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The sequencing of the human genome in 2003 marked a transformative shift
from a one-size-fits-all approach to personalized medicine, emphasizing
patient-specific molecular and physiological characteristics. Advances in
sequencing technologies, from Sanger methods to Next-Generation
Sequencing (NGS), have generated vast genomic datasets, enabling the
development of tailored therapeutic strategies. Pharmacogenomics (PGx) has
played a pivotal role in elucidating how the genetic make-up influences inter-
individual variability in drug efficacy and toxicity discovering predictive and
prognostic biomarkers. However, challenges persist in interpreting
polymorphic variants and translating findings into clinical practice. Multi-omics
data integration and bioinformatics tools are essential for addressing these
complexities, uncovering novel molecular insights, and advancing precision
medicine. In this review, starting from our experience in PGx studies
performed by DMET microarray platform, we propose a guideline combining
machine learning, statistical, and network-based approaches to simplify and
better understand complex DMET PGx data analysis which can be adapted for
broader PGx applications, fostering accessibility to high-performance
bioinformatics, also for non-specialists. Moreover, we describe an example of
how bioinformatic tools can be used for a comprehensive integrative analysis
which could allow the translation of genetic insights into personalized
therapeutic strategies.
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1 Introduction

The sequencing of the human genome in 2003 revolutionized medicine, shifting from a
one-size-fits-all approach for disease treatment toward personalized medicine based on
patient-specific molecular and physiological characteristics, as well as susceptibility to
specific diseases or responsiveness to the same treatments. At the same time, advancements

OPEN ACCESS

EDITED BY

Mounir Tilaoui,
Waterford Institute of Technology, Ireland

REVIEWED BY

Andrea Orellana-Manzano,
Facultad de Ciencias de la Vida (FCV), Ecuador
Salvador F. Aliño,
University of Valencia, Spain
Zeina Nizar Al-Mahayri,
United Arab Emirates University, United Arab
Emirates

*CORRESPONDENCE

Mariamena Arbitrio,
mariamena.arbitrio@irib.cnr.it

Giuseppe Agapito,
agapito@unicz.it

†These authors have contributed equally to
this work

RECEIVED 20 December 2024
ACCEPTED 05 March 2025
PUBLISHED 11 April 2025

CITATION

Arbitrio M, Milano M, Lucibello M, Altomare E,
Staropoli N, Tassone P, Tagliaferri P,
Cannataro M and Agapito G (2025)
Bioinformatic challenges for
pharmacogenomic study: tools for genomic
data analysis.
Front. Pharmacol. 16:1548991.
doi: 10.3389/fphar.2025.1548991

COPYRIGHT

© 2025 Arbitrio, Milano, Lucibello, Altomare,
Staropoli, Tassone, Tagliaferri, Cannataro and
Agapito. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Methods
PUBLISHED 11 April 2025
DOI 10.3389/fphar.2025.1548991

https://www.frontiersin.org/articles/10.3389/fphar.2025.1548991/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1548991/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1548991/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1548991&domain=pdf&date_stamp=2025-04-11
mailto:mariamena.arbitrio@irib.cnr.it
mailto:mariamena.arbitrio@irib.cnr.it
mailto:agapito@unicz.it
mailto:agapito@unicz.it
https://doi.org/10.3389/fphar.2025.1548991
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1548991


in sequencing technologies—from the Sanger method and high-
throughput approaches to deep sequencing by Next-Generation
Sequencing (NGS)—have generated a vast amount of complex
genomic data, significantly improving personalized medicine
(Scionti et al., 2022). Consequently, new concepts in “omic
sciences” have been introduced and developed, including
genomics, transcriptomics, proteomics, and metabolomics,
enhancing our understanding of complex molecular interactions
at various biological system levels (Dai and Shen, 2022). In this
context, the study of inter-individual differences in drug efficacy and
toxicity in response to the same treatment has impacted several
therapeutic areas, including neurology, psychiatry, cardiology, and
analgesia, with significant implications for cancer treatment. These
innovations have facilitated a deeper understanding of cancer
heterogeneity and complexity at cellular and molecular levels,
enabling the identification of druggable gene aberrations and
predictive, diagnostic, and prognostic biomarkers that have
improved patient outcomes. Pharmacogenomics (PGx) helps
elucidate how inherited genetic backgrounds influence the
unpredictable inter-individual variability in drug response within
the framework of precision medicine (Arbitrio et al., 2023; Arbitrio
et al., 2021; Arbitrio et al., 2018; Arbitrio et al., 2022). PGx studies
have contributed to identifying genetic variants linked to patient
variability in drug response, particularly in pharmacokinetics (PK)
and pharmacodynamics (PD), leading to the discovery of “agnostic”
predictive and prognostic biomarkers. However, the clinical-grade
development of biomarkers requires a rigorous validation process
under stringent regulatory guidelines (Arbitrio et al., 2021). Despite
technological advancements that have improved patient sequencing
knowledge and data availability, analyzing and interpreting
polymorphic variants and translating them into clinical practice
remains a challenge. It requires interdisciplinary efforts for the large-
scale implementation of preemptive precision medicine programs
(Guzzi et al., 2016). The integration of large multi-omics datasets has
the potential to uncover complex molecular interactions and
pathways, paving the way for significant advancements in
personalized medicine, drug discovery, and disease mechanism
understanding. Achieving this goal necessitates using diverse
bioinformatics tools to build software pipelines tailored to
specific data types. These approaches enable researchers to
address challenges related to complexity, heterogeneity,
integration, and harmonization of high-throughput omics data.
Notably, no single analytical methodology is sufficient for
analyzing all available datasets, as a one-size-fits-all approach
rarely meets the intricate demands of multi-omics data analysis
(Pastrello et al., 2013).

Bioinformatics tools play a crucial role in managing, analyzing,
and interpreting large-scale and complex genomic datasets. These
tools facilitate the integration of diverse omics layers, allowing
researchers to bridge knowledge gaps and derive meaningful
biological insights. In PGx, analyzing genetic variants that
influence drug metabolism requires robust computational
methods. One widely used platform for this purpose was the
DMET (Drug Metabolism Enzymes and Transporters) Plus
microarray platform, developed by Thermo Fisher Scientific Inc
(Waltham, MA, United States), which studied 1,936 markers
recognized by the FDA for their role in drug metabolism
(Staropoli et al., 2022; Giannitrapani et al., 2024; Staropoli et al.,

2024). While the DMET console software provides raw data,
additional bioinformatics techniques are required for data
interpretation and clinically relevant insights.

To address this challenge, we have developed a comprehensive
guideline for analyzing genomic data, drawing from our experience
with DMET and SNP datasets. This process integrates multiple
analytical approaches, including statistical techniques, machine
learning algorithms, network analysis, and pathway enrichment
tools. By combining these methodologies, our approach enables
systematic, high-performance analysis, annotation, and integration
of PGx data, ensuring accessibility even for non-specialists in
bioinformatics. This structured workflow enhances the reliability
of PGx studies, promoting the translation of genetic insights into
actionable clinical decisions.

In this review, we emphasize the importance of PGx in clinical
practice and the necessity of bioinformatics approaches for
analyzing large-scale PGx datasets. Furthermore, to promote the
widespread adoption of bioinformatics in clinical settings, it is
essential to extract actionable knowledge from PGx repositories.
To this end, we present a selection of available PGx databases
curated and evaluated by experts. Additionally, we introduce
existing network-based bioinformatics tools and present a
carefully curated selection of machine learning, statistical
frameworks, and pathway enrichment analysis approaches to
analyze complex DMET PGx data. In addition, a general
protocol for PGx dataset analysis is provided, demonstrating how
bioinformatics can be leveraged to enhance precision medicine.
Moreover, we discuss how the integration between bioinformatics
and PGx can contribute to precision medicine.

2 Implementation of PGx knowledge
into clinical practice

Polymorphic variants in drug-metabolizing enzymes and
transporters (ADME genes), such as phase 1 CYP450 enzymes
(e.g., CYP3A4, CYP2C8, CYP2D6), phase 2 enzymes [e.g.,
Uridine 5′-diphospho-glucuronosyltransferases (UGTs), aldehyde
oxidase (AO), N-acetyltransferase (NAT), flavin monooxygenase
(FMO)] and transporters [e.g., ATP binding cassette (ABC), Breast
Cancer Resistance Protein (BCRP), organic anion transporting
polypeptides (OATPs), Solute carrier transporters (SLC)] could
contribute substantially to PK/PD variability. PGX studies
highlight the role of polymorphisms in ADME genes in the
modulation of the exposure, efficacy, and safety of a drug,
suggesting dose adjustments and recommendations for specific
populations. Regulatory agencies like the FDA, EMA have
recognized and inserted in the drug labeling PGx information
related to strong genotype-phenotype evidence, to follow for
therapeutic management (Arbitrio et al., 2021). The most
common ADME germline variants, inducible and/or
polymorphic, involved in impaired or enhanced drug
biotransformation are single nucleotide polymorphisms (SNPs),
copy number variations (CNVs), insertions, deletions and a
variable number of tandem repeats (Ismail and Essawi, 2012).
SNPs are common inherited variations (> 1%) among people
located in haplotype blocks separated by areas of hyper-
recombination sites (Hot Spot) and in strong Linkage
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Disequilibrium (LD) with specific polymorphic variants in other
ADME genes, which can be used as markers of a particular
haplotype (Tag-SNPs) (Huang et al., 2006; Arbitrio et al., 2018).
Well-known examples of relevant SNPs in metabolic enzymes and
transporters associated with recommendations for dose
modification are CYP2C19*17, associated with bleeding during
clopidogrel therapy, and VKORC1 variants associated with
warfarin resistance; DPYD variants (DPYD*2A (c.1905+1G>A),
c.2846A>T: loss-of-function), correlated to toxicity risk of 5-
fluorouracil or capecitabine; TPMT variants (TPMT*2, *3A, *3C:
reduced activity) linked to thiopurine-induced myelosuppression,
UGT1A*28, associated to gastrointestinal irinotecan toxicity;
SLCO1B1*5 variant correlated to high risk for simvastatin
toxicity; ABCG2 (BCRP) variants (c.421C>A (Q141K): reduced
activity) linked to chemoresistance or HLA-B*5,701 associated to
the risk of abacavir hypersensitivity.

Until now, in clinical practice, according to regulatory
guidelines, the PGX test for the research of genetic
polymorphisms is highly suggested before starting therapy with
these drugs. All information and data/recommendations on allelic
variants of ADME genes are rigorously curated and evaluated by
experts and available in comprehensive databases and resources,
updated periodically, and freely available, such as the
pharmacogenomics knowledge implementation (PharmGKB)

(Thorn et al., 2005), the Clinical Pharmacogenetics
Implementation Consortium (CPIC) (Relling et al., 2020) in
United States and the Dutch Pharmacogenetics Working Group
(Bank et al., 2018) (Europe, E and Netherlands, NL), the dbSNP
(Sherry et al., 2001) (Database of Single Nucleotide
Polymorphisms), the PharmVar (Gaedigk et al., 2021)
(Pharmacogene Variation Consortium)and DrugBank (Wishart
et al., 2018). These databases provide curated information on
gene-drug interactions, allelic variants, and clinical guidelines in
the perspective of precision medicine with specific characteristics
and differences, as reported in Table 1.

Table 2 summarizes for each mentioned database the number of
Clinical Annotations, VIPs, and Variants provided.

To effectively visualize the data, we apply a logarithm base
2 (log2) transformation to address the significant differences in
magnitude among various databases. The dataset ranges from
15 variant annotations (PharmVar) to over 2 million clinical
annotations (dbSNP), which leads to high skewness. Without
transformation, smaller values would be nearly imperceptible
against larger ones. The log2 transformation compresses large
values while maintaining relative differences, enhancing
comparison across datasets. By using log2, we improve the
readability and interpretability of the data, making variations
across all categories clear in a single graphical representation.

TABLE 1 Databases features.

Database Focus Features Strengths Limitations

PharmGKB PGx knowledge base Drug-gene pairs, guidelines,
pathway maps

Comprehensive, links to CPIC Limited to well-studied variants

CPIC
(United States)

Clinical implementation Dosing guidelines based on variants Actionable recommendations Limited gene-drug pairs

DPWG (E, NL) PGx guideline for
clinical use

Dosing guidelines based on variants Actionable recommendations Dutch healthcare system, limited scope in gene-
drug pairs

dbSNP Genetic variants SNP details, phenotype links Comprehensive variants
database

No drug-specific data

DrugBank Drug data Drug actions, targets, PGx
interactions

Broad scope, detailed drug
profiles

Limited focus on PGx

PharmVar Pharmacogene variants Star allele nomenclature Standardized allele
information

Limited number of genes

The table points out the focus, the features, the strengths, and the limitations of each listed database.

TABLE 2 Database statistics.

Database CA VIPs VA log2 (CA) log2 (VIPs) log2 (VA)

PharmGKB 5,180.00 34.00 28,298.00 12.34 5.09 14.79

CPIC 0.00 0.00 0.00 0 0 0

DPWG 0.00 0.00 0.00 0 0 0

dbSNP 2,076,313.00 0.00 2,618.00 20.99 0 11.35

DrugBank 2,812.00 0.00 5,467.00 11.46 0 12.42

PharmVar 0.00 0.00 15.00 0 0 3.91

Database statistics for Clinical Annotations, VIPs, and Variants. PharmGKB has the highest variant annotations (28,298). dbSNP has the largest number of clinical annotations (over 2 million).

DrugBank contains 2,812 clinical annotations and 5,467 variant annotations. CPIC and DPWG do not contain clinical or variant annotations because they provide clinical and therapeutic

recommendations. In the table, CA means Clinical Annotations, VIP is short for mean Very Important Pharmacogenes and VA indicates Variant Annotations.
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Figure 1 visualizes the number of Clinical Annotations, VIPs, and
Variant Annotations for each database.

The PharmGKB (http://www.pharmgkb.org/) is a
comprehensive database on gene-drug interactions, allelic
variants, annotations on critical pharmacogenetic (VIP), drug
pathways, and their relationship with drug response as well as
ADRs to help researchers understand how polymorphic variants
can affect drug PK or PD. All data and each annotation are mainly
derived from PGx studies integrating information from the CPIC to
provide drug-dosing guidelines according to personal genotype.

The CPIC (https://cpicpgx.org/) aims to provide actionable
recommendations for drug dosing based on genetic variants,
especially on pharmacogenes, with strong evidence, giving
practice guidelines to allow the introduction of PGx research into
clinical practice. All information is collected from biological
research to clinical studies and incorporated into the guidelines,
linking genotypes with phenotypes to help clinicians understand
how a genetic test can optimize drug therapy.

The DPWG (www.knmp.nl) is a leading organization that gives
guidelines to integrate pharmacogenomics tests into clinical practice
with actionable recommendations in PGx practices in Europe but
with a strong focus on the Netherlands. Its primary focus is to
optimize drug therapy, suggesting whether and when genetic testing
should be conducted. Compared to CPIC, DPWGmay lack depth in
specific less-studied gene-drug pairs. By collaborating with other
international consortia, the DPWG contributes to harmonizing
guidelines.

The DrugBank (https://go.drugbank.com) is a comprehensive
resource that provides information on mechanisms, pharmacology,

PGx, drug-food and drug-drug interactions and targets of selected
FDA-approved drugs. This database helps understand drug
mechanisms and targets, facilitating silico drug design. In
comparison, PharmGKB is specialized in PGx-specific annotations.

The dbSNP database (http://www.ncbi.nlm.nih.gov/SNP) is a
dense, central, public repository catalog of genetic variants,
including SNPs, constructed by the National Center for
Biotechnology Information (NCBI) in collaboration with the
National Human Genome Research Institute (NHGRI). However,
the database does not provide specific drug-gene interactions data.

The PharmVar Consortium (https://www.pharmavar.org) is the
new data repository for PGx gene nomenclature to catalog a limited
number of allelic variants of ADME genes which provide a universal
star (*) nomenclature and serve as a centralized “Next-Generation”
Pharmacogene Variation data repository for genes involved in drug
metabolism as well as for genes contributing to drug transport and
response. PharmVar provides several graphical display functions
and custom tables showing genes or gene regions of interest for
SNPs that are important for interpreting genotyping results.

Although there is objective evidence that ADME genotyping
significantly contributes to the appropriate and safe prescription of
drugs, the preemptive introduction of PGx in clinical daily practice
is still very low. Genetic testing is routinely used only for drugs with
labeling recommendations. Although clinicians might be supported
by PGX guidelines developed after multidisciplinary efforts, several
other barriers (ethical, legal, social) must be overcome. All efforts
that can be made to demonstrate the usefulness and cost-
effectiveness of the PGx test in routine practice could represent
essential advantages for human health. Moreover, bioinformatic

FIGURE 1
Normalized comparison of the mentioned databases, highlighting their relative strengths regarding the number of Clinical Annotations, Very
Important Pharmacogenes (VIPs), and Variant Annotations for each database.
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integration by algorithms of both clinical and genetic factors in drug
prescribing could significantly help PGx implementation.

3 Statistical and machine learning tools
for PGx

The increasing availability of genomic, clinical, and
pharmacological data has driven the integration of machine
learning (ML) techniques to uncover complex patterns and
improve predictive models for drug efficacy and adverse
reactions. ML tools play a crucialrole in PGx by identifying
genetic biomarkers, optimizing drug selection, and predicting
patient-specific treatment outcomes. This section explores key
machine learning methodologies applied in PGx, ranging from
traditional statistical models to advanced deep learning
frameworks, highlighting their contributions, challenges, and
future directions in precision medicine.

3.1 Statistical framework to analyze
DMET data

DMET-Analyzer (Guzzi et al., 2012) is an advanced tool
designed to streamline the analysis of drug metabolism and
transport data obtained from the DMET microarray assay.
DMET-Analyzer can be freely downloaded at https://sourceforge.
net/projects/dmetanalyzer/files/. By automating the association
analysis between genetic variations (SNPs) and clinical
conditions, particularly drug responses, it simplifies complex
workflows, minimizes errors, and delivers fast, accurate results. A
key strength of the DMET-Analyzer is its ability to efficiently
process large datasets while automatically annotating significant
SNPs and linking them to external databases like dbSNP and
PharmaGKB. This feature enhances biological insights and
ensures access to up-to-date scientific knowledge. Additionally,
its user-friendly interface allows even non-specialists to perform
statistical tests, such as Fisher’s exact test and Hardy-Weinberg
equilibrium calculations, with ease. The tool identifies genetic
markers associated with drug efficacy and adverse reactions,
supports SNP visualization through heatmaps, and employs
robust statistical corrections like Bonferroni and False Discovery
Rate adjustments.

CoreSNP (Guzzi et al., 2013) is the parallel version of DMET-
Analyzer. It focuses on massively statistical analysis of SNP data,
introducing advanced features such as parallel execution of
preprocessing and statistical computations, enabling faster
handling of large datasets. CoreSNP automates the entire
workflow, from managing microarray input files to conducting
statistical association tests like the Fisher test, making it more
accessible to biologists while retaining high scalability and efficiency.

Cloud4SNP (Agapito et al., 2013) is a cloud-DMET-Analyzer
version, a bioinformatics tool designed for parallel processing and
statistical analysis of Single Nucleotide Polymorphisms (SNPs) data,
with a focus on PGx. It efficiently manages large-scale PGx datasets,
addressing computational challenges in analyzing genetic variations
and drug responses. As a Software-as-a-Service (SaaS) solution,
Cloud4SNP eliminates the need for local installations, offering a

web-based interface that broadens access to high-performance
computing resources. This democratizes PGx research, benefiting
smaller research groups, while also introducing challenges related to
sensitive data security in healthcare organizations (Agapito and
Cannataro, 2023).

OSAnalyzer (Agapito et al., 2016) is a bioinformatics tool
designed to analyze single polymorphisms and their correlation
with clinical outcomes, particularly in cancer patient data. It is
optimized for processing large omics datasets that assess gene
variants involved in drug metabolism. OSAnalyzer features a
powerful visualization engine for Kaplan-Meier curves and
statistical metrics such as medians, hazard ratios, and log-rank
tests to evaluate overall survival (OS) outcomes. It supports
multiple data formats, including Excel and CSV, facilitating
seamless data integration. The tool automates survival analysis by
computing and visualizing survival curves for genetic variants,
presenting results in an intuitive manner. By integrating clinical
annotations, OSAnalyzer establishes connections between genetic
variants and patient outcomes, including OS and Progression-
Free Survival (PFS). Users can prioritize findings by ranking
probes based on p-values, enabling the identification of clinically
significant variants. Additionally, OSAnalyzer enhances
interpretation by linking genomic data with external resources
such as dbSNP and PharmaGKB. The tool streamlines data
preprocessing, allowing users to rapidly derive actionable
insights while ensuring accuracy and reproducibility.
OSAnalyzer is available for download at: https://sites.google.
com/site/overallsurvivalanalyzer/home.

Researchers can utilize the specific framework for her/his needs
to identify critical genetic variants affecting drug efficacy, while
clinicians can leverage this information to customize treatments
based on patients’ genetic profiles, reducing side effects and
enhancing therapeutic effectiveness.

3.2 Data mining framework to analyze
DMET data

DMET-Miner (Agapito et al., 2015) is a software platform
specifically designed to analyze PGx data generated by the
Affymetrix DMET platform. DMET-Miner is available for
download at https://sites.google.com/site/dmetminer/related-work.
Its core functionality lies in the efficient discovery of association
rules that highlight multifactorial links among single nucleotide
polymorphisms (SNPs) and their correlation with clinical
conditions. Unlike its predecessor, DMET-Analyzer, which was
limited to identifying individual genetic variants, DMET-Miner
employs advanced data mining methodologies to uncover
complex relationships among multiple SNPs.

DMET-Miner investigates DMET datasets using frequent
itemset mining and optimized association rule extraction. By
implementing an enhanced FP-Growth algorithm, DMET-Miner
excels in handling high-dimensional datasets, reducing execution
time and memory consumption while maintaining the biological
relevance of its findings. It also seamlessly integrates with external
genomic databases such as dbSNP and PharmaGKB, offering
enriched annotations and broader contextual understanding of
the extracted rules. DMET-Miner’s user-graphic interface and
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advanced algorithms streamline data interpretation, enabling users
to quickly identify clinically significant genetic markers and their
potential impact on drug efficacy or adverse reactions. DMET-
Miner can be used in various real-world scenarios, such as drug
development, to identify genetic factors and multifactorial
relationships that contribute to variability in drug responses. This
capability enables the design of safer and more effective
pharmaceuticals.

PARES (Parallel Association Rules Extractor from SNPs)
(Agapito et al., 2019) and BalancedPARES (BPARES) (Agapito
et al., 2021) are an optimized parallel implementation of DMET-
Miner, designed to efficiently process genomic data. The PARES and
BPARES applications can be downloaded from the following links
https://sites.google.com/site/pareswebsite/. In addition,
CloudDmet-Miner, an adaptation of DMET-Miner for Amazon
Server less Lambda, facilitates efficient SNP dataset analysis on
AWS (Crespo-Cepeda et al., 2019). It utilizes serverless
computing for dynamic resource scaling and parallel processing,
leading to reduced execution times.

In clinical settings, it aids in customizing treatments by
integrating genetic profiles to minimize adverse drug reactions
and optimize therapeutic outcomes. For academic researchers,
DMET-Miner is a powerful tool for exploring single and
multifactorial genetic influences on pharmacokinetics and
pharmacodynamics.

Table 3 summarizing the main characteristics between DMET-
Analyzer, DMET-Miner, and OSAnalyzer in terms of their features,
usage, and capabilities.

4Network analysis in pharmacogenomics

Network analysis is a branch of network science focused on the
study of complex networks. To investigate intricate relationships,
network analysis employs theories and methods from various
research domains (Milano and Cannataro, 2023). Networks and
network analysis methods are foundational in computational
biology and bioinformatics, where they are increasingly applied
to study biological and clinical data in an integrative manner.

Specifically, network analysis comprises a suite of techniques
with an unified methodological perspective, enabling the depiction
of relationships among entities and the analysis of emergent
structures from the recurrence of these relationships. The core
assumption is that analyzing these interconnections yields more
comprehensive explanations of diverse phenomena. One prominent

method in network analysis is community detection (Fortunato and
Hric, 2016).

Community detection is a major area of research across various
complex systems, including biology, sociology, medicine, and
transportation (Lancichinetti and Fortunato, 2012; Gligorijević
et al., 2016). Community structures, defined as groups of nodes
that are more densely connected than the rest of the network, are
particularly significant for understanding the functionality and
organization of complex systems modeled as networks (Fortunato
and Hric, 2016). Communities are expected to play critical roles in
the relationship between structure and function.

For example, in biological networks such as Protein-Protein
Interaction (PPI) networks, communities often represent proteins
involved in similar functions. In neuroscience, communities
detected in brain networks correspond to regions of interest
(ROIs) active during specific tasks. In social networks,
communities represent groups such as friends or colleagues. On
the World Wide Web, communities are often groups of web pages
sharing the same topic (Wang et al., 2018). As a result, discovering
communities in such systems has become a compelling approach to
understanding how network structures relate to system behaviors.

In recent years, network analysis has gained prominence in PGx
(Zhou and Lauschke, 2020; Shiota et al., 2008). By providing a
powerful framework for modeling data, network analysis enables
researchers to analyze and interpret complex interactions between
genes, proteins, and drugs. This facilitates the uncovering of
underlying biological mechanisms, identification of potential drug
targets and biomarkers, promotion of drug repurposing, and
support for personalized medicine approaches. Applications of
network analysis in PGx encompass several transformative areas,
offering a robust framework for understanding complex biological
interactions. One key application is the identification of drug targets.
By constructing biological networks that integrate diverse data
sources, such as protein-protein interactions, gene expression
profiles, and pathway information, network analysis allows for
the identification of crucial genes or proteins within disease
pathways or drug response mechanisms. Topological analyses
and the identification of key nodes or modules within these
networks provide valuable insights that can guide the
development of targeted therapies (Kushwaha and Shakya, 2010;
Hasan et al., 2012; Iorio et al., 2010).

Another important application is biomarker discovery. By
integrating genomic and clinical data, researchers can create
networks that capture relationships between genetic variations,
clinical phenotypes, and drug responses. These networks can

TABLE 3 Statistical and ML tools features.

Tool Function Data input Output Key features Use case

DMET-
Analyzer

Statistical Analysis of DMET data for
pharmacogenomics research

DMET array
data

statistical relevant
probes

Focuses on genotyping data
from DMET chips

Identifying single genetic variations
affecting drug metabolism and efficacy

DMET-
Miner

Facilitates mining and interpretation of
pharmacogenomic data from DMET
arrays

DMET array
data

Multiple association
data

Emphasis on association rule
mining

Researching correlations between
multiple genetic variations and drug
responses

OSAnalyzer Performs OS analysis using DMET data
annotated with clinical information

DMET
annotated
data set

OS curves sorted by
p-value significance

Enables OS analysis of
DMET data annotated with
survival data

Exploration of pharmacogenomic
impacts on patient outcomes

Main characteristics of DMET-Analyzer, DMET-Miner, and OSAnalyzer.
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highlight specific modules or subnetworks strongly associated with
particular drug responses, facilitating the identification of
biomarkers that enable personalized medicine approaches
(Giacomini et al., 2007).

Network analysis also plays a significant role in pathway analysis
by revealing interconnected biological pathways and processes
affected by genetic variations or drug treatments. Mapping
genetic variants onto biological networks enables researchers to
identify pathways enriched with these variants, providing deeper
insights into molecular mechanisms and highlighting potential
targets for therapeutic intervention (Milano et al., 2022a).

Moreover, network analysis supports drug repurposing efforts
and the identification of off-target effects. By examining the
interactions between drugs, genes, and diseases within a network
context, researchers can uncover potential secondary uses for
existing drugs or identify unintended effects that may arise
during treatment (Lotfi Shahreza et al., 2018).

Finally, network analysis facilitates advancements in personalized
medicine by incorporating patient-specific genetic and clinical data into
networks. This integrative approach enables the development of tailored
treatment strategies, addressing individual patient needs and improving
therapeutic outcomes. The increasing complexity of real-world systems
has prompted the development of multilayer networks as an extension
of traditional graph theory. Classical network approaches often fail to
comprehensively capture the intricacies of many systems, necessitating
more advanced frameworks (Boccaletti et al., 2014; Milano
et al., 2022b).

Multilayer networks provide a richer and more realistic
representation of systems with multiple types of relationships.
This approach enables the analysis and understanding of
dynamics and behaviors of interconnected entities in a more
nuanced way (Kinsley et al., 2020).

Multilayer network analysis allows the study of properties and
phenomena not easily captured by traditional methods. For
example, it enables examination of interdependencies,
correlations, and patterns across different layers. Insights can
include how layers influence each other, system resilience, the
spread of information or diseases, and the identification of key
nodes or communities in multilayered systems (Milano et al., 2023).

4.1 Network alignment algorithms for
pharmacogenomics

Network alignment (NA) is a computational technique
widely used for comparative analysis of PPI networks between
species, in order to predict evolutionary conserved components
or sub-structures in a system data level. Network alignment is a
common problem that requires to search a node mapping that
best fits one network into another network. Here we reported two
aligment algorithm that can be applied to
pharmacogenomics data.

4.2 L-HetNEtAligner

L-HetNEtAligner Milano et al. (2020) is an advanced algorithm
for aligning multilayer heterogeneous networks, addressing the

complexity of such networks by incorporating both topological
and semantic information from multiple layers. The algorithm
combines structural alignment, which evaluates the similarity of
node neighborhoods and interconnections across layers, with
semantic alignment, leveraging node attributes such as functional
annotations, biological roles, or other relevant metadata. This dual-
focus approach ensures that the alignment is both structurally
consistent and contextually meaningful.

The process begins by computing initial similarity scores
between nodes based on their topological properties and
semantic attributes. These scores are integrated into an objective
function designed to balance the contributions of topology and
semantics. L-HetNEtAligner then employs an iterative optimization
procedure to refine the alignments, updating the similarity scores to
account for newly discovered relationships and enforcing
constraints to preserve the structural and multilayered nature of
the networks.

A key strength of L-HetNEtAligner is its ability to align nodes
even when there is limited overlap in node attributes or when the
topologies of the layers vary significantly. This capability makes it
particularly suitable for applications in computational biology and
bioinformatics, such as aligning molecular interaction networks,
discovering conserved pathways across species, or integrating
multimodal data in systems biology. Furthermore, the algorithm
is scalable and can handle large, complex networks efficiently,
providing a valuable tool for exploring the relationships and
conserved patterns in heterogeneous systems.

4.3 MuLAN

MuLAN (Multilayer Network Alignment) Milano et al. (2024) is
an algorithm specifically tailored for aligning multilayer networks
that capture the complexity of real-world systems with multiple
types of nodes and edges. MuLAN integrates information from both
the intralayer and interlayer connections to establish alignments
between nodes across networks. The algorithm employs a novel
scoring system that combines topological similarity, based on
network structure, with attribute-based similarity, considering
node labels or properties.

The alignment process in MuLAN starts by constructing similarity
matrices for each layer, where nodes are compared based on their local
and global network properties, such as degree and centrality, as well as
their connections across layers. These matrices are then iteratively
refined using a heuristic optimization strategy that ensures
consistency in alignments across layers and maximizes an objective
function designed to preserve the structural and functional relationships
of the original networks.

Ability of MuLAN to simultaneously handle multiple types of
interactions and heterogeneity makes it highly effective for
applications in biology, such as aligning multilayer molecular
networks to identify conserved pathways, comparing
interactomes across species, or integrating multi-omics datasets.
The algorithm’s scalability and adaptability also allow it to be
applied to other domains, such as social networks or
transportation systems, where multilayer structures are prevalent.

MuLAN has significant biological relevance, as it enables the
systematic comparison and integration of complex biological
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systems represented as multilayer networks. In the context of
systems biology, many phenomena involve interactions at
multiple levels, such as protein-protein interactions, gene
regulatory networks, metabolic pathways, and phenotypic traits.
MuLAN’s ability to align these multilayer networks provides a
powerful framework for uncovering conserved patterns,
functional modules, and cross-species relationships that might
otherwise remain hidden.

One of the primary applications of MuLAN in biology is the
identification of conserved pathways across species. By aligning
multilayer molecular networks, MuLAN can detect functional
modules or signaling cascades that are preserved evolutionarily,
offering insights into fundamental biological processes. These
conserved elements can guide the identification of key regulatory
mechanisms or essential genes involved in critical cellular functions.

In addition to evolutionary studies, MuLAN has proven valuable
in integrating multi-omics data. By aligning networks that
incorporate different layers of biological information, such as
transcriptomics, proteomics, and metabolomics, MuLAN
facilitates the discovery of cross-layer interactions that contribute
to complex traits or diseases. This integrative approach can reveal
novel gene-disease associations, highlight biomarkers for disease
diagnosis, or identify candidate genes for drug targeting.

Furthermore, MuLAN’s capacity to analyze heterogeneous
biological networks makes it particularly relevant for precision
medicine. For example, aligning patient-specific networks to
reference models can uncover individual variations in molecular
interactions, aiding in personalized treatment strategies. Similarly,
by aligning drug-target interaction networks with disease-specific
molecular networks, MuLAN can predict potential drug
repurposing opportunities or identify off-target effects.

Overall, MuLAN provides a comprehensive and scalable tool for
leveraging multilayer network data to generate biological
knowledge, offering a pathway to better understand the
interconnected nature of molecular systems, uncover conserved
biological principles, and translate these insights into practical
applications in medicine and biotechnology.

Table 4 summarizing the main characteristics of
L-HetNEtAligner and MuLAN in terms of their features, usage,
and capabilities.

5 Pathway enrichment analysis for
pharmacogenomics

Pathway Enrichment Analysis (PEA) is a computational approach
used to identify biological pathways that are significantly associatedwith

a given set of genes or proteins. By leveraging curated pathway
databases, such as KEGG (Kanehisa et al., 2017), Reactome
(Fabregat et al., 2018), or BioCarta (Nishimura, 2001), PEA helps to
uncover functional relationships and molecular mechanisms
underlying complex biological functions. This method statistically
evaluates whether a predefined group of genes, such as those
differentially expressed in a study, is overrepresented in specific
pathways compared to random distribution. PEA is widely used in
PGx to interpret genetic variants’ impact on drug metabolism, toxicity,
and efficacy, ultimately aiding in developing personalized therapeutic
strategies.

5.1 BiP

BioPAX-Parser (BiP) (Agapito et al., 2020) is a software tool designed
to streamline the exploration and enrichment analysis of biological
pathways encoded in the BioPAX format. BiP application is available
at https://gitlab.com/giuseppeagapito/bip. Unlike other tools, BiP
provides a user-friendly graphical interface, eliminating the need for
extensive programming skills to parse or analyze pathways. It enables
users to easily extract and annotate pathway data, identifying associated
genes and proteins. BiP can conduct pathway enrichment analysis (PEA)
using data from various BioPAX-compliant databases. It employs
statistical methods, including hypergeometric tests, to enrich gene
lists. Additionally, BiP incorporates several statistical correction
methods to minimize type I and II errors caused by multiple
comparisons, such as false discovery rates (FDR) and the Bonferroni
correction, ensuring accurate enrichment results. BiP is designed for
efficiency, employing advanced data management techniques and multi-
threaded processing to ensure fast and scalable analyses. Its intuitive
interface makes it accessible to non-programmers, allowing users to
visualize, explore, and analyze pathway components effortlessly, all while
supporting a wide range of data formats and sources.

5.2 PathDIP

PathDIP (Rahmati et al., 2017) is a comprehensive and integrative
pathway database designed to facilitate the analysis of biological networks
across multiple species, including humans, model organisms, and
domesticated animals. By consolidating core pathways from major
curated databases and incorporating gene-pathway associations
inferred from physical protein interactions, PathDIP enhances the
understanding of molecular processes underlying various biological
functions and diseases. The platform allows users to input proteins or
genes, specify an organism, and select a preferred database for analysis,

TABLE 4 Alignment tools features.

Tool Function Data input Output Key features Use case

L-HetNEtAligner Alignment of
Heterogeous
Networks

Heterogeous
Networks

Local Alignment
as modules

Focuses on heterogeneous data
such as gene, protein, diseases

Discovering groups of related entities should have a
similar biological role or share some functions

MuLAN Alignment of
Multilayer Networks

Multilayer
Networks

Local Alignment
as modules

Focuses on multilayer system such
as gene, protein, diseases and
drugs

Discovering candidate drug-disease associations
and, consequently, of extracting new knowledge
from multilayer networks

Main characteristics of L-HetNEtAligner and MuLAN.
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making it a flexible and user-friendly tool for pathway exploration. It is
freely accessible at http://ophid.utoronto.ca/pathDIP. PathDIP generates
pathway enrichment results and functional annotations, which are
provided in a structured tab-separated format for easy downstream
analysis. These results can be visualized as interactive diagrams or
tables, facilitating intuitive data interpretation. The platform supports
multiple programming environments, including Java, R, and Python,
enabling seamless integration into diverse bioinformatics pipelines. By
aggregating data from numerous well-established pathway databases,
PathDIP offers a robust resource for conducting pathway enrichment
analysis, revealing intricate molecular interactions, and elucidating
biological mechanisms relevant to pharmacogenomics, precision
medicine, and disease research.

5.3 GSEA

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2007)
is a widely used computational method for identifying biologically
meaningful patterns in gene expression data. It is designed to analyze
datasets with two predefined classes, such as Responder vs Non-
Responder or Treated vs Non-Treated, making it particularly useful
for differential expression studies. GSEA is best suited for cases where
ranks for all genes in a dataset are available, allowing for robust

statistical enrichment analysis. The tool is freely accessible at https://
www.gsea-msigdb.org/gsea/login.jsp. GSEA features both a user-
friendly graphical interface for non-programmers and a command-
line interface for bioinformatics experts, ensuring accessibility across
different levels of expertise. It supports various input and output
formats, enabling seamless integration with diverse bioinformatics
workflows. The core analysis methodology relies on enrichment
scores to assess the overrepresentation of specific gene sets and
employs multiple testing correction methods to enhance statistical
reliability. Additionally, GSEA retrieves pathway annotations from
several well-established databases. It also allows users to incorporate
custom pathway databases in Gene Matrix Transposed (GMT) format,
offering flexibility for domain-specific research.

Table 5 summarizes the main characteristics of BiP, PathDip
and GSEA in terms of their features, usage, and capabilities.

6 A comprehensive user guidelines to
perform PGx data analysis

Pharmacogenomic (PGx) data analysis involves identifying
genetic variations that affect drug metabolism, efficacy, and
toxicity. Below is a general step-by-step guide to performing a
comprehensive PGx data analysis.

TABLE 5 Pathway enrichment tools features.

Tool Function Data input Output Key features

BiP Parses and analyzes BioPAX
pathway data

BioPAX (XML format) +
gene lists

Pathway components,
network structures

Multi-threaded processing, intuitive visualization, pathway
enrichment analysis

PathDIP Integrates and predicts gene-
pathway associations

Protein/gene lists Enrichment results, pathway
annotations

Combines curated pathways with computational predictions,
supports multiple organisms

GSEA Identifies enriched gene sets in
expression data

Gene expression matrices +
class labels

Ranked gene sets, enrichment
scores

Uses enrichment scores and multiple correction methods,
supports predefined/custom gene sets

Comparison of BiP, PathDIP, and GSEA in terms of their features, usage, and capabilities.

FIGURE 2
The graphical representation of the PGx data analysis guidelines.
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1. Data retrieval regards the collection of raw genomic data
obtained from various genotyping platforms like DMET
chips, SNP microarrays and whole-genome sequencing.
Following data collection, rigorous quality control (QC)
measures must be applied. This involves checking the
dataset for missing genotype calls, which can affect the
reliability of downstream analyses. Low-quality samples or
genetic markers with low call rates should be filtered out to
maintain the integrity of the dataset. The final step in data
preparation is the standardization of input formats. Raw data
must be converted into universally recognized formats such as
Variant Call Format (VCF), textual tables of SNPs comma-
separated value (CSV), or formats compatible with tools like
PLINK. This standardization ensures interoperability between
various analysis tools and facilitates seamless downstream
analyses, enabling accurate and reproducible results.

2. PGx-Related SNPs identification. The analysis begins with
exploratory data analysis, i.e., data preprocessing, which
provides an overview of the dataset’s structure, distribution
of variables, and potential anomalies. This phase often includes
visualizing genotype frequencies, identifying and handling
missing data, filter low quality samples, detection and
removing of duplicated samples, checking and imputation of
missing genotype calls. After data preprocessing, statistical,
machine learning or both analysis can be conducted to identify
significant associations between genetic variants and
drug response.
a. Statistical tests can be conducted using manual

methodology like Fisher’s Test, chi-squared test or using
software framework like DMET-Analyzer, cloud4SNP or
OSAnalyzer to automatically figure out significant statistical
association between genetic variants and the phenomena
under investigation.

b. ML methods enhance the ability to detect complex patterns
and interactions within PGx datasets. Supervised learning
models such as support vector machines (SVMs), random
forests, neural networks can be trained to predict
phenotypic outcomes or classify individuals based on
their genetic profiles. For unsupervised learning tasks,
clustering, association rules implemented in DMET-
Miner may be applied to identify multiple genetic or
phenotypic characteristics.

Obtaining as a result a list of genotypic data genes, SNPs
affecting the phenotype and the drug response or the
adverse responses.

3. Network Analysis. The previously identified genes or SNPs can
serve as the foundation for conducting a network analysis, a robust
approach for uncovering biological interactions. This involves
mapping these genes ontomolecular interaction databases such as
STRING or Reactome to explore their roles within the broader
biological network. To enhance the relevance of the network, the
immediate neighbors of these DMET genes are identified through
network alignment. This process expands the initial set of genes to
include first-order interactions, which are essential for
contextualizing their biological functions. Network alignment is
a critical step that provides insights into how these genes operate

within interconnected pathways. Network alignment ca be
performed in two different ways:
a. Global network alignment aims to find a one-to-one

mapping between all nodes of two networks. The
primary goal is to maximize the overall similarity of the
aligned networks, focusing on preserving structural and
functional relationships across the entire network.

b. Local network alignment focuses on identifying smaller,
highly similar substructures between networks. Unlike
global alignment, it does not aim to map all nodes but
rather seeks to find regions of high similarity.

4. Pathway enrichment analysis (PEA) identifies biological
pathways that are significantly overrepresented within the
network of neighboring genes. This network is refined by
applying filters to eliminate redundant genes and
interactions with low confidence or limited biological
relevance, thereby ensuring that only meaningful
associations are retained. Tools such as BiP, PathDIP,
StringAPP, and Reactome can be employed to perform PEA
effectively. The analysis outputs a list of key biological
pathways directly linked to drug metabolism and transport
processes, highlighting pathways that show statistically
significant enrichment beyond what would be expected by
chance. This approach facilitates the identification of critical
hubs and novel pathways that may influence drug response,
contributing to a deeper understanding of the PGx landscape.

Figure 2 illustrates the key steps of the PGx data analysis
guidelines through a graphical representation.

Finally, the results are interpreted in the context of existing
biological knowledge and clinical guidelines. This involves mapping
significant genetic variants to PGx databases such as PharmGKB
or ClinVar and integrating findings with pathway analyses to
provide a mechanistic understanding of drug-gene interactions.
These steps collectively form a comprehensive framework for
leveraging statistical and machine learning approaches in
pharmacogenomics, enabling the translation of genetic insights
into personalized therapeutic strategies.

6.1 Integrative analysis of genomic data
using bioinformatic platforms: a real use
case of the methodology

In this section we present an example of integrated analysis of
identified SNPs correlated to taxane-related peripheral neurotoxicity
(TrPN) in a retrospective case-control study on breast cancer (BC)
patients (Arbitrio et al., 2019) based on the guidelines above described.
Using DMET genotyping, we feed DMET-Analyzer with the raw
DMET SNPs data set, to identify specific SNPs within these genes
associated with TrPN, figuring out these tow genes UGT2B7 and
NR1I3. The NR1I3 and UGT2B7 genes have been implicated in
taxane neuroprotection due to a defect in the drug’s
glucuronidation/clearance process related to ultrametabolizer
phenotype with probable loss of efficacy, suggesting new potential
biomarkers correlated to taxane neurotoxicity. These potential
biomarkers could allow stratification of BC patients with
interindividual TrPN predisposition for tailored prescription
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(Arbitrio et al., 2019). To further explore their biological significance, a
network-based analysis was conducted using the STRING database to
construct a gene interaction network, focusing on genes functionally
related to UGT2B7 and NR1I3. Following, PEA was performed to link

these genes to biological pathways involved in drug metabolism. The
identified pathways were then modeled using a multilayer network
approach, which allowed the integration of multiple interconnected
pathways to better understand the complex roles of these genes in
disease mechanisms and drug responses. This methodology highlights
UGT2B7 and NR1I3 as potential biomarkers for predicting taxane
toxicity, estrogen processing and neuroprotection and optimizing
treatment strategies in precision medicine. Figure 3 summarizes the
main step fo analysis, for complete details on methodology see Agapito
et al. (2024).

7 Future perspectives

Bioinformatics in PGx studies present several promising
advancements, particularly in omics data analysis. One of the
most significant developments will be the integration of multi-
omics data, encompassing genomics, transcriptomics, proteomics,
and metabolomics (Wang and Agapito, 2025). This holistic
approach will allow researchers to unravel complex molecular
interactions influencing drug metabolism, efficacy, and adverse
reactions. By merging multi-omics datasets, PGx will transition
toward a more precise and individualized understanding of drug
responses, ultimately enhancing personalized medicine (Guzzi
et al., 2016).

Clinical trial results are essential for advancing PGx, providing
insights that help regulatory agencies and clinicians optimize
therapies. However, strict enrollment criteria can limit the
generalizability of findings and may not fully reflect the
complexity of drug responses in real-world settings (You et al.,
2025). Factors such as genetic variability, comorbidities,
polypharmacy, and environmental influences are often
underestimated.

Integrating PGx data with real-world evidence can greatly
enhance biomarker discovery and the development of
personalized medicine through the application of AI. Thus, as
AI and ML technologies continue to advance, its role in PGx may
help bridge the gap between controlled clinical trials and the
complexities of real-life medical practice. This could lead to
more precise and inclusive therapeutic strategies. Advanced ML
algorithms, including deep learning frameworks, will facilitate the
identification of complex genetic interactions and improve
predictions of patient-specific treatment outcomes. These
computational models will be instrumental in refining PGx
biomarkers, optimizing drug selection, and minimizing adverse
drug reactions, enhancing therapeutic effectiveness (Scionti
et al., 2022).

In addition to AI-driven approaches, network-based analysis
and systems biology methodologies will be crucial in advancing PGx
studies. Network analysis, pathway enrichment techniques, and
multilayer network models will enable researchers to decipher
intricate drug-gene interactions and uncover novel therapeutic
targets. By integrating these methodologies, it will be possible to
develop a more exhaustive awareness of the molecular mechanisms
underlying drug responses.

Another key area of progress will be the development of
user-friendly bioinformatics platforms designed to facilitate
genomic data analysis for both researchers and clinicians.

FIGURE 3
Workflow of analysis.
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These platforms will integrate curated PGx databases, statistical
frameworks, and visualization tools, allowing non-specialists to
interpret complex genetic data more efficiently. Such
advancements will promote the widespread adoption of PGx
in clinical settings and enhance its accessibility for healthcare
professionals.

Cloud computing and big data analytics are transforming the
field by offering scalable solutions for storing, processing, and
sharing large-scale PGx datasets (Crespo-Cepeda et al., 2019).
Cloud-based bioinformatics tools will enable researchers across
different institutions to collaborate more efficiently, ensuring the
rapid dissemination of PGx findings and fostering global initiatives
in precision medicine.

The future of PGx will also be shaped by its integration into
regulatory settings and clinical decision-making processes. As
PGx research continues to evolve, regulatory agencies such as the
FDA and EMA are expected to incorporate bioinformatics-
driven PGx tools into drug labeling recommendations. This
regulatory support will facilitate the transition of PGx from
research to routine clinical practice, ultimately improving
drugs safety and efficacy.

While advancements have been made, addressing ethical,
legal, and social challenges for the responsible implementation
of PGx technologies is crucial. Issues related to genomic data
privacy introduce new challenges to face, like in Cloud
Computing (Agapito and Cannataro, 2023), equitable access to
PGx testing, and potential biases in AI-driven analyses must be
carefully managed to ensure that PGx advancements benefit
diverse patient populations without reinforcing healthcare
disparities.

Bioinformatics in PGx is expected to grow significantly due to
advancements in AI, big data, network analysis, and cloud
computing. These advancements will enhance our understanding
of genetic contributions to drug responses and pave the way for
more effective, individualized therapeutic strategies in
clinical practice.

8 Conclusion

This study underscores the critical role of PGx data analysis in
advancing precision medicine, highlighting how integrative analysis
through bioinformatics tools and methodologies could allow in
unraveling the genetic underpinnings of drug response variability.
By integrating statistical, machine learning, network analysis, and
pathway enrichment approaches, we demonstrated how complex
datasets can be effectively managed and analyzed to derive
actionable insights.

The investigation of UGT2B7 and NR1I3 genes convey the
potential of such approaches to identify predictive biomarkers for
drug toxicity and efficacy. Specifically, the integration of
bioinformatic frameworks allowed the identification of these
genes as critical players in taxane-related peripheral neurotoxicity
and estrogen metabolism, paving the way for personalized treatment
strategies in breast cancer management. The results emphasize the
necessity of continuous innovation in bioinformatics tools to
address the challenges posed by high-dimensional, heterogeneous
PGx datasets.

Also the recently development of user-friendly PGx platforms for
data analysis might play a crucial role in advancing precision medicine
making it easier to understand and interpret PGx data. The
simplification of complex information starting from the integration
of curated databases and clinical guidelines and providing actionable
insights for clinicians and researchers could pave the way for a future
healthcare tailored to each individual’s unique genetic makeup (Duong
Nguyen et al., 2025; Borbón et al., 2025; Yuan et al., 2025, Yuan et al.,
2024). This work not only contributes to the understanding of PGx
variability but also provides a comprehensive framework for translating
genetic insights into clinical practice, offering promising opportunities
for improving therapeutic outcomes through tailored interventions.
Additional prospective research could further confirm the strategic and
therapeutic value of integration of PGx bioinformatic strategies to
improve patient outcomes, reduce healthcare costs, and tailored drug
prescription.
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