiers in Pharmacology 156 16 4.4 Q1 Switzerland 1,164 7.46

Abbreviations: ACI, average citations per item; TC, total citations.

TABLE 4 Top 10 authors with the most publications.

Rank Author CounAbbreviations: ts H-index TC ACI Institution and country

1 Karlsson MO 149 32 6,293 42.23 Uppsala University and Sweden

2 Knibbe CAJ 96 35 3,383 35.24 Leiden University and Netherlands

3 Huitema ADR 93 28 2,483 26.70 Utrecht University and Netherlands

4 Mathot RAA 85 23 1,803 21.21 Amsterdam University and Netherland

5 Beijnen JH 80 28 2,306 28.83 Netherlands Cancer Institute and Netherlands

6 Zhao Wei 68 21 1,401 20.60 Shandong University and China

7 Danhof M 66 32 2,300 34.85 Leiden University and Netherlands

8 Allegaert K 64 26 1,962 30.66 Leuven University and Belgium

9 Roberts JA 59 25 2,234 37.86 Queensland University and Australia

10 Vinks AA 55 21 1,565 28.45 Cincinnati University and United States of America

Abbreviations: ACI, average citations per item; TC, total citations.
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and yellow cluster dominated by Zhao Wei, etc. The authors
contained in each cluster collaborate more frequently with each
other. Figure 4B shows the Overlay visualization map of author co-
authorship analysis. To improve the readability and clarity of the
network map, we only show authors with at least 20 publications.
The entire network graph has 93 nodes, where the authors
represented by the dark purple nodes, such as Beijnen JH,
Karlsson MO, Urien S and Danhof M are the earlier participants
who carried out the research related to the PPKmodel. Whereas the
authors represented by the bright yellow nodes, such as Jiao Zheng,
Chen Xiao and Xu Hong may have been later participants in the
PPK model study. In addition, we performed authors co-citation
analysis. When two different authors, journals, or documents
appeared in the reference list of a third document at the same
time, it indicated that a co-citation relationship was established
between them (González-Alcaide et al., 2016). Figure 4C shows
network visualization map of author co-citation analysis, the
visualization network shows 115 authors who received at least
100 citations. These authors were categorized into five clusters
based on co-citation relationships. Among these authors, Beal SL
ranked first with 1,611 high citations followed by Sheiner LB,
Anderson BJ, Lindbom L and Bergstrand M with 1,119, 998,
883 and 772 citations respectively.

3.8 Analysis of highly-cited publications

Table 5 lists the top 10 cited publications, which were published
between 2000 and 2011, of which nine were original articles and one
was a meta-analysis. Each article had more than 200 citations, with
the two studies published by Lindbom L et al., in 2005 (Lindbom
et al., 2005) and 2004 (Lindbom et al., 2004) ranking first and second
in citations, specifically 940 and 603 citations, respectively. This was
followed by a study by Garonzik et al. (2011) published in 2011 with
587 citations. It is worth noting that the number of citations an
article receives typically increases over time, so studies published
earlier may receive higher citations due to longer dissemination
times. To more accurately assess the scholarly impact of each article,
we further analyzed the average annual citations of publications (Pei
et al., 2022). As can be seen from Table 5, the study by Lindbom L
et al. published in 2005 Lindbom et al. (2005) not only ranked first in
terms of citations, but its average annual citations were also the
highest in the list with 49.47 citations. It was followed by the studies
of Garonzik et al. (2011) and Savic and Karlsson (2009) with
45.15 and 31.33 citations, respectively. In summary, both in
terms of total citations and average annual citations reflect the
significant position and notable contribution of the study published
by Lindbom L et al., in 2005 to the PPK model.

FIGURE 4
(A) Netwrok visualization map of author co-authorship analysis generated by VOSviewer software; (B) Overlay visualization map of author co-
authorship analysis generated by VOSviewer software; (C) Network visualization map of author co-cotation analysis generated by VOSviewer software.
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3.9 Reference co-cited and burst analysis

High-frequency co-cited references often represent the
underlying knowledge base of a particular research area (Sabe
et al., 2023). Table 6 lists the top 10 cited references. Specifically,
four studies explored how to assess and improve the quality and
predictive performance of the PPK model (Sheiner and Beal, 1981;
Beal, 2001; Savic and Karlsson, 2009; Bergstrand et al., 2011). Four
studies outlined the commonly used auxiliary software used in the
construction of PPK models: Pirana, PsN and Xpose (Jonsson and
Karlsson, 1999; Lindbom et al., 2004; Lindbom et al., 2005; Keizer
et al., 2013). Of the remaining two studies, one study explored the
model used to describe the relationship between size and age and
pharmacokinetic parameters in premature neonates to young adults
(Anderson and Holford, 2008), and the other proposed a formula to
predict creatinine clearance from serum creatinine, namely, the
Cockcroft-Gault formula (Cockcroft and Gault, 1976). In
addition, we produced the timeline of the reference co-citation
network based on 1 year as the unit of time slice (2000–2024 as
the period), as shown in Figure 5A. The modularity Q is greater than
0.3 and the weighted mean silhouette S is greater than 0.5 or 0.7 to
ensure analytical reliability and accuracy (Chen et al., 2022).
According to the analysis, the modularity Q is 0.8248 and the
weighted mean silhouette S is 0.9279, indicating that the network

diagram is reasonable. The figure shows the main 19 clusters, with
high-dose carboplatin (#8) and thiotepa (#15) being the early
research themes in the field, while model-informed precision
dosing (#1), tacrolimus (#4), critically ill (#7), linezolid (#16) and
polymyxin b (#18) are current research hotspots.

Burst detection algorithm is a tool proposed by Kleinberg that
can identify references or keywords with a sharp increase in the
number of citations in a specific time period, which can effectively
reveal the research direction and hotspots in a certain period of time
(Kleinberg, 2003). In this study, we use burst detection algorithm to
analyze the references of PPKmodel related studies. Figure 5B shows
the top 25 references with the strongest citation bursts. The dark
blue line in the figure represents the sustained citation time span
from 2000 to 2024, while the red line indicates the duration of the
citation burst, and we set the minimum burst duration to 3 years.
The first co-citation burst appeared in 2001 as a result of research
published by Jonsson EN et al., in 1999 (Jonsson and Karlsson,
1999). The study demonstrates in detail the auxiliary software for
building PPK model: Xpose. It is noteworthy that the citation bursts
of five references last until 2024, which to some extent reflects the
research trends and hotspots in recent years. Two of these studies
focused on individualized dosage adjustment and therapeutic drug
testing of antimicrobials in critically ill patients (Abdul-Aziz et al.,
2020; Rybak et al., 2020), one study discussed individualized

TABLE 5 The top 10 cited publications.

Title Frist author Journal Year TC TC per
year

PsN-Toolkit - A collection of computer intensive statistical
methods for non-linear mixed effect modeling using
NONMEM

Lindbom L Computer Methods and Programs in Biomedicine 2005 940 49.47

Perls-speaks-NONMEM (PsN) - a Perl module for NONMEM
related programming

Lindbom L Computer Methods and Programs in Biomedicine 2004 603 30.15

Population Pharmacokinetics of Colistin Methanesulfonate
and Formed Colistin in Critically Ill Patients from a
Multicenter Study Provide Dosing Suggestions for Various
Categories of Patients

Garonzik SM Antimicrobial Agents and Chemotherapy 2011 587 45.15

Importance of Shrinkage in Empirical Bayes Estimates for
Diagnostics: Problems and Solutions

Savic RM AAPS Journal 2009 470 31.33

Implementation of a transit compartment model for describing
drug absorption in pharmacokinetic studies

Savic RM Journal of Pharmacokinetics and
Pharmacodynamics

2007 402 23.65

Population Pharmacokinetic Analysis of Colistin
Methanesulfonate and Colistin after Intravenous
Administration in Critically Ill Patients with Infections Caused
by Gram-Negative Bacteria

Plachouras D Antimicrobial Agents and Chemotherapy 2009 381 25.40

Computing normalised prediction distribution errors to
evaluate nonlinear mixed-effect models: The npde add-on
package for R

Comets E Computer Methods and Programs in Biomedicine 2008 375 23.44

Relationship between exposure to sunitinib and efficacy and
tolerability endpoints in patients with cancer: results of a
pharmacokinetic/pharmacodynamic meta-analysis

Houk BE Cancer Chemotherapy and Pharmacology 2010 361 25.79

A randomized comparison of native Escherichia coli
asparaginase and polyethylene glycol conjugated asparaginase
for treatment of children with newly diagnosed standard-risk
acute lymphoblastic leukemia: a Children’s Cancer Group
study

Avramis VI Blood 2002 353 16.05

Population pharmacokinetics of propofol: A multicenter study Schuttler J Anesthesiology 2000 299 11.96

Abbreviation: TC, total citations.
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TABLE 6 The top 10 co-cited reference.

Title Author Year Journal Citations

Prediction-corrected visual predictive checks for diagnosing
nonlinear mixed-effects models

Bergstrand M 2011 AAPS Journal 638

Prediction of creatinine clearance from serum creatinine Cockroft DW 1976 Nephron 540

PsN-Toolkit - A collection of computer intensive statistical methods
for non-linear mixed effect modeling using NONMEM

Lindbom L 2005 Computer Methods and Programs in Biomedicine 541

Xpose--an S-PLUS based population pharmacokinetic/
pharmacodynamic model building aid for NONMEM

Jonsson EN 1999 Computer Methods and Programs in Biomedicine 536

Mechanism-based concepts of size and maturity in
pharmacokinetics

Anderson BJ 2008 Annual Review of Pharmacology and Toxicology 384

Ways to fit a PK model with some data below the quantification
limits

Beal SL 2001 Journal of Pharmacokinetics and Pharmacodynamics 368

Some suggestions for measuring predictive performance Sheiner LB 1981 Journal of pharmacokinetics and biopharmaceutics 356

Perls-speaks-NONMEM (PsN) - a Perl module for NONMEM
related programming

Lindbom L 2004 Computer Methods and Programs in Biomedicine 338

Modeling and Simulation Workbench for NONMEM: Tutorial on
Pirana, PsN, and Xpose

Keizer RJ 2013 CPT Pharmacometrics Systems Pharmacology 261

Importance of shrinkage in empirical bayes estimates for diagnostics:
problems and solutions

Savic RM 2009 AAPS Journal 254

FIGURE 5
(A) Timeline of the reference co-citation network by Citespace software; (B) Visualizationmap of top 25 referenceswith the strongest citation bursts
by Citespace software; (C)Network visualizationmap of authors’ keywords co-occurrence analysis by VOSviewer software; (D)Overlay visualizationmap
of authors’ keywords co-occurrence analysis by VOSviewer software.
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precision dosing of tacrolimus and therapeutic drug monitoring in
various types of transplant patients (Brunet et al., 2019), one study
explored the model-informed precision dosing in practice with
possible scientific challenges (Keizer et al., 2018), and 1 study
evaluated the predictive performance of 31 established PPK
models for vancomycin using Bayesian methods for external
evaluation (Broeker et al., 2019). In addition, we observe that
although the citation explosion period for most of the references
has ended, they are still widely cited in subsequent times, suggesting
that the PPK model is still widely followed among academics.

3.10 Keyword co-occurrence analysis

Keyword co-occurrence analysis is an effective method that can
reveal the distribution of hotspots in a particular research area
(Zheng et al., 2022). Figure 5C network visualizationmap of authors’
keywords co-occurrence analysis. We set the threshold for the
number of co-occurrences to be greater than 20, and identified a
total of 84 keywords after removing meaningless keywords and
merging keywords with the same meaning. The size of the nodes in
the network graph is directly proportional to the frequency of
occurrence of the keywords, and the thickness of the connecting
lines between the nodes represents the frequency of co-occurrence
between the keywords. The keywords in the network diagram are
categorized into six clusters, each of which is primarily related to a
specific patient population and the therapeutic agents they use. The
largest red clusters focus on keywords related to antimicrobials and
critically ill populations, such as “critically ill patients,” “sepsis,”
“meropenem,” “extracorporeal membrane oxygenation” and
“polymyxin b,” among others. This is closely followed by the
green cluster, which is the second largest, with keywords mainly
related to autoimmune diseases and their therapeutic drugs,
including “monoclonal antibody,” “inflammatory bowel disease,”
“rheumatoid arthritis” and “infliximab.” The third largest blue
cluster is mainly related to transplantation and covers
“tacrolimus,” “kidney transplantation” and “hematopoietic stem
cell transplantation” and so on. The yellow cluster comes next
and is mainly related to psychiatric disorders, covering keywords
such as “epilepsy,” “lamotrigine” and “valproic acid.” Finally, the
purple and light blue clusters are mainly associated with hemophilia
and HIV patients. Figure 5D shows the overlay visualization map of
authors’ keywords co-occurrence analysis, by observing the color
change of keyword nodes, we can identify the average time of
occurrence of each keyword. The results reveal an evolutionary
pattern of research hotspots. Specifically, between 2010 and 2014,
the research hotspots appear to be “clearance,” “cyclosporine” and
“propofol”; between 2015 and 2016, “bayesian forecasting” and
“drug-drug interaction” received significant attention, while
specific therapeutic areas such as “hiv,” “epilepsy,” “monoclonal
antibody” and “methotrexate” are targeted for research; between
2017 and 2019, research focus has shifted to special populations
include “children,” “critically ill patients,” “neonate” and “kidney
transplantion,” while drugs such as “vancomycin” and “tacrolimus”
are also receiving continued attention; notably, keywords that
appear on average after 2020, such as “machine learning,”
“external evaluation,” “polymyxin b,” “voriconazole,”
“extracorporeal membrane oxygenation,” “dose optimization,”

and “model-informed precision dosing” are likely to dominate
the development process of this field in the next 5–10 years, and
this trend is highly compatible with the current rapid development
of precision medicine and artificial intelligence technology.

Additionally, to delve deeper into the specific populations and
medications that receive the most attention in the PPK model field,
we have listed the top 15 groups or drugs in terms of frequency of
occurrence. Table 7 show that children are the most popular group
with 494 occurrences. This was followed by “critically ill patients”
and “neonate,” with 169 and 109 occurrences, respectively. In terms
of specific drugs, “vancomycin” appeared most frequently, with
161 occurrences. It was followed by tacrolimus and meropenem,
with 133 and 60 occurrences, respectively. These data reveal key
focuses in PPK model studies, especially in terms of drug dose
optimization and treatment strategies for specific populations.

4 Discussion

With the rapid development of network technology, the
application of PPK model in the field of medicine is getting more
and more attention. In this review, we used bibliometric methods to
analyze scientific publications related to PPK model applications
between 2000 and 2024, and visualized the research progress and
future trends in the field of PPK model applications to the
academic community.

Our study shows a steady increase in the number of annual
publications and citation frequency. After analyzing the main
countries involved in the research, we found that the countries
conducting the research were concentrated in North America,
Western Europe, and East Asia. Of these, the United States of
America are the highest producer, with a publication count of
2,340, far exceeding that of other countries, and it also boasts the
highest H-index (93). The leading position of the United States in
terms of publication volume is attributed to its advanced
technologies, state-of-the-art equipment, professional researchers,
sufficient research funding, and robust policy support. The analysis
of funding agencies indicates that four agencies from the United
States of America among the top ten funding bodies have collectively
supported 1,382 research projects, accounting for 22.56% of the
total. Additionally, the U.S. Food and Drug Administration (FDA)
in its 2022 Population Pharmacokinetics Guidance for Industry
encourages researchers to adopt PPK models in areas such as
new drug applications (NDAs) and biologics license applications
(BLAs). In addition, six of the top ten countries by publication
volume are from Europe, having collectively published 3,407 papers,
which accounts for more than half of the total. This highlights
Europe’s significant contribution to the field of PPK model research.
It is also noteworthy that the number of publications fromChina has
increased significantly in recent years, making a substantial
contribution to global research output. This trend is likely closely
related to China’s rapid development in the field, increased research
investment, and advancements in relevant technologies. Although
China ranks second in publication volume, its ACI is 9.84,
significantly lower than that of other countries. This may indicate
that while the number of publications has increased, there is still a
need to enhance the quality and impact of these publications. In
addition to the significant impact of economic and policy factors on
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the growth of publication volume in this field, improvements in relevant
technologies have also played a crucial role. For example, the
development of modeling platforms and the advancement of model
diagnostic tools. Besides the widely used and earliest developed software,
NONMEM (Beal and Sheiner, 1980), several new modeling platforms,
such as Monolix, Phoenix NLME, and mrgsolve, were developed
around 2010. These software programs are easier to learn and use
compared to NONMEM. In terms of model diagnostic tools, the
introduction of methods such as the prediction-corrected visual
predictive check and normalized prediction distribution error has
significantly enhanced the verifiability and reliability of PPK models.
Additionally, the growing emphasis on personalizedmedicine in clinical
practice is another important factor contributing to the development of
this field (Goetz and Schork, 2018). In terms of international
collaboration, the United States of America have the most frequent
partnerships with other countries. However, current international
cooperation is mainly concentrated between developed European
countries and the United States of America. Therefore, we believe
that future efforts should focus on strengthening international
collaboration, particularly by involving more countries, including
developing nations. This will help promote the overall development
of the PPK model research globally.

Regarding publishing institutions, Uppsala University stands
out with 329 publications, far surpassing other institutions. In
addition to its large volume of publications, the institution also
maintains high research quality, with five of its studies ranking
among the top 10 most-cited publications (Lindbom et al., 2004;
Lindbom et al., 2005; Savic et al., 2007; Plachouras et al., 2009; Savic
and Karlsson, 2009). Furthermore, two studies published by the
institution in 2008 and 2009 are also noteworthy (Ahn et al., 2008;
Bergstrand and Karlsson, 2009). In clinical or preclinical research,
certain low-dose or rapidly eliminated drugs often result in drug

concentrations below the quantification limit (BQL). If these data
are not appropriately handled, it can lead to significant bias in model
estimation. Therefore, these two studies validated the applicability of
different BQL handling methods in complex model structures,
laying the foundation for the subsequent standardization of BQL
modeling practices. Additionally, we observed that although the
United States of America and China rank first and third in
publication volume worldwide, only one institution from each of
these countries is listed among the top 10 institutions by publication
count, while the Netherlands has five institutions in the top 10. This
intriguing phenomenon may suggest that institutions conducting
PPK model research in the Netherlands are relatively concentrated
and limited in number, while research institutions in the United
States of America and China are more dispersed and numerous.
Regarding institutional collaboration, Figure 3A shows that
although five institutions in China contributed a substantial
number of publications, their collaboration with other
institutions is relatively limited, with current collaborations
mainly focused on institutions in the United States of America
and Western Europe. This indicates that Chinese research
institutions lack sufficient academic exchange with foreign
institutions, and future efforts should focus on strengthening
collaboration with other institutions. Enhancing cooperation can,
to some extent, break down academic barriers and improve research
competitiveness and article quality. In summary, both national and
institutional analyses show that China is one of the most active
countries in the field of PPK modeling in recent years. It is
reasonable to speculate that Chinese influence in this field will
continue to grow.

In terms of journal impact, the top 10 journals by publication
volume account for 46.96% of the publications in this field. Based on
three key metrics—publication volume, H-index, and ACI—British

TABLE 7 Top 15 groups/drugs with the highest frequency of occurrence.

Rank Keywords (group) Occurrence Rank Keywords (drug) Occurrence

1 children 494 1 vancomycin 161

2 critically ill patients 169 2 tacrolimus 133

3 neonate 109 3 meropenem 60

4 KT 94 4 methotrexate 51

5 HIV 75 5 busulfan 44

6 epilepsy 69 6 cyclosporine 40

7 infants 63 7 gentamicin 38

8 obesity 53 8 mycophenolic acid 38

9 tuberculosis 49 9 infliximab 36

10 sepsis 43 10 piperacillin 35

11 HSCT 43 11 propofol 35

12 CRRT 41 12 valproic acid 33

13 LT 37 13 voriconazole 32

14 pregnancy 32 14 linezolid 32

15 rheumatoid arthritis 32 15 sirolimus 30

Abbreviations: CRRT, continuous renal replacement therapy; HSCT, hematopoietic stem cell transplantation; KT, kidney transplantation; LT, liver transplantation.
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Journal of Clinical Pharmacology, Antimicrobial Agents and
Chemotherapy, and Clinical Pharmacokinetics are undoubtedly
the core journals in the field of PPK modeling research. We
therefore recommend that researchers prioritize the submission
of their research results to these journals and reasonably predict
that these journals will publish more outstanding and high-quality
scholarly articles in the future. It is noteworthy that the top
10 journals all originate from the United States of America and
European countries. Although two East Asian countries, China and
Japan, have also contributed a great deal of research in this field,
Asian journals are not yet represented in the top 10 journals. This
phenomenon suggests that in the future, Asian countries, especially
China and Japan, should commit themselves to enhance the
development and construction of international journals in order
to increase their academic influence in this field.

After analyzing the authors, we found that many scholars have
carried out extensive research in the field of PPK model, and
different authors show significant diversity in their research
interests. Among the top ten authors by publication volume,
Karlsson MO’s number of publications far exceeds that of other
authors. In addition to developing multiple PPK models, he has also
published two influential studies that have had a profound impact
on model development and evaluation. Specifically, in his
2007 study, he compared the performance of the lag time model
(LAG model) and the transit compartment model (TRANSIT
model), concluding that the TRANSIT model is an ideal
alternative to the LAG model when the latter poorly describes
drug absorption or is numerically unstable (Savic et al., 2007). In
his 2009 study, he investigated the impact of individual parameter
bias on overall mean shrinkage (η-shrinkage) and residual error
shrinkage towards zero (ε-shrinkage) in graphical diagnostics based
on Empirical Bayes Estimates (EBEs) (Savic and Karlsson, 2009).
The results indicated that when η-shrinkage and ε-shrinkage exceed
20%–30%, EBEs-based diagnostic plots may fail and become
misleading. Therefore, when using these diagnostic plots,
shrinkage values should be reported, and if the values are too
high, more robust methods such as simulation diagnostics and
conditional weighted residuals (CWRES) should be used. As
shown in Figure 4A, the collaboration between Huitema ADR,
and Beijnen JH is particularly close, with their research primarily
focusing on the pharmacokinetics of monoclonal antibodies and
cancer-related drugs. Furthermore, in 2008, they published the first
systematic report on the PPK model of miltefosine in leishmaniasis
patients, laying a significant foundation for subsequent research in
this field (Dorlo et al., 2008). As for the other authors, the
collaboration between Knibbe CAJ, Allegaert K, and Danhof M is
particularly close. These three professors have focused on
pharmacokinetics research in three special populations: children,
infants, and neonates. Among their contributions, a study involving
Professor Knibbe CAJ first systematically developed a PPK model
for anti-thymocyte globulin in pediatric hematopoietic stem cell
transplantation (Admiraal et al., 2015). In another study, she
established the first PPK model for paracetamol spanning from
preterm neonates to adults, providing a theoretical foundation for
age-specific dose adjustments (Wang et al., 2014). Additionally, she
and Professor Allegaert K developed the first PPK model for
propofol in both preterm and term neonates, clearly identifying
postmenstrual age (PMA) and postnatal age (PNA) as key covariates

influencing variability in clearance (Allegaert et al., 2007). In
summary, these three professors have significantly advanced the
individualization and precision of pediatric drug therapy. Mathot
RAA has made significant contributions to the development of PPK
models related to blood coagulation factors. In a study he
participated in 2016, the first PPK model for factor Ⅷ in
hemophilia A patients during the perioperative period was
developed, and this model is expected to evolve into an
important tool for clinical dose decision-making (Hazendonk
et al., 2016). Roberts JA has made significant contributions to the
pharmacokinetics of antibiotics in critically ill patients. In 2009, he
established a PPK model for meropenem using 222 plasma
concentration samples, and for the first time compared the
effects of intermittent bolus dosing and continuous infusion on
the subcutaneous tissue and plasma concentration-time profiles in
critically ill patients receiving meropenem (Roberts et al., 2009),
Additionally, he used Monte Carlo simulations to model different
dosing regimens for intermittent bolus, extended infusion, and
continuous infusion, evaluating the cumulative fraction of
response (CFR) for meropenem against common Gram-negative
pathogens in the intensive care unit. The results indicated that
continuous infusion, compared to intermittent bolus dosing,
maintained higher subcutaneous tissue and plasma
concentrations, and for less sensitive pathogens, extended or
continuous infusion dosing achieved a higher CFR than
intermittent bolus dosing. In addition, regarding author co-
citation analysis, it is worth mentioning the pioneers Sheiner LB
and Beal SL. Sheiner LB formally introduced the concept of
population analysis in 1972 and first analyzed clinically sparse
data and accessed population pharmacokinetic profiles in
1977 using digoxin as an example of a nonlinear mixed-effects
modeling theory (Sheiner et al., 1977). Subsequently, in 1980,
Sheiner LB and Beal SL successfully developed the first
population pharmacokinetic-pharmacodynamic calculation
software, NONMEN. From its successful development until
today, the software has undergone many improvements and
upgrades, and has now become the most widely used analytical
tool in the field of PPK model. The successful development of
NONMEN software marks an important step from theory to
practice in population pharmacokinetics.

Among the top 10 most-cited publications, five studies explored
the auxiliary software needed during model development, how to
improve model performance, and how to evaluate models. In the
remaining studies, two established PPK model for critically ill
patients. In a 2009 study by Plachouras D et al., the first PPK
model describing the in vivo process of colistin methanesulfonate
(CMS) and colistin in critically ill patients was developed
(Plachouras et al., 2009). The results suggested that the standard
dose of CMS during this period might lead to insufficient early
exposure to colistin, and they recommended considering a loading
dose regimen for dose optimization. Similarly, Garonzik SM et al.
also established a PPK model for this drug in critically ill patients
(Garonzik et al., 2011). They found that creatinine clearance (CrCL)
and body weight were key covariates influencing drug clearance and
distribution volume, respectively. Based on Monte Carlo
simulations, they modeled dosing regimens for patients receiving
intermittent hemodialysis, continuous renal replacement therapy
(CRRT), and those not undergoing dialysis, and developed the first
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dosing recommendations for CMS in critically ill patients
undergoing extracorporeal renal therapies. These two studies
provide important guidance for the individualized treatment of
CMS. In 2010, Houk BE et al. used six clinical datasets on
sunitinib and employed a meta-analysis combined with a PPK
model to systematically quantify the relationship between
sunitinib exposure and its efficacy/adverse reactions (Houk et al.,
2010). The results showed that sunitinib exposure levels were closely
associated with treatment outcomes. Higher drug exposure was
found to extend time to tumor progression (TTP) and overall
survival (OS), while the adverse reactions were mostly mild to
moderate and manageable. Furthermore, in 2002 and 2000,
Avramis VI et al. and Schuttler J et al., respectively using
propofol and pegaspargase as representatives, employed PPK
modeling methods combined with PK/PD analysis strategies,
laying the theoretical foundation for the development of target-
controlled infusion systems and the dose optimization of enzyme-
based anticancer drugs (Schüttler and Ihmsen, 2000; Avramis et al.,
2002). The studies mentioned above have provided standardized
procedures in the application of NONMEM software, covariate
modeling strategies, and combined pharmacokinetic simulations,
which hold significant theoretical and practical value for subsequent
individualized dosing research. These studies have greatly advanced
the practical application of PPK models in clinical pharmacology
and new drug development.

Over the past few decades, researchers have developed many
PPK models for a wide range of populations with different
physiopathological states. We utilized authors’ keywords co-
occurrence analysis to help us identify populations and drugs
that have received focused attention in this area. Our results
indicate that special populations, such as children, critically ill
patients, and those undergoing organ transplantation, seem to
receive more attention from researchers. This is not surprising, as
infants and children are in a phase of growth and development, with
many organs not yet fully mature, and their physiological conditions
and metabolic processes are continuously changing. As a result,
pediatric dosing is more complex than adult dosing. Critically ill
patients are characterized by the fact that their physiopathological
state is quite different from that of ordinary patients, and is usually
accompanied by multi-system involvement, multi-organ failure, and
rapid changes in condition. Organ transplant patients, on the other
hand, are characterized by large surgical trauma and susceptibility to
infectious complications in the early postoperative period, and in the
early post-transplantation period when organ function has not yet
fully recovered, certain drugs metabolized by the liver and kidneys
may be different from those of normal patients. Therefore, it is
particularly important to establish a PPKmodel in these populations
to assist in finding more rational and effective dosing in
clinical practice.

In terms of specific drugs, the top 15 most frequently mentioned
drugs are mainly focused on three categories: antimicrobial agents,
immunosuppressants, and anticancer drugs. Among these,
antimicrobial agents occupy six positions, indicating researchers’
special attention to antimicrobial drugs. Vancomycin and
tacrolimus appeared significantly more frequently than other
drugs and became the focus of researchers’ attention.
Vancomycin is the first-line drug used in clinical practice to treat
methicillin-resistant coagulase-negative staphylococci (MRCNS)

and methicillin-resistant Staphylococcus aureus (MRSA).
However, it has a narrow therapeutic index, may lead to specific
nephrotoxicity and ototoxicity with prolonged or high dose use, and
its pharmacokinetics show great individual variability (Rybak, 2006;
Zhao et al., 2014). Tacrolimus, on the other hand, is now widely used
as a drug for organ rejection after transplantation. However, it is
characterized by poor oral bioavailability, narrow therapeutic
window and large inter-patient pharmacokinetic differences, so it
may lead to adverse reactions, such as nephrotoxicity, during
treatment (McDiarmid et al., 1993; Jacobo-Cabral et al., 2015).
In summary, we found that researchers preferred to focus on
populations with rapidly changing disease and large inter-
individual variability in PK parameters, as well as drugs with
large pharmacokinetic differences and narrow therapeutic windows.

In addition, we identified current research hotspots in the field
of PPK model. The results of the reference co-citation analysis and
co-citation burst analysis indicate that researchers currently seem to
focus more on establishing PPK models for antimicrobial drugs in
critically ill patients and developing PPK models for tacrolimus in
transplant patients. In addition, the use of external evaluation to
assess the predictive performance of PPK models seems to be one of
the recent focuses of researchers. In the overlay visualization map of
authors’ keywords co-occurrence analysis, we found that
“extracorporeal membrane oxygenation (ECMO)” is an emerging
trend for future research. Critically ill patients often already have
altered pharmacokinetics, and the use of ECMO systems may
further affect the pharmacokinetic properties of patients.
Specifically, ECMO can increase cardiac output and tissue
perfusion thereby potentially altering the volume of distribution
and clearance of drugs. The ECMO circuit also adsorbs drugs,
especially those with lipophilic, low molecular weight and high
protein binding properties, thereby decreasing drug plasma
concentrations (Kriegl et al., 2024). However, current results on
whether ECMO-assisted therapy affects the pharmacokinetics of
drugs in patients are inconsistent, suggesting that more research is
needed to address this issue in the future.

In addition, voriconazole and polymyxin b are also future trends
in research. Voriconazole is a broad-spectrum triazole antifungal
drug, which is commonly used in the clinic for the prevention or
treatment of invasive fungal infection (IFI), but its therapeutic
window is narrow, with large inter-individual and intra-
individual variations, and a high incidence of adverse reactions,
including hepatotoxicity and neurotoxicity (Ashbee et al., 2014).
According to a review published by Shi CC et al., in 2019 (Shi et al.,
2019), although inflammatory markers [e.g., C-reactive protein
(CRP)], CYP3A4, the combination of various types of proton
pump inhibitors and glucocorticoids, as well as various types of
body weight markers [ideal body weight (IBW) and adjusted body
weight (ABW)] have been demonstrated to affect voriconazole
blood concentrations, only one study (Mangal et al., 2018)
succeeded in including pantoprazole as a covariate in the model,
and the rest of the abovementioned influences could not be included
as covariates in the model for reasons that are not yet known
(Mangal et al., 2018). Although three studies have successfully
included CRP as a covariate in their models since the publication
of this review, these studies have limitations (Jiang et al., 2022;
Takahashi et al., 2022; van den Born et al., 2023). Therefore, future
studies should consider trying to add the above influences as
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covariates to the model. Polymyxin b is commonly used in clinical
practice as a last resort for the treatment of multidrug-resistant
Gram-negative bacterial infections. Through a review published by
Wang X et al., in 2024, it was noted that the covariates of PPKmodel
on polymyxin b were mainly related to creatinine clearance, body
weight, albumin, age, Sequential Organ Failure Assessment (SOFA)
score, and continuous renal replacement therapy (CRRT), but
results varied across studies, possibly due to reasons including
small sample size, mostly single-center studies, and patient
homogeneity (Wang et al., 2024b). We therefore expect that
prospective, multicenter, large sample size studies will be
conducted in the future to further clarify the effects of these
covariates and optimize the clinical use of polymyxin b.

In recent years, the emerging concept of model-informed
precision dosing (MIPD) has attracted a lot of attention from
researchers. PPK model is regarded as a core tool for realizing
MIPD. Currently, most implementations of MIPD are primarily
based on the PPK model and patient-specific information (such
as plasma concentration, previous medication records, and
patient characteristics), and then use Bayesian methods to
predict individual patients’ PK parameters and drug
concentrations. Several studies have demonstrated the ability
of the MIPD approach to improve the success rate of reaching
therapeutic goals compared to dosing methods based on
instructions guidance or based on standard therapeutic drug
monitoring (TDM) (Abulfathi et al., 2018; Gastmans et al.,
2022; Lu et al., 2022; Lloberas et al., 2023; Shi et al., 2023).
Along with MIPD, external evaluation has also garnered
attention, and the two are closely related. Simply put, external
evaluation involves assessing the predictive performance of a
model using a dataset independent of the one used to build the
model. It is considered a very valuable and crucial step in
determining whether a PPK model can be applied to clinical
practice (Moons et al., 2012). In recent years, numerous studies
have been devoted to the external validation of established PPK
models (Broeker et al., 2019; Cheng et al., 2021; Corral Alaejos
et al., 2022; Cheng et al., 2024). The central aim of external
evaluation is to test the generalizability and extrapolation of the
model across different populations, as well as to explore whether
differences between different clinical settings may affect the
broad applicability of the model. In addition, the difficulty of
obtaining blood samples from certain specific populations limits
modeling, and models that are externally validated with good
extrapolation performance can save the time and cost required to
build models in these populations. However, the results of most
studies indicate that only a few models exhibit satisfactory
predictive performance. This phenomenon may stem from the
fact that models developed on specific populations are difficult to
generalize to other populations due to pathophysiological
differences, or due to the small size of patient samples used in
constructing the models. The results of Broeker A et al. showed
that models constructed based on large heterogeneous patient
databases had the best predictive performance (Broeker et al.,
2019). Utilizing large heterogeneous patient data may help
models to better account for inter-individual differences.
Therefore, we suggest that researchers should include large-
scale patient population data as much as possible when
constructing models in the future to enhance the

generalization ability and prediction accuracy of the models.
In addition, we have observed a growing interest among
researchers in applying machine learning (ML) techniques to
PPK models. The main advantage of ML is its ability to process
and analyze large amounts of data and to mine the intrinsic
features of the data. Several studies have now shown that ML
methods based on PPK models are more accurate and stable in
terms of model prediction performance than PPK model
methods alone (Li G. et al., 2024; Tang et al., 2024; Wang Y.
P. et al., 2024). Therefore, we suggest that researchers explore the
method of combining PPK model with ML techniques in future
studies, with a view to further improving the model’s prediction
ability and application scope.

5 Limitation

Compared with traditional review articles, our study provides
a comprehensive and quantitative analysis of research priorities,
hotspots, and trends in the field of PPK model applications, an
approach that helps scholars gain a deeper understanding of
developments in the field. However, our study also has some
limitations. First, due to the limitations of the analysis software,
we only included publications from the WoS database. Second,
the number of citations to a publication is affected by time, with
earlier publications usually receiving higher citations, so some
excellent research may not receive the recognition it deserves
because of its relatively short publication time. Finally, our use of
different literature analysis software may have resulted in
missing information, which in turn affected the accuracy of
the results. Despite these limitations, our study provides a
comprehensive survey of hot topics and trends in the field of
PPK modeling, providing valuable insights for current and
future research.

6 Conclusion

This study provides the first comprehensive bibliometric
analysis of PPK model-related publications between 2000 and
2024. Our findings reveal the rapid development of the PPK
model worldwide and the growing interest of researchers in it.
Through keyword co-occurrence analysis and reference co-
citation analysis, we identified the research hotspots and
emerging trends in the field, and the results showed that the
research was mainly concentrated in the fields of antibacterial
drugs, immunosuppressants and antitumor drugs. Patient
populations for ECMO-assisted therapy, voriconazole, polymyxin
b, external evaluations, machine learning and MIPD are emerging
trends. Although PPK models offer new possibilities for optimizing
therapeutic drug dosage and enabling individualized treatment,
there is still some variation in the PPK models established in
existing studies. We believe that models constructed using
population data that are prospective, densely sampled,
multicenter, and encompass large, heterogeneous patient
populations may be more effective at revealing inter-individual
differences, reducing model uncertainty, and enhancing the
predictive power of the model to address the above issues. In

Frontiers in Pharmacology frontiersin.org15

Yao et al. 10.3389/fphar.2025.1548023

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1548023


addition, it has been shown that ML has a positive effect in
enhancing the predictive power of PPK model, so we recommend
the use of incorporating ML in future research. This study provides
researchers, especially beginners, with insight into the applied
research field of PPK model.
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