
Natural compounds: new
therapeutic approach for
inhibition of Streptococcus
mutans and dental caries

Milad Kashi1, Mahdieh Varseh2, Yasaman Hariri 1, Zahra Chegini3*
and Aref Shariati4*
1Student research Committee, Arak University of Medical Sciences, Arak, Iran, 2Student Research
Committee, Khomein University of Medical Sciences, Khomein, Iran, 3Department of Microbiology,
School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran, 4Infectious Diseases
Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran

Streptococcusmutans is recognized as one of the leading causes of dental caries,
and biofilm formation by this bacterium plays a key role in dental plaque
development and caries progression. Given the increasing resistance of
bacteria to antibiotics and the adverse effects of some synthetic
antimicrobials, the search for natural alternatives has received increasing
attention. The recently published studies have demonstrated that natural
compounds (NCs) such as curcumin, cinnamaldehyde, eugenol, thymol,
carvacrol, epigallocatechin gallate, farnesol, catechin, inulin, menthol,
apigenin, myricetin, oleanolic acid, and resveratrol, have notable antimicrobial
properties and can effectively inhibit the growth of Streptococcus mutans. NCs
can disrupt bacterial membrane integrity, leading to cell death, and possess the
capability to inhibit acid production, which is a key factor in caries development.
NCs can also interfere with bacterial adhesion to surfaces, including teeth. The
attachment inhibition is achieved by decreasing the expression of adhesion
factors such as gtfs, ftf, fruA, and gbpB. NCs can disrupt bacterial metabolism,
inhibit biofilm formation, disperse existing biofilm, and interfere with quorum
sensing and two-component signal transduction systems. Moreover, novel drug
delivery platforms were used to enhance the bioavailability and stability of NCs.
Studies have also indicated that NCs exhibit significant efficacy in combination
therapies. Notably, curcumin has shown promising results in photodynamic
therapy against S. mutans. The current review article analyzes the
mechanisms of action of various NCs against S. mutans and investigates their
potential as alternative or complementary therapeutic options for managing this
bacterium and dental caries.
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Introduction

Dental caries is a prevalent chronic infectious disease affecting the teeth’ hard tissues.
Dental caries and its sequelae can aggravate or trigger systemic disorders, significantly
diminishing the quality of human life. Dental caries has a complicated etiology; two primary
causative variables are the regular intake of free sugars and the metabolic activity of certain
commensal, tooth-adherent bacteria. Numerous oral microbes generate organic acids
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through the metabolism of fermentable carbohydrates. These acids
lower salivary pH, leading to the demineralization of tooth tissue. A
notable diversity of microbe species linked to dental caries has been
identified, including Streptococcus mutans, the most prevalent
bacterium observed in individuals with dental caries (Bhaumik
et al., 2021).

This bacterium is a Gram-positive, facultative anaerobic, and
catalase-negative bacterium that generates lactic acid and can lower
the environmental pH from seven to 4.2 within approximately 24 h.
Furthermore, it can ferment and create acids from carbohydrates,
including glucose, lactose, and raffinose, which is why it is identified
as the primary pathogen in the onset of dental caries. This bacterium
can degrade carbohydrates and synthesize glucan, which is crucial
for interacting with dental structures (Lemos et al., 2019).
Carbohydrates like sucrose are metabolized to create intracellular
and extracellular polysaccharides. The synthesis of extracellular
polysaccharides (EPS) facilitates bacterial adherence and
accumulation on the tooth surface, resulting in structural
alterations such as enhanced porosity in dental biofilms (Liu
et al., 2018; Lemos et al., 2019).

To endure the challenging conditions of the human oral cavity,
S. mutans and other oral microorganisms establish a highly
structured microbial consortium known as a biofilm (Marsh and
Zaura, 2017). Biofilm is a complex structure composed of aggregated
microbial cells and microbially produced extracellular polymeric
substances (Marsh and Zaura, 2017).

Following initial adhesion, bacteria such as S. mutans begin to
grow and synthesize extracellular polymeric substances, forming a
stable three-dimensional community that incorporates pathways to
distribute nutrients, oxygen, and signalling chemicals efficiently.
This bacterium substantially enhances biofilm formation via both
sucrose-dependent and sucrose-independent mechanisms. The
sucrose-dependent mechanism mostly depends on the
extracellular glucose transferase. Streptococcus mutans secretes
three extracellular glucose transferases: GtfB, GtfC, and GtfD.
GtfB primarily generates viscous, water-insoluble polysaccharides
from sucrose, whereas GtfC produces a combination of insoluble
and soluble polysaccharides from sucrose. GtfD mainly catalyzes the
conversion of sucrose into soluble polysaccharides. The sucrose-
independent mechanism involves contact between the sticky
particles of S. mutans and the acquired enamel pellicle.
Agglutinins present in saliva facilitate the adherence and
aggregation of S. mutans by their interaction with the I/II
antigen, a multifunctional PI adhesin that is anchored in the
bacterial cell wall and encoded by the spaP gene (Bowen and
Koo, 2011; Krzyściak et al., 2014).

Numerous techniques exist for addressing oral and dental
ailments, including non-surgical and surgical interventions and
adjuvant therapies such as antibiotics. Although antibiotics are
helpful, excessive dependence on them might result in the
emergence of resistant bacterial strains, diminishing their potency
over time. Furthermore, broad-spectrum antibiotics can disturb the
normal equilibrium of the oral microbiota, potentially resulting in
opportunistic infections or other oral health complications (Serino
et al., 2001; Ryan, 2005). To this end, certain plants without
undesirable side effects have demonstrated more efficacy than
manufactured medications in preventing dental caries (Malvania
et al., 2019). The natural compounds derived from various plant

components, including roots, leaves, and fruits, have distinct
medical effects when subjected to alterations (Rangel et al., 2018).
Most antibacterial compounds in plants often encompass
flavonoids, phenols, alkaloids, and organic acids (Shad et al.,
2014). Multiple studies have indicated that managing dental
biofilm is essential for preventing tooth decay. Quorum sensing
(QS) is a crucial virulence regulator in cariogenic biofilms. Biofilm
generation relies on the signal-mediated QS system. Plant extracts
can block QS genes, disrupting biofilm formation (Choi et al., 2017;
Balhaddad et al., 2019). In addition, these compounds also inhibit
glucosyltransferase, which is crucial in creating water-insoluble
glucan, preventing the development of cariogenic biofilms
(Yabuta et al., 2018; Farkash et al., 2020).

Because of its consistently high frequency and exorbitant
treatment costs, dental caries continues to be a significant
problem with significant long-term health, economic, and societal
effects (Hescot, 2017; Kassebaum et al., 2017). To this end, finding
new therapeutic approaches for managing S. mutans-associated
dental caries is necessary. In the present review article, we will
discuss the interactions of natural compounds with S. mutans to
improve the scientists’ knowledge of using these compounds for
managing dental caries.

Curcumin

Curcumin is an orange-yellow pigment in the rhizome of
Curcuma longa and demonstrates a broad spectrum of medicinal
actions, including antibacterial and antiseptic properties
(Supplementary Table S1) (Kashi et al., 2024). Studies have
investigated and confirmed the antibacterial properties of
curcumin against S. mutans (Song et al., 2012; Hu P. et al.,
2013). For instance, one study reported that curcumin’s
minimum inhibitory concentration (MIC) against S. mutans was
64 μM (Ke et al., 2023). This bacterium metabolizes carbohydrates,
resulting in medium acidity. Streptococcus mutans markedly alters
the fatty acid composition of its membrane in response to ambient
acidity, implicating fatty acid metabolism (Baker et al., 2017).
Curcumin can affect fatty acid, carbon and pyruvate metabolism
in S. mutans. These metabolic pathways are crucial for the bacteria’s
survival as they are its principal energy sources (Guzmán-Flores
et al., 2024). Curcumin also influences DNA replication and the
metabolism of purines and pyrimidines in S. mutans. Modifying
these metabolic pathways will likely lead to bacterial mortality
(Guzmán-Flores et al., 2024). Notably, a primary virulence
component of S. mutans is the unique lipid composition of its
membrane, which varies with pH; thus, curcumin modulates the
molecules implicated in the lipid response (Guzmán-Flores
et al., 2024).

As mentioned, S. mutansmetabolises carbohydrates, generating
an acidic microenvironment in tooth plaque. Therefore, this
bacterium must have a mechanism for enduring acidic
environments. The enzyme F-ATPase regulates cytoplasmic
pH by extruding protons from the cytoplasm in acidic
environments (Sekiya et al., 2019). A study reported that the
expression of the F-ATPase gene in S. mutans was increased in
acidic environments (Kuhnert et al., 2004). However, researchers
proposed that this enzyme is non-essential for bacterial proliferation
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under neutral circumstances. Curcumin significantly diminished the
ATPase activity of S. mutans F-ATPase and suppressed the
proliferation of this bacterium at pH 5.3. The data demonstrated
that S. mutans exhibited significant sensitivity to F-ATPase
inhibitors in acidic environments, highlighting the critical
function of F-ATPase in the acid tolerance of this bacterium
(Sekiya et al., 2019). Moreover, a study revealed that the atpH
gene, which encodes subunit C of the F-ATPase enzyme, was
downregulated in S. mutans following curcumin treatment (Li
et al., 2018). Thus, curcumin can impede the acid tolerance
capacity of S. mutans and likely diminish its cariogenic
characteristics (Galvão et al., 2015). Alongside acid stress,
oxidative stress constitutes a primary environmental obstacle
encountered by S. mutans in the oral environment (Galvão et al.,
2015). This bacterium exhibited susceptibility to hydrogen peroxide
(H2O2), which is generated through the metabolic processes of other
species in dental plaque (Higuchi et al., 1999). Exposure to elevated
concentrations of H2O2 and its deleterious byproducts, hydroxyl
and superoxide anions, can induce irreversible cellular damage. Spx,
comprising two homologues, SpxA1 and SpxA2, regulates the
transcription of nearly all principal activated oxidative stress
response genes in S. mutans (Baker et al., 2014; Kajfasz et al.,
2017; Ganguly et al., 2020). Ke et al. found that curcumin
treatment increased SpxA1 and SpxA2 levels, perhaps leading to
increased H2O2 generation through the activation of oxidative stress
response genes (Ke et al., 2023). All these effects that occur in the
bacteria when exposed to curcumin can lead to growth inhibition
and cell death.

In addition, curcumin can impede biofilm formation and
markedly affect the biofilm development of S. mutans (Ke et al.,
2023). This compound diminished the quantity of viable and total
bacteria within the biofilm and decreased the biofilm’s thickness.
The diminution in biofilm thickness would result in the alteration of
the three-dimensional structures of the biofilm, potentially
impacting the cariogenicity of S. mutans (Li B. et al., 2020).
Furthermore, curcumin prevented the biofilm development of S.
mutans by disrupting EPS (Bottner et al., 2020). This compound can
significantly reduce the amounts of EPS in biofilm and destroy the
structure of EPS in the short term, decreasing the EPS biomass (Li
et al., 2018; Li et al., 2019; Li B. et al., 2020). Furthermore, the
expression of gbpB was downregulated after curcumin treatment (Li
et al., 2018; Li B. et al., 2020). Bacterial aggregation is a crucial factor
in the production of EPS, facilitated by interactions among surface-
associated glucan-binding proteins (GbpBs) that stick to glucan,
thus enhancing plaque formation (He et al., 2012). The absence or
mutation of the gene encoding GbpB leads to alterations in cell
morphology and a deceleration of growth. The mentioned change
inhibits the proper formation of biofilm, which results from
irregular cell clusters encased in a matrix of atypical structure
(Duque et al., 2011). The inhibitory effect of curcumin on EPS
and GbpB can significantly decrease biofilm formation.

Curcumin can downregulate the expression of rgpG, scrAB, gtfB,
gtfC, gtfD, ftf and fruA (Li et al., 2018; Li et al., 2019; Li B. et al., 2020;
Ke et al., 2023). As previously mentioned, the Gtfs are essential
enzymes for bacteria to utilize sucrose and form glucan. Reduced
gtfB, gtfC, and gtfD expression disrupts GbpB-mediated bacterial
aggregation (Li B. et al., 2020). RgpG is a protein associated with the
cell envelope that is implicated in the biofilm development of

S. mutans (De et al., 2017). A loss in the rgpG gene leads to a
significant decrease in cell surface antigens and substantial
abnormalities in cell shape and division without affecting growth
(De et al., 2017; Bischer Andrew et al., 2020). RgpG-deficient
mutants showed elongated chains of inflated “Square” developing
cells and produced less biofilms irrespective of the carbohydrate
source. Curcumin downregulated rgpG, indicating that it influences
cell division and diminishes biofilm formation via targeting rgpG
(De et al., 2017). Furthermore, both ftf and fruA expressions were
dysregulated following short-term exposure to curcumin.
Fucosyltransferase (FTF) is an enzyme that catalyzes the
conversion of sucrose into extracellular homopolymers of
fructose, known as fructans. FTF, derived from the fruA gene, is
an exo-β-d-fructosidase that liberates fructose from β(2.6)- and
β(2.1)-linked fructans, as well as cleaving fructose from sucrose
and raffinose (Li et al., 2018). Consequently, the quantity of fructans
synthesized by the bacterium is markedly diminished after treatment
with curcumin. This reduction diminished the bacterium’s capacity
to adhere, hindering its effective utilization of sucrose as an energy
source (Li et al., 2018). There is a decreasing tendency in the VicR
expression of S. mutans after curcumin treatment (Li et al., 2018).
VicR functions as a response regulator by binding to the promoter
regions of the gtfB, gtfC, and ftf genes, thereby activating these genes
and promoting biofilm formation (Senadheera et al., 2005).
Therefore, the reduction of VicR negatively impacts the biofilm
formation process. In the end, the scrA gene in the phosphotransferase
system (PTS) of S. mutans encodes a high-affinity permease that
facilitates the internalization of sucrose. Subsequently, intracellular
sucrose-6-phosphate is initially hydrolyzed by ScrB, a sucrose-6-
phosphate hydrolase, yielding fructose and glucose-6-phosphate (Li
et al., 2018). The scrAB genes were downregulated in the presence of
curcumin, diminishing the availability of sucrose and its derivatives
within the cell. This alteration impacts biofilm formation, as sucrose is
a primary energy source and nutrient for establishing S.
mutans biofilms.

QS systems play a crucial role in regulating biofilm development
and activating virulence factors in various bacteria, making them an
attractive target for combating biofilm infections. Two extensively
researched QS systems exist in S. mutans: the competence-
stimulating peptide-QS (CSP-QS) system, which comprises a
competence-stimulating peptide (encoded by comC), a histidine
kinase sensor protein (encoded by comD), and a cognate
response regulator (encoded by comE). This system facilitates
intraspecies cell-cell communication and positively regulates the
expression of biofilm-related genes such as gtfB, gtfC, and gbpB in S.
mutans. The second system is the LuxS system, which catalyzes the
synthesis of the signaling peptide Autoinducer 2 (AI-2) to mediate
interspecies and intraspecies interactions within the multispecies
plaque community (Li et al., 2018; Li et al., 2019). To this end,
recently published studies reported that curcumin may reduce the
number of viable bacteria in the biofilm and diminish the biomass of
EPS in S. mutans biofilm by suppressing the expression of the LuxS
system and ComCDE system (Li et al., 2018; Li et al., 2019).

Consequently, as previously stated, curcumin has demonstrated
encouraging efficacy against S. mutans. Nonetheless, the low water
solubility, inadequate stability, rapid clearance rate, and restricted
bioavailability of curcumin have constrained its clinical utilization
(Hu et al., 2023). In recent years, nanodrugs delivery technologies
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have been extensively employed across diverse domains.
Nanoparticles can be engineered to induce drug release under
various conditions, ensuring that drugs remain unaffected by pH,
enzymes, and other variables. Nanoparticles effectively enhance the
accessibility of water-insoluble or sparingly soluble bioactive
compounds. Hazzah et al. synthesized and analysed curcumin
solid lipid nanoparticles (CurSLN) to manage oral mucosal
infections. CurSLN had superior antibacterial efficacy to raw
curcumin and chemically stabilized curcumin, demonstrating a
MIC of 0.09375 mg/mL against S. mutans (Hazzah et al., 2015).
In another study, a bio-nanocomposite comprising carboxymethyl
starch (CMS), chitosan (CS), and montmorillonite (MMT) was
formulated for the delivery of curcumin. The curcumin-loaded
bionanocomposite significantly inhibited biofilm growth in dental
models (Jahanizadeh et al., 2017). Moreover, researchers assessed
the mechanical characteristics and antibacterial efficacy of varying
doses of Curcumin-Nisin-poly (L-lactic acid) nanoparticles
(CurNisNps) incorporated into orthodontic acrylic resin against
S. mutans and Candida albicans. The study results demonstrated
significant anti-biofilm efficacy of the synthesized platform against
microorganisms throughout a 60-day follow-up period.
Furthermore, CurNisNps substantially diminished the expression
levels of gtfB (Pourhajibagher et al., 2022). Hence, in recent years,
nanotechnology has revolutionized the properties of materials.
Researchers have increased its pharmacokinetics properties and
antimicrobial activity by incorporating curcumin into
nanocarriers, leading to more effective infection treatments.

Photodynamic therapy (PDT) is a therapeutic approach that
utilizes visible light with photosensitizers (PS) or dyes. The PS
attaches to the target cell membrane and, when exposed to
visible light at a specific wavelength (unique to each PS), induces

the generation of various reactive oxygen species (ROS), including
singlet oxygen, which triggers a cascade of biological events
resulting in apoptosis of cells or the death of microorganisms
(Paulino et al., 2005; Paschoal et al., 2015). Curcumin
predominantly absorbs light in the wavelength range of
400–500 nm; therefore, a suitable light source must be utilized
when employing curcumin as a PS (Figure 1) (Table 1) (Paschoal
et al., 2013). The application of curcumin in an in vivo study
revealed no burning sensation, mouth discomfort, or ulcers
(Araújo et al., 2012b). In this regard, a study examined the
differential impacts of nanomicelle curcumin-based PDT
(NMCur-aPDT) on the microbial population and pathogenicity
of S. mutans. The results indicated that the antibacterial and anti-
virulence efficacy of NMCur-aPDT against S. mutans surpassed
that of the other treatment groups, and the gene expression level of
gtfB diminished (Hosseinpour-Nader et al., 2022). Moreover, Hu
et al. engineered a liposome with adhesive characteristics to
transport curcumin into the biofilm. This research demonstrated
that curcumin can be released from the liposome near the biofilm,
exerting an antibacterial impact by dispersing the biofilm under blue
light irradiation (Hu et al., 2023). Therefore, PDT, curcumin, and
novel drug delivery systems provide an innovative approach to
treating bacterial infections, especially S. mutans.

Curcumin has shown significant antibacterial activity against
S. mutans, influencing bacterial metabolic pathways and
reducing its acid tolerance capacity. This compound also
possesses anti-biofilm properties that can affect all stages of
biofilm formation. As a photosensitizer, curcumin exerts its
antibacterial effects by generating ROS. However, considering
its limited pharmacokinetic properties, innovative drug delivery
platforms can be employed to enhance its effectiveness.

FIGURE 1
Schematic illustration of the mechanism of curcumin as a photosensitizer in PDT. When curcumin is excited by light irradiation, it converts O2 into
reactive oxygen species, which causes bacterial death by affecting the membrane and DNA. Cur: curcumin.
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Cinnamaldehyde

Cinnamaldehyde is a bioactive chemical extracted from
cinnamon bark, recognized for its varied effects, including
antifungal and antibacterial characteristics (Kashi et al., 2024).
Researchers have lately shown interest in utilizing the
antibacterial properties of cinnamaldehyde to tackle S. mutans
(Sharma et al., 2016; de Almeida et al., 2020; Ngokwe et al.,
2024). In one study, the minimum bactericidal concentration
(MBC) values of trans-cinnamaldehyde against planktonic S.
mutans were reported to be 1728 μg/mL. At this concentration,
trans-cinnamaldehyde also caused a 50% reduction in biofilm
metabolic activity (Ribeiro et al., 2018). The hydrophobic
properties of cinnamaldehyde facilitate its contact with the cell
membrane of S. mutans (Ribeiro et al., 2018). Furthermore, the

topological polar surface area (TPSA) < 40 Å2 reported for
cinnamaldehyde suggests it may possess a favourable capacity for
permeating cell membranes, as only compounds with TPSA >140 Å2

often exhibit poor permeability (Veber et al., 2002). Highly
hydrophobic chemicals are typically associated with increased
toxicity, and the cytoplasmic membrane frequently serves as the
principal target for antimicrobial activity. Lipophilic substances
exhibit a strong affinity for cell membranes via altering the
physicochemical properties of the membrane (Figure 2) (Ribeiro
et al., 2018).

Cinnamaldehyde can interfere with carbohydrate metabolism,
glycolysis, pyruvate metabolism, and the tricarboxylic acid (TCA)
cycle, as well as arginine, tryptophan, and proline metabolism of S.
mutans. Researchers speculate that the primary mechanism of
action of cinnamaldehyde against S. mutans is targeting pyruvate

TABLE 1 Curcumin-based photodynamic therapy for inhibition of Streptococcus mutans.

Study model Bacteria Light source Outcome References

PDT using curcumin S. mutans and Lactobacillus acidophilus Blue light (450 nm) PDT was effective in reducing bacteria in
planktonic cultures

Araújo et al. (2012a)

Photodynamic antimicrobial effect of
curcumin

S. mutans ATCC 700610 White light
(42 J/cm2)

The PACT groups demonstrated a
bacterial decrease exceeding
5 log10 relative to the control

Paschoal et al. (2014)

PDT using curcumin S. mutans and L. acidophilus LED (5.7 J/cm2) A remarkable decrease in cell viability
was detected in the biofilm community

Araújo et al. (2014)

PDT using curcumin S. mutans ATCC 2517 and clinical
isolate

Blue LED (450 nm) PDT showed a significant antibacterial
effect on S. mutans standard strain and a
less pronounced impact on its clinical

isolate

Tonon et al. (2015)

Photoinactivation effect of curcumin S. mutans, Streptococcus sanguinis and
Candida albicans

White light
(90 mW/cm2)

It was effective in killing S. mutans and S.
sanguis strains but ineffective against C.

albicans

Soria-Lozano et al.
(2015)

Curcumin-mediated API S. mutans, C. albicans, and Candida
glabrata

LED (37.5 J/cm2) Both 24h and 48 h biofilms were
susceptible to API.

Quishida et al. (2016)

aPDT with curcumin S. mutans ATCC 25175 LED (25.3 J/cm2) The viability of S. mutans in the presence
of curcumin was substantially reduced

during irradiation

Lee et al. (2017)

Curcumin as a photosensitizing dye S. mutans Blue-violet diode
(405 nm)

The treatment inhibited the growth of
bacteria up to 99.26%

Merigo et al. (2019)

PDT using curcumin S. mutans ATCC str.m 1,683 Laser (460 and
660 nm)

460 nm laser + curcumin had the most
significant effect on inhibiting the growth

of S. mutans bacterial colonies

Azizi et al. (2019)

Curcumin as a PS agent in aPDT. S. mutans ATCC 700610 LED (1.2 J/cm2) The treated group showed a reduction in
viability compared to the control

Sanches et al. (2019)

Curcumin-mediated PDI with EDTA S. mutans UA159 Blue LED
(33.5 J/cm2)

PDI showed a strong inhibitory effect
against S. mutans in planktonic culture

Nima et al. (2021)

aPDT with curcumin-loaded dental
resin

S. mutans ATCC 700610 Blue light
(14.6 J/cm2)

A 2 log10 (CFU/mL) reduction in S.
mutans was observed after light
application on the biofilms

Comeau et al. (2022)

aPDT using curcumin as a
photosensitizer

S. mutans Blue diode laser
(445 nm)

It can effectively reduce colonies of S.
mutans around stainless steel brackets

Pordel et al. (2023)

aPDT with using curcumin S. mutans ATCC 35668 Blue LED (450 nm) aPDT caused a significant reduction in
the viability of S. mutans in both
planktonic and biofilm forms

Ahrari et al. (2024)

PDT: photodynamic therapy. aPDT: antibacterial photodynamic therapy. PDI: photodynamic inactivation. PS: photosensitizer. API: antimicrobial photodynamic inactivation. PACT:

photodynamic antimicrobial chemotherapy.
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dehydrogenase (PDH), which affects its downstream TCA cycle
pathway, thereby inhibiting energy production. This energy level
reduction impacts the bacteria’s upstream carbohydrate
metabolism and the glycolytic pathway. Additionally, amino acid
metabolism is affected (Zhang et al., 2024). Noteworthy, the TCA
cycle is critical in energy metabolism, and PDH is one of the key
enzymes entering the TCA cycle. In S.mutans, the TCA cycle has been
proven incomplete, and its principal significance is in producing
intermediates for other metabolisms (Zhang et al., 2024). By acting on
PDH, cinnamaldehyde interferes with the downstream TCA cycle,
which could not further generate other metabolic intermediates. The
pyruvate-related genes (pdhA, pdhB, pdhC, and pdhD), which encode
different subunits of the PDH enzyme complex, were downregulated
after the treatment of cinnamaldehyde (Zhang et al., 2024).
Additionally, expression of the atpD gene was downregulated in
the presence of cinnamaldehyde (Balasubramanian et al., 2021).
The atpD gene in S. mutans encodes the β-subunit of the ATP
synthase enzyme, which is essential for cellular energy production
(Gabe et al., 2019). Therefore, cinnamaldehyde can disturb cell
membranes and inhibit energy metabolism and ATP production of
S. mutans (Zhang et al., 2024).

Streptococcus mutans has a strong ability to acid production
(acidogenicity) and acid resistance (acidurance), and it can convert
glucose into lactic acid and other acidic substances by glycolysis (He
et al., 2019; Zhang et al., 2024). The findings of recently published
studies showed that cinnamaldehyde suppressed glucose and
sucrose consumption in S. mutans and downregulated the
expression levels of glycolysis-related genes, such as eno, ldh, and
pykf (He et al., 2019; Zhang et al., 2024). Under excess carbohydrate
and oxygen deficiency conditions, S. mutans tend to convert
pyruvate to lactic acid by lactate dehydrogenase (LDH) and
convert NADH to NAD again. The accumulation of lactic acid
decreases the pH (Abranches et al., 2018). With the cinnamaldehyde

interfering with the glycolysis pathway and reducing the LDH
activities, the acid production is inhibited, and then the terminal
pH increases (He et al., 2019; Zhang et al., 2024). DNA repair
processes are enhanced in response to acidogenicity to sustain
homeostasis (Senadheera et al., 2009). The genes atpD, dnaK
(associated with stress tolerance), and the DNA repair
mechanisms idh and recA were consistently downregulated,
inhibiting stress tolerance in the presence of cinnamaldehyde
(Balasubramanian et al., 2021). In addition, relA gene expressions
were downregulated by cinnamaldehyde (He et al., 2019).
Guanosine tetra (penta)-phosphate synthetize/hydrolase is
encoded by the relA gene, and it is implicated in various
processes, including acid and oxidative stress tolerance
mechanisms, as well as biofilm production (Lemos José et al.,
2004). Furthermore, cinnamaldehyde can decrease the expression
of the brpA gene. It has a role in cell wall integrity, which is
important to deal with physical and chemical stresses in the
environment. The brpA also is known to control recA, dnaK, and
atpD (Balasubramanian et al., 2021). As a result, the survival rate of
bacteria in an acidic environment and acid resistance of S. mutans
gradually decreased after treatment with cinnamaldehyde (He et al.,
2019; Zhang et al., 2024).

Bacteriocin immunity proteins are crucial for conferring
immunity to bacterial cells. Bacteriocin immunity proteins-related
genes, such as immA and immB, nisin-like mutacin C (nlmC), and
bsmI, were downregulated by cinnamaldehyde (Balasubramanian
et al., 2021). The atlA gene also was downregulated by
cinnamaldehyde (Balasubramanian et al., 2021). This gene encodes
an autolysin enzyme essential for cell wall biogenesis, facilitating cell
growth and division in S. mutans (Ahn and Burne, 2006). In the end, a
significant downregulation of ftsZ and gyrA was detected after
cinnamaldehyde treatment, suggesting that this compound affects
the development and metabolism of S. mutans. The gyrA gene plays a

FIGURE 2
Overview of antimicrobial targets of cinnamaldehyde against Streptococcus mutans. Cinnamaldehyde primarily possesses the ability to penetrate
cellular membranes and alter their physicochemical properties. Additionally, it can disrupt the energy metabolism and ATP production in bacteria.
Furthermore, it diminishes bacterial survival by influencing the expression of genes associated with bacteriocin production and DNA replication and
maintenance. This compound also impacts the formation and maturation of biofilms, affecting critical stages such as surface adhesion and
intercellular communication through the quorum sensing system.
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critical role in DNA replication andmaintenance of genomic stability,
and ftsZ is essential in cell division (Marchese and Debbia, 2016;
Barrows and Goley, 2021). Thus, cinnamaldehyde can compromise
the viability of S. mutans.

The interactions between the cinnamaldehyde and S. mutans
biofilm community are also interesting. The results of the studies
showed that S. mutans biofilms were highly dispersed and visibly
loose, and there was an irregular distribution of biofilm with reduced
biomass following cinnamaldehyde treatment, which can be readily
eradicated by host clearance mechanisms (He et al., 2019;
Balasubramanian et al., 2021). He et al. reported that
cinnamaldehyde might attenuate biofilm development during the
initial adhesion and maturation stages. Moreover, this compound
enhanced the hydrophobicity and reduced the aggregation of S.
mutans (He et al., 2019). A decrease in the attachment and
aggregation of bacteria can be related to the downregulation of
gtfB, gtfC, gtfD, gbpB, spaP and ftf genes (He et al., 2019;
Balasubramanian et al., 2021; Zhang et al., 2024). Also, the ciaH,
covR and vicR genes were downregulated by cinnamaldehyde (He
et al., 2019). CiaRH is a significant two-component signal
transduction systems (TCSTS) associated with biofilm
development, acid tolerance, and genetic competence. The
removal of the ciaH gene impacts bacterial adhesion, decreases
sucrose-independent biofilm formation, eliminates mutacin
synthesis, and reduces competence development (Wu et al.,
2010). Moreover, the VicRK system and the orphan regulator
CovR of S. mutans collaboratively regulate virulence genes. VicR
and CovR directly regulate a set of genes, including gtfB/C/D and
gbpC, which are involved in the synthesis and interaction with
extracellular polysaccharides; alterations in their expression can
affect attachment and biofilm formation (Stipp et al., 2013).
Finally, cinnamaldehyde also affects the QS system. It can
downregulate the expression level of QS-related genes, including
comA, comE, comS, comR, comDE, comB, comEC, and luxS
(Balasubramanian et al., 2021; Zhang et al., 2024). The
downregulation of luxS may lead to the downregulation of brpA,
comDE, vicR, recA, and spaP (Wen et al., 2011). Therefore,
cinnamaldehyde can interfere with biofilm formation by S.
mutans in various ways.

Researchers have devised many techniques to administer
cinnamaldehyde to enhance its bioavailability in vivo (Zaltsman
et al., 2017; Jailani et al., 2022; Mu et al., 2023). A study investigated
the efficacy of trans-cinnamaldehyde (TC) encapsulated in porous
silicon (pSi) particles in inhibiting biofilm formation. The results
indicated that pSi-TC at concentrations of 0.5 mg/mL and 1.15 mg/
mL reduced the development of S. mutans biofilm by 78% and 85%,
respectively. The synthesized particles decreased lactic acid
production by 25.11% in biofilms and significantly
downregulated the S. mutans genes responsible for inter-species
communication and biofilm development (luxS), genes that regulate
heat and acid-induced stress (dnaK and atpD), and oxidative stress
tolerance (nox1). Moreover, pSi-TC markedly downregulated the
genes encoding glucosyl transferases (gtfB and gtfC) (Jailani et al.,
2022). In another study, a nanosystem designed to combat caries was
developed by encapsulating cinnamaldehyde within chitosan-based
nanocapsules (CA@CSNC). The authors proposed that CA@CS NC
can adsorb the bacterial membrane through electronic interactions
and release cinnamaldehyde over an extended period.

Simultaneously, the nanoparticles demonstrated consistent
antibacterial efficacy against S. mutans and reduced the
expression levels of QS, virulence, biofilm, and adhesion genes,
including gtfB, gtfC, and gtfD (Mu et al., 2023). Consequently, using
nanoparticles to transport cinnamaldehyde presents novel
opportunities to enhance its application in creating antibacterial
and antibiofilm agents.

Eugenol

Eugenol, or 4-allyl-2-methoxyphenol, is a fragrant oily liquid
derived from certain essential oils, notably clove and cinnamon. It
has been a flavoring ingredient in culinary and cosmetic
preparations (Didehdar et al., 2022). Eugenol has shown good
antibacterial activity against S. mutans. In one study, its MBC
value against this bacterium was 1,642 μg/mL (Ribeiro et al.,
2018). This compound, like cinnamaldehyde, has a hydrophobic
state that allows it to interact with the cell membrane of S. mutans
(Ribeiro et al., 2018). In addition, a TPSA of <40 Å2 has been
reported for this compound, suggesting it can penetrate the cell
membrane (Veber et al., 2002). Eugenol impeded the decrease in
pH caused by S. mutans. The findings indicated that eugenol can
diminish acid generation by S. mutans (Xu et al., 2013). As
previously mentioned, acidogenicity is one of the important
factors associated with dental caries, and its disruption by
eugenol reduces its activity for demineralization.

The antibiofilm efficacy of eugenol is evidenced by the decrease
in the proportion of biofilm formation in its presence. Biofilms
treated with eugenol exhibited deformed cellular structures,
indicating the significant effect of eugenol on cell architecture
and cellular damage, perhaps leading to the release of
intracellular material. Significantly, biofilm developed in the
presence of eugenol exhibited reduced cell aggregation and
biofilm disorganization, with a notable reduction in colony-
forming units (CFU) and matrix production (Jafri et al., 2019;
Jafri et al., 2020). A further consideration is the synthesis of
water-insoluble glucans by S. mutans, which was inhibited in the
presence of eugenol (Xu et al., 2013). Water-insoluble glucans
promote the adhesive interactions of bacteria with the tooth
surface and contribute to the formation of dental biofilms (Xu
et al., 2013). Additionally, the genes that affect bacterial adhesion
and biofilm formation include gtfB, gtfC, gbpB, ftf, vicR, brpA,
smu630, relA, comDE, and spaP were downregulated by eugenol
(Adil et al., 2014). With all these interpretations, it can be concluded
that eugenol can affect the S. mutans biofilm, making it a promising
natural agent for combating dental biofilms.

Eugenol can be utilized alongside antibacterial agents to achieve
synergistic or additive effects. The synergistic effects of eugenol and
carnosic acid on microbial biofilms, specifically S. mutans, were
noted. The interactions of eugenol and carnosic acid with the
cytoplasmic membrane may elucidate this phenomenon. The
combination of eugenol and macrocarpals exhibited synergistic
benefits against bacterial biofilms. The rupture of the cytoplasmic
membrane by eugenol may elucidate the translocation of
macrocarpals into the cell, where they impede enzymatic
activities and elevate ROS and intracellular DNA fragmentation
(Tsukatani et al., 2020). Furthermore, eugenol showed a synergism
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effect with antimicrobial agents (fluconazole and azithromycin)
against C. albicans and S. mutans. Eugenol can disrupt cell
membrane integrity, facilitating the ingress of drugs into the
microbial cell. This phenomenon facilitates the accessibility of the
antimicrobial agents to the target site, enhancing their efficacy (Jafri
et al., 2020). Therefore, the combined use of antimicrobial agents
and eugenol may provide numerous benefits, such as increased
efficacy, diminished medication dosage, and lowered toxicity, hence
helping in the inhibition or eradication of biofilms and the reduction
of antimicrobial resistance (Chouhan et al., 2017).

Nonetheless, light sensitivity and inadequate water solubility are
significant drawbacks of eugenol, as they restrict its practical
applications. Sajomsang et al., by incorporating eugenol into the
β-cyclodextrin-grafted chitosan derivatives (QCD-g-CS) complex,
developed a novel mucoadhesive drug carrier that could improve
eugenol’s solubility, stability, and delivery properties while
maintaining or enhancing its beneficial biological activities. The
antibacterial efficacy of QCD-g-CS-eugenol against Streptococcus
oralis, C. albicans, and S. mutans was assessed. Combining eugenol
and QCD-g-CSs as an inclusion complex has a synergistic effect on
antibacterial activity. The enhanced antibacterial efficacy of the
synthesized drug carrier is ascribed to the augmented solubility
of eugenol in the aqueous phase, facilitated by the presence of QCD-
g-CS, thereby fostering improved interactions between eugenol and
microorganisms (Sajomsang et al., 2012).

Finally, it is worthmentioning that studies showed the antibacterial
effect of eugenol against S. mutans as a restorative material (Boeckh
et al., 2002; Monajemzadeh et al., 2017; Makarla et al., 2023). Coronal
leakage following root canal therapy is regarded as a significant cause of
endodontic treatment failure due to contamination of the root canal
system. Oral bacteria can infiltrate the root canal system during
endodontic treatment without a coronal seal above the root filling.
A base coronal to the root filling has been demonstrated to diminish
microleakage and enhance the long-term prognosis of teeth treated
with root canal therapy (Dragland et al., 2019). Nonetheless, microbial
leakage has been demonstrated to occur even after installing temporary
filling materials above the root filling (Balto, 2002). This issue indicates
that the materials employed for a coronal seal must effectively occlude
the opening of the root filling and exhibit antimicrobial characteristics.
In this regard, a zinc oxide-eugenol (ZOE)-based restorative substance
is among dentistry’s most frequently utilized temporary restorative
materials. In endodontics, a ZOE restorative material serves as a base
beneath the permanent restoration to inhibit bacterial ingress into the
root canal between appointments and after the permanent restoration
placement (Gimbel et al., 2002). The leaching of eugenol somewhat
facilitates the antibacterial and bacteriostatic properties of ZOE-based
materials (Dragland et al., 2019).

Collectively, eugenol, as a natural compound, exhibited good
antibacterial and anti-biofilm activity against S. mutans, making it a
suitable candidate for use in dentistry. Further research should also be
considered to enhance its pharmacodynamic properties using novel
methods, including nanoparticles and other drug delivery platforms.

Farnesol

Farnesol, a sesquiterpene alcohol (3,7,11-trimethyl-2,6,10-
dodecatrien-1-ol), is frequently present in certain essential oils,

propolis, and citrus fruits and serves as a unique naturally
occurring anticaries agent (Jeon et al., 2011). Koo et al. reported
the MIC and MBC of this compound against S. mutans as 125 µM
and 500 μM, respectively (Koo et al., 2002). A study’s results
indicated that farnesol enhanced the initial rate of proton influx
in S. mutans cells (Jeon et al., 2011). Protons from the external
environment penetrate inward via the cell membrane following the
acidification of the suspension but can subsequently be ejected by
the membrane-associated F-ATPase enzyme (Bender et al., 1986).
The proton-translocating F-ATPase safeguards S. mutans from
ambient acid stress by maintaining pH homeostasis, which is
essential for the optimal functioning of glycolysis in S. mutans
(Sturr and Marquis, 1992). Consequently, the enhancement of
proton permeability induced by farnesol is probably attributable
to direct impairment of the membrane barrier function. The
alteration of proton permeability in the S. mutans cell membrane
caused by farnesol would impact the pH gradient (ΔpH) across the
membrane, suppressing total intracellular metabolism, including
acidogenesis (Jeon et al., 2011). Such effects may also induce energy
deprivation in S. mutans, inhibiting intracellular polysaccharide
(IPS) synthesis and accumulation (Jeon et al., 2009). It can be
concluded that farnesol can influence the acidogenicity and
aciduricity of S. mutans in both the planktonic phase and biofilm
by enhancing the proton permeability of the membrane, possibly
due to loss of the cell membrane’s functional integrity (Jeon
et al., 2011).

Significant antibiofilm activity against S. mutans was shown by
farnesol (Koo et al., 2002; Lobo et al., 2021). As previously noted,
farnesol can disrupt membrane function, which reduces cell viability
and could impact biofilm formation. A significant reduction in total
biomass and the number of viable cells was observed in single and
mixed species biofilms of S. mutans and C. albicanswhen exposed to
farnesol (Fernandes et al., 2016). De Melo et al. reported the most
significant reduction of S. mutans cells after 8 h of exposure to
farnesol (de Melo et al., 2015). Notably, biofilms treated with
farnesol exhibited a reduced quantity of viable cells and less
dense structures. Moreover, the matrix composition study
indicated a decrease in protein concentration following exposure
to farnesol. These findings underscore the influence of farnesol on
the diminution of biofilms, particularly its impact on the
disintegration of the extracellular matrix. The extracellular matrix
is significant as it constitutes a barrier to medication permeation
(Fernandes et al., 2018).

Prior research has indicated that the reduction of long-chained
cells constitutes the initial morphological alteration in the process of
cell apoptosis, and this modification is also a mechanism of acid
tolerance in S. mutans (Fozo and Quivey, 2004). To this end, the
microscopic analysis revealed a reduced presence of long-chained
cells in the farnesol-treated biofilms compared to the untreated
control biofilms. The findings indicated that decreasing long-
chained cells in the farnesol-treated biofilms may constitute a
damaging mechanism of farnesol against S. mutans biofilm (Cao
et al., 2017). Additionally, the transcription levels of brpA, luxS, recA,
ffh, smx, and nth were decreased in the farnesol-treated biofilms
(Cao et al., 2017). Streptococcus mutans employs a low-pH survival
strategy by activating a DNA repair mechanism to safeguard or
rectify DNA damage resulting from the detrimental effects of
intracellular acidification. Certain proteins, including RecA, Nth,
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Smx, and Ffh, participate in this process (Cao et al., 2017). Notably,
RecA is implicated in stress tolerance and DNA repair. The nth gene
encodes a putative EndoIII-related endonuclease implicated in DNA
replication, recombination, and repair (Wen and Burne, 2004). A
class II-like AP endonuclease that controls an organism’s
exonucleolytic activity and acid-adaptive response is encoded by
the smx gene (Faustoferri et al., 2005). The ffh gene encodes a
homolog of the 54 kDa subunit of a signal recognition particle that
contributes to acid stress tolerance (Gutierrez et al., 1999). Finally,
the demineralization process induced by S. mutans biofilms
diminishes enamel surface micro-hardness, resulting in caries
lesions (Jabbarifar et al., 2011). The results indicated that farnesol
therapy diminished the reduction of surface enamel micro-hardness
caused by S. mutans, implying that farnesol may inhibit the
development of caries associated with S. mutans and could serve
as a possible agent against this bacterium (Cao et al., 2017).
Therefore, farnesol can exert its anti-biofilm effect by disrupting
stress and acid tolerance mechanisms, changing the expression of
genes related to biofilm formation, and reducing the viable cells.

Farnesol has also demonstrated synergistic effects when
combined with other anticaries agents (Koo et al., 2003; Chen
et al., 2006; Lobo et al., 2022; Haj-Yahya et al., 2024). For
example, Rocha et al. assessed the impact of farnesol, myricetin,
and fluoride on dual-species biofilm, including S. mutans and C.
albicans. The findings indicated a reduction in water-soluble EPS in
the extracellular matrix when combination therapy was employed.
Consequently, combination therapy adversely impacted biofilm
growth, rendering biofilm potentially less hazardous. The
reduction of EPS is crucial, as the capacity of bacteria to
manufacture glucan may be more critical for virulence than their
population size, given that a compromised extracellular matrix may
fail to offer sufficient three-dimensional structure and stability for
microorganisms within the biofilm (Rocha et al., 2018). Another
study also investigated the effects of farnesol and apigenin in
conjunction with fluoride on S. mutans biofilms. The biological
effects of each drug were significantly amplified when combined
with fluoride. Biofilms treated with farnesol and/or apigenin in
conjunction with fluoride exhibited reduced biomass and
diminished levels of iodophilic polysaccharides and insoluble
glucans compared to those treated with the test agents
individually. Findings from this research indicated that apigenin
and farnesol may augment the cariostatic efficacy of fluoride (Koo
et al., 2005).

In line with these results, farnesol, myricetin and fluoride
combinations were examined against S. mutans biofilm (Falsetta
et al., 2012). The mentioned combination therapy effectively
diminished the formation of cariogenic biofilms via multiple
potentially complementary and/or overlapping mechanisms that
primarily focus on inhibiting S. mutans EPS-rich matrix
production while undermining the organism’s overall fitness by
suppressing stress defence and/or modifying bacterial membrane
physiology. The mentioned combination therapy interfered with
particular genes typically linked to EPS synthesis and/or stress
resilience (e.g., gtfB, sloA, sodA, and copY). Notably, GtfB is
essential for the formation and preservation of plaque biofilms.
Superoxide dismutase (SodA) is a recognized virulence factor that
diminishes superoxide and is crucial in vivo (Falsetta et al., 2012).
SloA is a manganese/iron transport system component, whereas

CopY is also anticipated to participate in copper transport (Mitrakul
et al., 2004). The diminished expression of sloA and copY may
further inhibit the transcription of the gtf genes, as copper and
manganese function as effector molecules that regulate their
expression (Chen et al., 2006; Arirachakaran et al., 2007).
collectively, the mentioned combination therapies could
successfully connect the existing chemical modalities (e.g.,
fluoride and chlorhexidine) employed to prevent or treat dental
caries disease (Falsetta et al., 2012).

However, farnesol cannot attain optimal performance for
biofilm therapy owing to its hydrophobic nature and inadequate
biofilm retention unless utilized in conjunction with other methods
(Rocha et al., 2018). Consequently, to attain optimal efficacy within
the intricate biofilm community, drug delivery systems, particularly
nanoparticle carriers, have garnered heightened interest in the
treatment of oral biofilms in recent years (Horev et al., 2015;
Mogen et al., 2015; Supuran, 2015; Sims et al., 2018; Barot et al.,
2020; Roncari Rocha et al., 2022). A recently published study
evaluated the anti-biofilm effectiveness of farnesol using drug
delivery through polymeric nanoparticle carriers (NPCs) against
cross-kingdom biofilms. The farnesol-encapsulated nanoparticles
(NPC + Far) achieved a 2-log CFU/mL decrease of S. mutans and C.
albicans. High-resolution confocal photos indicated a substantial
reduction in EPS, smaller microcolonies of S. mutans, and the
absence of hyphal forms of C. albicans following treatment with
NPC + Far on human tooth enamel (HT) slabs, thereby modifying
the biofilm’s three-dimensional structure (Ito et al., 2022). In
another study, an NPC capable of co-loading farnesol in the
hydrophobic core and myricetin inside the cationic corona was
evaluated in vitro, employing both established and developing S.
mutans biofilms. Co-loaded NPC treatments significantly
diminished biofilm biomass and survival compared to single-drug
controls in growing biofilms, indicating that dual-drug delivery
demonstrates synergistic anti-biofilm properties. Co-loaded NPCs
synergistically suppressed planktonic bacterial proliferation relative
to controls and diminished S. mutans acidogenicity by lowering
atpD expression (Sims et al., 2020). In another study, researchers
developed a micellar drug delivery system capable of successfully
adhering to dental surfaces. To attain tooth-binding capability, the
terminal ends of biocompatible Pluronic copolymers were altered
with a biomineral-binding group (i.e., alendronate). The micelles
created with this polymer demonstrated the ability to rapidly
(<1 min) adhere to hydroxyapatite (HA; a model tooth surface)
and progressively release the encapsulated farnesol. In vitro biofilm
inhibition investigations revealed that the synthesized micelles
significantly inhibited S. mutans biofilm formation (Chen et al.,
2009). Hence, drug delivery systems can be designed to enhance
farnesol by prolonging the contact time with S. mutans to improve
antibacterial effects. Moreover, these systems can enhance farnesol
penetration into biofilms and increase access to bacteria embedded
within the EPS matrix.

Epigallocatechin-3-gallate

Epigallocatechin gallate (EGCG) is the predominant catechin in
green tea, constituting about 50% of its overall composition. EGCG
is recognized for possessing the most potent antibacterial properties
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among all catechins, according to the galloyl groups within its
structure (Sasaki et al., 2004; Wang and Ho, 2009). Recently
published studies reported that EGCG has an inhibitory effect
against S. mutans (Bai et al., 2016; Hattarki et al., 2021; Garcia-
Contreras et al., 2023; Higuchi et al., 2024). EGCG infiltrating lipid
bilayers induces lateral membrane expansion, leading to
membrane breakdown. Catechins can interact with dissolved
oxygen to generate hydrogen peroxide and hydroxyl radicals,
thereby causing intracellular lipid oxidation and damage to
DNA and proteins (Wu and Brown, 2021). Higuchi et al.
indicated that EGCG can suppress the metabolic activity of S.
mutans. The authors hypothesized that the metabolic inhibition of
this bacteria by EGCG is attributed to the binding of EGCG to the
sugar uptake enzyme system, namely, the phosphoenolpyruvate
phosphotransferase system (PEP-PTS), which leads to the
inhibition of sugar absorption (Higuchi et al., 2024). In line
with these findings, Han et al. also reported that EGCG can
inhibit the growth and acid generation of S. mutans by
suppressing the activity of the PEP-PTS (Han et al., 2021).
Notably, the PEP-PTS is a cluster of enzymes responsible for
translocating sugars into bacteria, comprising enzymes located
on the cell membrane and within the cytoplasm. The results
indicated that PEP-PTS activity was inhibited by EGCG,
implying that EGCG obstructs glucose absorption in bacterial
cells, hence diminishing bacterial metabolism and acidogenesis
(Han et al., 2021). In a separate in silico molecular docking
investigation, these authors indicated that catechins exert their
effects through contact with the cell membrane-bound glucose
transporter EIIC, a component of the PEP-PTS. In contrast to
nongalloylated catechins, the galloyl structures of EGCG enabled
strong binding to the functional region of the EIIC (Han et al.,
2023). Furthermore, another research indicated that the inhibition
of acid generation by EGCG is due to its suppressive effects on
lactate dehydrogenase at both the transcriptional and enzymatic
levels (Hirasawa et al., 2006; Xu et al., 2011).

In addition to the mentioned inhibitory mechanisms of
EGCG against S. mutans, the results of another investigation
indicated that EGCG impeded the adhesion of oral bacteria by
diminishing their surface hydrophobicity; however, this effect
was not observed on hydroxyapatite surfaces (Wang and Lam,
2020). Besides, Cui et al. demonstrated that EGCG caused
aggregation in S. mutans (Cui et al., 2012). Therefore, EGCG
can eliminate S. mutans by direct interaction with cellular
components, and its inhibition of bacterial metabolism
diminishes energy generation, possibly suppressing bacterial
growth. Besides impeding metabolism and growth, EGCG
obstructs bacterial adhesion and facilitates bacterial
aggregation. Consequently, EGCG appears to be able to induce
aggregation of salivary bacteria, facilitate their evacuation, and
impede the formation of oral biofilm. Ultimately, EGCG can
suppress the acid production of S. mutans, a main bacterial
component in caries formation.

Previous studies also reported the inhibitory effects of EGCG
against the S. mutans biofilm community (Liao et al., 2021;
Taylor et al., 2021). To this end, a study indicated that EGCG
markedly decreased the buildup of soluble and insoluble
polysaccharides, leading to a biofilm characterized by
irregularly distributed exopolysaccharide-microcolony complexes

on enamel. Consequently, the authors suggested that EGCG
diminished the pathogenicity of S. mutans matrix-rich biofilm
by inhibiting the production of biofilm matrix constituents and
modifying the structure, organization, and dispersion of the
biofilm matrix (Aragão et al., 2024a). Rayman et al. also
indicated that EGCG diminished biofilm thickness, lowered the
viable bacterial count, augmented the number of deceased bacteria,
and blocked EPS formation. EGCG markedly suppressed the
expression of gtfC, gtfB, and ftf by 77%–90% relative to the
control (Schneider-Rayman et al., 2021). The findings of other
studies also showed that EGCG decreased levels of extracellular
polysaccharides in S. mutans biofilms and reduced the expression
of gtf genes (Xu et al., 2012; Wu et al., 2018).

EGCG appears to inhibit the biofilm formation of S. mutans
through a sucrose-dependent anti-adhesion mechanism, as it has
been demonstrated to obstruct S. mutans glucosyltransferases,
which are critical enzymes for bacterial attachment, biofilm
development, and pathogenicity in the presence of sucrose. In
this context, Islam et al. indicated that EGCG interacted with the
amino acids GLU 515 and TRP 517, binding to glucansucrase and
inhibiting its enzymatic activity. Enzymatic suppression of
glucansucrase reduced the biofilm-forming capability of S.
mutans on tooth surfaces (Hairul Islam et al., 2020).
Collectively, S. mutans produces extracellular adherent glucans
from dietary sucrose through GTFs, hence facilitating the
aggregation of oral bacteria on dental surfaces. The earliest
phase of S. mutans biofilm, marked by sucrose-dependent
bacterial adhesion to dental surfaces, constitutes a crucial
preliminary step in the eventual development of the mature
biofilm (Burne et al., 2009; Xu et al., 2011). To this end, EGCG
has a good potential for inhibiting S. mutans biofilm because it
inhibits initial attachment and the specific genes associated with
bacterial biofilm formation.

Despite their advantages, catechins encounter significant
obstacles in their development as medicinal agents, such as
inadequate absorption, low bioavailability, and quick destruction.
The advent of nanobiotechnology facilitates targeted and steady
distribution, hence improving EGCG bioavailability and optimizing
therapeutic efficacy. Recently published studies used different
EGCG-based drug platforms, such as chitosan nanoparticles
loaded with EGCG, mesoporous silica-based EGCG/
nanohydroxyapatite delivery, developing silver nanoparticles
(AgNPs) using EGCG, and EGCG containing glass ionomer
cements (Hu J. et al., 2013; Yu et al., 2017; Yu et al., 2021;
Aragão et al., 2024b). Noteworthy, using EGCG can enhance the
inhibitory effect of different platforms against S. mutans and the
biofilm community of this bacterium. The drug platform can also
deliver EGCG over an extended period, ensuring prolonged stability
to safeguard the underlying dentin from harmful conditions in oral
settings. Consequently, applying EGCG-based pharmacological
platforms indicates a feasible approach for prolonging the
longevity of restorations and advancing dental material science.

Thymol

Thymus vulgaris (thyme) has been utilized in traditional
medicine to treat diverse diseases due to its extensive
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TABLE 2 The molecular interactions of natural compounds with different pathogenic mechanisms of Streptococcus mutans.

Site of action Compounds Gene Gene function

Environmental stress Curcumin atpH It encodes subunit C of the F-ATPase, which is involved in the acid tolerance of S.
mutans

spxA1and spxA2 They regulate the transcription of nearly all principal activated oxidative stress
response genes in S. mutans

Cinnamaldehyde idh and recA DNA repair mechanisms

dnaK and atpD Regulate heat and acid-induced stress

nox1 Oxidative stress tolerance

relA Synthesize (p)ppGpp

brpA Cell wall integrity

ciaH Stress tolerance

Eugenol brpA and relA ME

Thymol brpA and relA ME

Carvacrol brpA and relA ME

Farnesol brpA ME

recA Stress tolerance and DNA repair

nth DNA replication, recombination, and repair

smx Control of the organism’s exonucleolytic activity and the adaptive response to
acid

ffh Acid stress tolerance

sodA Superoxide dismutase

Energy metabolism Curcumin scrAB Internalization of sucrose and hydrolyze to fructose and glucose-6-phosphate

Cinnamaldehyde pdhA, pdhB, pdhC, and pdhD They encodes subunits of the pyruvate dehydrogenase enzyme

atpD It encodes the β-subunit of the ATP synthase enzyme

eno, ldh, and pykf Glycolysis-related genes

Farnesol atpD ME

Attachment and
aggregation

Curcumin gtfB, gtfC, and gtfD Utilize sucrose and form glucan

gbpB It encodes glucan-binding proteins that bind to glucan

ftf and fruA Convert sucrose to the fructans

vicR A response regulator activates the gtfB, gtfC, and ftf genes

Cinnamaldehyde gtfB, gtfC, gtfD, gbpB, vicR and ftf ME

spaP This gene mediates bacterial attachment to the salivary pellicle of the tooth

covR Regulate gtfB, gtfC, gtfD, and gbpC genes

Eugenol gtfB, gtfC, gbpB, vicR, spaP and ftf ME

Farnesol gtfB ME

sloA and copY They are involved in manganese/iron and copper transport, while these metals
modulate the expression of gtf genes

EGCG gtfB, gtfC, and ftf ME

Thymol gtfB, gtfC, gtfD, vicR, gbpB, and spaP ME

Carvacrol gtfB, gtfC, gtfD, vicR, gbpB, and spaP ME

(Continued on following page)
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pharmacological qualities. The primary component of thyme
essential oil is thymol, a phenolic monoterpene molecule (Priya
et al., 2021). Thymol is a naturally occurring phenolic
monoterpenoid compound that is utilized extensively in food and
pharmaceutical preservative applications due to its beneficial
antifungal and antibacterial qualities (Ferreira et al., 2018; Karimi
et al., 2020; Priya et al., 2021). Recently published studies reported
that thymol has an inhibitory effect against S. mutans (Botelho et al.,
2007; Nunes et al., 2020; Park et al., 2023). For example, in one study,
the MIC and MBC values of the phytochemical thymol against S.
mutans were 312.5 μg/mL (Ferreira et al., 2018). In another
investigation, thymol demonstrated bactericidal and bacteriostatic
effects against the planktonic cells of S. mutans, with a MIC and
MBC of 100 mg/mL and 400 mg/mL, respectively (Nunes et al.,
2020). A recent study demonstrated that thymol at a 300 μg/mL
dosage inhibited the growth of dual species of S. mutans and C.
albicans (Priya et al., 2021). Cell membrane breakdown, intracellular
substance leaking, and ensuing modifications in transmembrane
potential are the foundations of the thymol mode of action.
Additionally, this compound can enter cells and interact with
intracellular locations, which is crucial to its antibacterial action
(Vlachojannis et al., 2015). Furthermore, thymol can be
incorporated into bacterial cell membranes, readily traverse
lipid barriers, and compromise membrane integrity, thereby
hindering cell proliferation and inducing cell death. Due to its
lipophilic nature and affinity for bacterial cell membranes, thymol
can inhibit bacterial activity (Yazdanian et al., 2022; Park et al.,
2023). The genes of S. mutans associated with biofilm formation,
competence, and glucan synthesis were downregulated by thymol
(Priya et al., 2021). In line with these results, Thymus essential oil
showed a notable inhibitory effect on the expression of the S.
mutans virulence genes, including brpA, vicR, gbpB, gtfB, gtfC,
gtfD, relA, and spaP (Table 2). Molecular docking between thymol
and virulence proteins revealed that thymol demonstrated a
significant binding affinity for the functional domains of
virulence genes (Park et al., 2023).

Scientists also considered thymol-based drug delivery platforms
for improving thymol activity against S. mutans and dental caries.
To this end, thymol-chitosan hydrogels demonstrated
biocompatibility with [3T3] fibroblasts, exhibited antibacterial
efficacy against S. mutans for 72 h, and showed antioxidant
activity for 24 h. These are advantageous characteristics for a
mucosal delivery method for an antimicrobial-antioxidant dual
treatment targeting periodontal disease. Consequently, the
antioxidant qualities of thymol may reduce periodontal
inflammation; conversely, thymol could serve as an adjunct to
mechanical plaque management due to its antibacterial efficacy.
It should be noted that no adhesion or aggregation of S. mutans was
detected in thymol-loaded chitosan hydrogels throughout a 24-h
(Alvarez Echazú et al., 2017). Another study also nanoencapsulated
the combination of clove oil and thymol (CLTY) utilizing chitosan
and poly-γ-glutamic acid. Free CLTY demonstrated both additive
and synergistic antibacterial effects against S. mutans and
Streptococcus sobrinus, respectively. In contrast, in a time-kill
kinetic experiment, CLTY nanoparticles (NPs) displayed
synergistic action against both strains. CLTY NPs reduced the
proliferation of salivary S. mutans during the evaluation, in
contrast to free CLTY in the mouth rinse assay. The results
demonstrated that nanoencapsulation can enhance the synergistic
antibacterial efficacy of CLTY and prolong its antimicrobial activity
in oral cavities (Lee et al., 2020). In the end, in another study,
chitosan-grafted thymol (CST) coated on gold nanoparticles
(AuNPs) was effectively employed to regulate cariogenic bacteria
in the oral cavity. The incorporation of AuNPs with CST increased
bactericidal efficacy against S. mutans. This CST coating on the
AuNPs surface may represent a significant new tool in combating
cariogenic bacterial infections (Chittratan et al., 2022). Collectively,
the use of such compounds leads to the enhancement of thymols’
pharmacological activity and the expansion of its applications in
medicine. Additionally, as mentioned, thymol demonstrated
considerable inhibition of bacterial proliferation, acidogenesis,
adhesion, and biofilm development of S. mutans. Therefore,

TABLE 2 (Continued) The molecular interactions of natural compounds with different pathogenic mechanisms of Streptococcus mutans.

Site of action Compounds Gene Gene function

Biofilm development Curcumin rgpG Cell morphology and cell division

Cinnamaldehyde atlA It encodes an autolysin enzyme that is essential for facilitating cell growth and
division

ftsZ Cell division

gyrA DNA replication and maintenance of genomic stability

ciaH Sucrose-dependent biofilm formation

Eugenol Smu630 Biofilm formation hypothetical protein

Quorum sensing Curcumin comCDE Intraspecies cell-cell communication

luxS Interspecies and intraspecies interaction

Cinnamaldehyde comA, comE, comS, comR, comDE, comB,
comEC and luxS

ME

Eugenol comDE ME

Farnesol luxS ME

ME: mentioned earlier. EGCG: epigallocatechin gallate.
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TABLE 3 The inhibitory effect of natural compounds against Streptococcus mutans and the biofilm community of this bacterium.

Natural
compounds

Source Antibacterial
concentration

Outcomes References

1,8-Cineole Eucalyptus globulus 1.9168 mg/mL The EOs showed antimicrobial activity against
the S. mutans planktonic and biofilm cultures

Landeo-Villanueva
et al. (2023)

1,8-Cineole Vitex agnus-castus leaves (VAC-EO) 15.6
µg/mL

VAC-EO indicated promising activity against S.
mutans

Gonçalves et al. (2017)

1,8-Cineole (Eucalyptol) Eucalyptus globulus 1.9168 mg/mL Antibacterial and antibiofilm effect Landeo-Villanueva
et al. (2023)

Apigenin Extrasynthese Co. (Genay-Sedex,
France)

0.1 mM This compound modulated the genetic
expression of virulence factors in S. mutans

Koo et al. (2006)

Apigenin Extrasynthese Co. (Genay-Sedex,
France)

500 μM Apigenin is a novel and potent inhibitor of GTF
activity

Koo et al. (2002)

Apigenin and tt-Farnesol Brazilian propolis NR Incorporating chemicals into resin-based
composites and cement materials can markedly
reduce the biomass and polysaccharide content
of an S. mutans biofilm

André et al. (2021)

Apigenin and tt-Farnesol Sigma–Aldrich Apigenin (1 mM) and tt-
Farnesol (5 mM)

Addition of the compounds to the self-etch
adhesive) and to the each-and-rinse adhesive
reduced the dry-weight of S. mutans biofilm.

André et al. (2017)

Carvone Mentha spicata 1.8484 mg/mL Antibacterial and antibiofilm effect Landeo-Villanueva
et al. (2023)

Coumaric acid Sigma Aldrich NR Antibacterial and antibiofilm effect Ahmad et al. (2024)

Ellagic acid Rubi Fructus extract <1 mg/mL This compound inhibited glucosyltransferase
activity of S. mutans

Ham and Kim (2023)

Ellagic acid Sigma–Aldrich 500 μg/mL The enzymatic activity of the
glucosyltransferases of S. mutans was shown to
be abrogated by ellagic acid and its derivatives

Sawamura et al.
(1992)

Hinokitiol, Carvacrol,
Thymol, Menthol

Sigma-Aldrich 40, 400, 200, 1,000 μg/mL,
respectively

Antibacterial effect against S. mutans Wang et al. (2016)

Kaempferol Phytolacca americana 8 μg/mL Kaempferol exerted antibacterial activity against
Porphyromonas gingivalis and S. mutans

Patra et al. (2014)

Kaempferol Nidus Vespae chloroform/methanol
extraction

1 mg/mL This compound inhibited the growth,
acidogenicity and acidurity of S. mutans

Guan et al. (2012)

Kaempferol Nidus Vespae 8 mg/mL This compound showed Aantibiofilm activity Zeng et al. (2019)

Limonene and β-
caryophyllene

Psidium guajava 0.05–0.1% Antimicrobial activity against C. albicans and S.
mutans

Alam et al. (2023)

Linalool Quinari 1,250 μg/mL Antibacterial effect against S. mutans Ferreira et al. (2018)

Linalool Achillea ligustica 310
µg/mL

Antibacterial effect against S. mutans Maggi et al. (2009)

Linoleic acid Dryopteris crassirhizoma 12.5
µg/mL

Reduced viability in a dose-dependent manner
and reduced biofilm accumulation during initial
and mature biofilm formation

Jung et al. (2014)

Myrcene Cymbopogon citratus No effect Myrcene did not show bacteriostatic activity at
tested concentrations

Chaves-Quirós et al.
(2020)

Myricetin MolPort ordering service 250 μg/mL The compound decreased the counts of S.
mutans viable population by > 4 logs and
biomass by >99%

Castillo Pedraza et al.
(2020)

Myricetin Sigma–Aldrich 512 μg/mL Myricetin is a promising candidate for
controlling dental caries and reducing S. mutans
biofilm

Hu et al. (2021)

Myricetin AK Scientific, Inc. NR The compounds resulted in reduced amounts of
insoluble dry weight and insoluble
exopolysaccharides

Lopes et al. (2022)

(Continued on following page)
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because thymol is a natural anti-cariogenic agent with strong
antibacterial effects against S. mutans, it can be used in oral and
dental hygiene products and edible products such as chewing gum
and candies.

Carvacrol

Carvacrol, a phenolic monoterpenoid, is recognized as a
principal component of the essential oils derived from several

fragrant plants, including thyme (Thymus vulgaris), pepperwort
(Lepidium flavum), and oregano (Origanum vulgare). This
natural compound has been utilized as a food preservative,
additive, flavouring, and scent in cosmetic items (Shariati
et al., 2022). Carvacrol possesses multiple biological properties,
such as antioxidant and antimicrobial activity. Due to its diverse
qualities, including a free hydroxyl group, phenolic moiety, and
hydrophobic characteristics, carvacrol demonstrated superior
antibacterial efficacy compared to other volatile compounds.
Several studies evaluated the antibacterial and antibiofilm

TABLE 3 (Continued) The inhibitory effect of natural compounds against Streptococcus mutans and the biofilm community of this bacterium.

Natural
compounds

Source Antibacterial
concentration

Outcomes References

Myricetin and tt-farnesol Genay-Sedex, France and Sigma-
Aldrich

NR The combination of compounds with fluoride
significantly impeded the expression of
particular virulence genes, structural
organization and accumulation of S. mutans
biofilm

Jeon et al. (2009)

Quercetin Nidus Vespae 16 mg/mL This compound showed antibiofilm activity Zeng et al. (2019)

Quercetin Nidus Vespae 2 mg/mL This compound inhibited the growth of
different bacteria, such as S. mutans

Guan et al. (2012)

Quercetin Cucumis sativus peels NR The compound inhibited the growth of different
bacteria, such as S. mutans

Anjani et al. (2023)

Quercetin-doped adhesive Sigma–Aldrich 500 μg/mL Inhibitory effect against S. mutans biofilm Yang et al. (2017)

Resveratrol Bulksupplements, United States 250 μg/mL This compound showed Aa dose-dependent
antibacterial activity against S. mutans

Pournasir et al. (2024)

Resveratrol Sigma-Aldrich 800 μg/mL This compound showed has an inhibitory effect
against S. mutans acid production, virulence
factors and biofilm formation

Li et al. (2020b)

Resveratrol-doped adhesive Sigma-Aldrich 1 mg/mL Inhibitory effect on endogenous protease
activity and biofilm formation of S. mutans

Guo et al. (2021)

Sanguinarine, eucalyptol,
menthol, methyl salicylate

NR 15.6, 250, 500, and
1,000 μg/mL, respectively

Antibacterial effect against S. mutans Chung et al. (2006)

Saponin Madhuca longifolia and Bauhinia
purpurea

18.3 and 890
µg/mL

Antibacterial effect against S. mutans Jyothi and Seshagiri
(2012)

Terpenoid Myrmecodia pendans 40
µg/mL

Antibacterial and antibiofilm effect Gartika et al. (2018)

Terpinen-4-ol Sigma-Aldrich 0.24%
µg/mL

Antibacterial and antibiofilm effect and
modulated gene expression

Bordini et al. (2018)

Terpinen-4-ol Sigma-Aldrich 44,000 μg/mL Antibacterial effect against S. mutans Bucci et al. (2018)

Ursolic acid and Oleanolic
acid

Sigma-Aldrich 256 and 1,024 μg/mL,
respectively

The compounds suppressed the growth of S.
mutans and the biofilm community of this
bacterium

Zhou et al. (2013)

α- phellandrene Most ingredients of hydroxylated
sesquiterpenes in the Piper
barbatum kunth leaves EO

132 μg/mL The compound showed an antibacterial effect
against different microorganisms such as S.
mutans

Noriega et al. (2020)

Terpinen-4-ol (the major
component, 26.3%)

Lindera caesia 250
µg/mL

Potential in dental application for caries
prevention

Zaini et al. (2023)

Camphor (the major
component, 18.9%)

Rosmarinus officinalis 1,500
µg/mL

The EOs displayed low activity against the
selected microorganisms. The pure major
compounds were more active than the EO.

Bernardes et al. (2010)

Myrcene (the major
component, 59%)

Protium heptaphyllum 50
µg/mL

The leaf EOs displayed very promising activity
against S. mutans and Streptococcus mitis

Cabral et al. (2020)
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effect of carvacrol, the results of which all confirm the
antibacterial ability of this substance against S. mutans
(Botelho et al., 2007; Ciandrini et al., 2014; Baygar et al.,
2018; Pinna et al., 2019; Yazdanian et al., 2022). Babiano
et al. assessed the antibacterial efficacy of carvacrol against
pathogenic microorganisms responsible for oral infections,
including S. mutans and Streptococcus sanguinis. The findings
of their research indicated that sub-inhibitory concentration of
carvacrol impeded bacterial growth. Furthermore, the death
kinetics demonstrated a rapid and effective microbicide
activity at doses that impact planktonic bacteria similarly to
those shielded within their polymeric matrix. According to the
results of morphological changes obtained from microscopic
evaluation, the authors of this study explained the anti-
biofilm effect of carvacrol as follows: the mechanism of action
of carvacrol appears to be multifaceted, mostly contingent upon
the molecular structural characteristics, which include a free
hydroxyl group, a delocalized electron system, and hydrophobic
properties. Carvacrol may target the cytoplasmic membrane, so
affecting its development and functionality. Carvacrol’s
hydrophobic characteristics enable it to interact with the lipid
bilayer of the cytoplasmic membrane, positioning itself among
the fatty acid chains. This interaction destabilizes the membrane
structure, enhances fluidity, and increases permeability to
potassium ions and protons, ultimately leading to cell death
(Fernández-Babiano et al., 2022).

In line with this study, another experiment indicated that
carvacrol showed significant bactericidal and antibiofilm
properties against S. mutans and can serve as an eco-friendly
alternative for managing dental caries. Anti-biofilm findings
indicated that carvacrol diminished biofilm formation
capability. The authors proposed that this compound
contributes to the permeabilization and depolarization of the
cytoplasmic membrane, reducing the pH gradient across the
membrane. The reduction of the pH gradient disrupts the
proton motive force, resulting in decreased intracellular ATP
levels and, ultimately, cell death (Khan et al., 2017). In another
study, thymus essential oils downregulated several genes
encoding virulence factors associated with biofilm formation
and maintenance, including brpA, gbpB, gtfB, gtfC, gtfD, vicR,
spaP, and relA (Park et al., 2023). Collectively, results indicate
that carvacrol exhibits antibacterial action against S. mutans
and may be beneficial for preserving oral hygiene by
inhibiting bacterial proliferation. Further investigations are
recommended to enhance the understanding of this
compound’s interaction with oral bacterial biofilms and
its efficacy.

Finally, it is noteworthy that the interactions of other natural
compounds with S. mutans are presented in Table 3.

Conclusion

Recently published studies have focused on the role of
microorganisms in the pathogenesis of caries, but oral
bacterial resistance to newly developed antibacterial drugs is
a newer concern. Hence, it is urgent to develop new drugs that
inhibit bacterial QS and biofilm formation for antibacterial to

prevent dental caries. Due to the increasing microbial resistance
to existing antibiotics and the decline in the development of
new drugs, global interest in natural antiseptic products derived
from medicinal plants has grown. Previous studies have
shown that natural products are promising for developing
new anti-caries materials. In this review, natural compounds
showed inhibitory effects on S. mutans, one of the primary
causative agents of dental caries. These compounds reduced
the planktonic population of this bacterium and had a
remarkable effect on its biofilm population. However, these
compounds have poor pharmacodynamic properties. Hence,
novel drug delivery platforms can enhance their efficacy and
productivity. In addition, since S. mutans alone does not
cause caries and it develops caries with the help of other
microorganisms, future studies should be more focused on
investigating multi-species biofilms and optimizing the
delivery methodologies of these compounds. Given the
promising effects of these compounds, they could be used as
a supplement alongside conventional anti-caries drugs such
as fluoride or chlorhexidine. Combining these compounds
with other antimicrobial agents may lead to synergistic
effects and, in addition to enhancing overall efficacy, could
reduce the required dosage of conventional drugs and
possible side effects. Finally, although laboratory studies are
valuable, their results must be validated in vivo and clinical
settings to ensure their practical application in prevention
and treatment.
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