
Use of Bayesian approaches in
oncology clinical trials: A
cross-sectional analysis

Borja G. Lopez-Rey1,2, Gerard Carot-Sans3,4, Dan Ouchi2,
Ferran Torres2,4* and Caridad Pontes4,5,6

1Spanish Agency of Medicines and Medical Devices (AEMPS), Madrid, Spain, 2Biostatistics Unit, Medical
School, Department of Paediatrics, Obstetrics and Gynaecology and Preventive Medicine and Public
Health, Universitat Autònoma de Barcelona, Barcelona, Spain, 3Catalan Health Service, Barcelona, Spain,
4Digitalization for the Sustainability of the Healthcare System (DS3), Barcelona, Spain, 5Departament de
Farmacologia, de Toxicología i de Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain,
6Servei de Farmacologia Clínica, Hospital de la Santa Creu i de Sant Pau, Barcelona, Spain

Purpose: Bayesian approachesmay improve the efficiency of trials and accelerate
decision-making, but reluctance to depart from traditional frequentist statistics
may limit their use. Because oncology trials generally involve severe conditions
with no or limited therapeutic options, they are well-suited to applying Bayesian
methodologies and are perceived as using these methods often in early phases.

Objectives: In this study, we aim to describe the use of Bayesian methods and
designs in oncology clinical trials in the last 20 years.

Method: A cross-sectional observational study was conducted to identify
oncology clinical trials using Bayesian approaches registered in clinicaltrials.
gov between 2004 and 2024. Trials were searched in clinicaltrials.gov,
PubMed, and through manual search of cross-references.

Results: Bayesian trials were retrieved, and their main characteristics were
extracted using R and verified manually. Between 2004 and 2024,
384,298 trials were registered in clinicaltrials.gov; we identified
84,850 oncology clinical trials (22%), of which 640 (0.75%) used Bayesian
approaches. The adoption of Bayesian trials increased significantly after 2011,
but while half of all Bayesian studies started in the last 5 years, this paralleled the
overall increase in oncology research rather than an increase in the proportion of
Bayesian trials. The majority of Bayesian trials were phase 1 and phase 2 studies,
and two-thirds of Bayesian trials with efficacy objectives had single-arm designs,
often utilizing binary endpoints, such as overall response, as the primarymeasure.

Conclusion: The uptake of Bayesian methods in oncology clinical trials has
flattened and is still scarce, and is mostly applied to the analysis of treatment
efficacy in single-arm trials with binary endpoints. There is room for further
uptake and use of their potential advantages in settings with small populations
and severe conditions with unmet needs.
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Introduction

The traditional drug development pathway is often slow, usually
taking more than 10 years to reach clinical practice, with the longest
period being clinical research (The Institute of Cancer Research,
2024). This process is not only time-consuming but also expensive
and risky for sponsors (DiMasi et al., 2016; Takebe et al., 2018;
Dowden and Munro, 2019; Sun et al., 2022). Furthermore,
challenges such as patient recruitment and ethical concerns can
hamper clinical development in certain contexts. One way to
accelerate access to new treatments is to use innovative and
efficient trial designs that go beyond the traditional randomized
parallel design (Halperin and Ware, 1990; Bhatt and Mehta, 2015;
Bauer et al., 2016; Prowell, et al., 2016; Renfro and
Mandrekar, 2018).

In addition to the use of innovative designs, Bayesian statistics is
a viable alternative for drawing relevant conclusions in confirmatory
trials. Bayesian approaches offer several advantages over traditional
frequentist methods, such as providing more information to
decision-makers and incorporating prior information that may
reduce the need for larger trial sizes (Food and Drug
Administration, 2010; Gupta, 2012; Jack Lee and Chu, 2012;
Schmidli et al., 2014; Hummel et al., 2015; Spiegelhalter et al.,
2015; Ryan et al., 2019).

To date, Bayesian methods have been reported to be mainly
applied with the aim of reducing trial sample size in cancer (Sridhara
et al., 2015; Blagden et al., 2020), rare diseases (Gupta et al., 2011;
Bogaerts et al., 2015; Abrahamyan et al., 2016; Goring et al., 2019;
Partington et al., 2022; Mackay and Springford, 2023), and pediatric
trials (Gamalo-Siebers et al., 2017; Huff et al., 2017; European
Medicines Agency, 2018; Travis, et al., 2023), all areas where
unmet medical needs are often related to severe conditions, lack
of alternative effective treatments, and vulnerable populations.
These methods are thus particularly advantageous in oncology,
where clinical trials, on average, take twice as long to complete
compared to non-oncology trials (Wong et al., 2019), with lower
success rates (Thomas et al., 2016; Dowden andMunro, 2019; Wong
et al., 2019) and greater complexity due to the heterogeneity of
cancer (Wang et al., 2017). Frequentist approaches confirm or reject
a null hypothesis based on the probability of obtaining a result equal
to or more extreme than the one observed, assuming the null
hypothesis is true. While frequentist methods are widely accepted
as robust and objective, they can also present significant limitations,
such as inflexible study designs and clinically less intuitive
interpretations due to their binary conclusions regarding the
likelihood of a given result. In contrast, Bayesian approaches
utilize prior distributions to estimate the probability of causality
by integrating prior knowledge with new data, thereby mimicking
the natural flow of clinical reasoning (Labos and Thanassoulis,
2020). Moreover, Bayesian methods allow for adaptive trial
designs, enabling modifications to study parameters as data
accumulate. This flexibility can enhance trial efficiency and
minimize unnecessary patient exposure to potentially suboptimal
clinical interventions (Thall and Wathen, 2007). Despite these
advantages, which may be particularly relevant in exploratory
settings or when limited sample size threatens statistical power,
preliminary data suggest that Bayesian trials are not widely used
(Pontes et al., 2018).

The objective of this cross-sectional observational study was to
quantify the use of Bayesian methods and designs in oncology
clinical trials and to describe the characteristics of Bayesian trials
to identify further opportunities to improve their use.

Materials and methods

Overall design and information sources

This cross-sectional study included all the clinical trials registered in
clinicaltrials.gov between 1 January 2004 and 1 October 2024 that
investigated an oncological condition. From these, we selected those
that used Bayesian design methodologies for characterization. The
identification of Bayesian oncology trials was complemented with
peer-reviewed articles reporting trial results. We searched PubMed
for articles meeting these criteria and screened their reference lists for
additional potentially eligible clinical trials. From the selected
publications, NCT numbers were extracted and cross-checked for
duplicates against the primary search on clinicaltrials.gov.

The search strategies are detailed in Supplementary Data Sheet
1. Briefly, we searched for interventional studies with any of the
following clinical terms: cancer, oncology, tumor, tumour,
neoplasm, immunotherapy, carcinoma, sarcoma, lymphoma,
leukemia, myelodysplastic syndrome, blastoma, melanoma,
neoplasia, myeloma, glioma, and among these, registries with at
least one of the following descriptors: Bayes, prior distribution,
posterior distribution, Bayesian, credible interval, mixture prior,
power prior, BOIN (Bayesian optimal interval), Bayesian
hierarchical model, or BLRM (Bayesian logistic regression
model). Searches were conducted through 1 October 2024. Data
analysis was completed in November 2024.

Eligibility criteria

Inclusion criteria were clinical trials with the first available
record in the clinicaltrials.gov database between 1st January
2004 and 1st October 2024, and articles on human interventional
clinical trials in oncology using Bayesian methodologies published
between 1st January 2004 and 1st October 2024 and having an
associated NCT identifier. Exclusion criteria were articles written in
a language other than English, and reviews including information
unrelated to human interventional clinical trials, such as veterinary
studies, retrospective studies, case studies, or meta-analyses.
Duplicates were identified through the NCT identifier and
removed as required. Only publicly available data on clinical
trials were used.

The study followed the Strengthening the Reporting of
Observational Studies in Epidemiology guidelines (von Elm et al.,
2007) and the checklist for cross-sectional studies.

Data extraction

Trial descriptors, relevant protocol, and result-related information
were extracted from the clinicaltrials.gov database using the ctrdata
package (Herold, 2024) in the R environment [version 4.2.3, (R Core
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Team, 2018)]. Trial descriptors included the following: clinical phase,
year of start, year of publication of the first record in clinicaltrials.gov,
sample size, status, number of arms, number of patients, primary and
secondary objectives of the trial, identification of Bayesian analysis for
primary or secondary endpoints, type of endpoints and variables for
primary and secondary objectives, and therapeutic indication. For
several categories, such as trial objectives and endpoints, the
definitions were not mutually exclusive. The information from each
clinical trial was manually reviewed to confirm accuracy and
complemented with information from full publications and
Supplementary Materials as needed, for example, when data were
missing in the predefined clinicatrials.gov fields. Details of the
automatically extracted fields and manually included fields are listed
in the Supplementary Data Sheet 1.

Statistical analysis

Descriptive statistics were used to summarize trial
characteristics. Categorical variables were reported as frequencies
and percentages, and continuous variables were categorized into
ranges (i.e., number of arms and trial sample size) and described
accordingly. No formal hypothesis testing was conducted.

Results

Number of Bayesian clinical trials

Our search of clinicaltrials.gov yielded 84,850 oncology trials
conducted between 1 January 2004 and 1 October 2024. Of these,

538 were identified as using Bayesian methodologies using search
terms in the clinicaltrials.gov database. The number of trials was
enriched with trials identified in PubMed articles and their
corresponding reference lists, resulting in a total of 640 (640/
84,850; 0.75%) oncology trials that used Bayesian methodologies
and had an NCT identifier (eFigure1, Supplementary Data Sheet 1).

The proportion of oncology studies that implemented Bayesian
methods increased in 2011 and has remained relatively constant
since then (Figure 1). The majority of Bayesian trials included
hematological indications (Figure 2).

Characteristics of Bayesian oncology
clinical trials

Bayesian methods/designs were most commonly used in phase 1
(n = 263; 41.1%) and phase 2 trials (n = 215; 33.6%). A total of
23 trials used Bayesian designs in confirmatory phases: [9 (1.4%) in
phase 2/3 trials and 14 (2.2%) in phase 3]. The majority of oncology
Bayesian trials were single-arm designs (n = 388; 60.6%), of which
43.8% were phase 1 and 35.1% were phase 2. The most prevalent
complex designs among oncology Bayesian trials were adaptive
phase 1/2 trials (n = 35) and master protocol designs. Among
the latter, there were seven umbrella trials, nine platform designs,
and eight single-arm trials included as part of a Bayesian platform of
basket designs. The most common enrollment range was between
11 and 30 patients per study. A single hospital center sponsored 212
(33.1%) of all oncology Bayesian trials, mostly phase 2 (61.3%);
industry-sponsored another third [n = 200; 31.2%, primarily phase
1 trials (55.5%)]. Almost half of the trials were reported as still
recruiting (n = 201; 31.4%) or ongoing (n = 105; 16.3%), while the

FIGURE 1
Bayesian trials by first published year. (A) Bayesian trials by year; (B) Bayesian trials relative to oncology trials. 2024 has been excluded from the figure
as data were available only until October 2024.
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remainder (n = 271; 42.3%) were reported as already
completed (Table 1).

Efficacy was included as an objective in 542 Bayesian oncology
trials [208/542 (38.4%) in phase 2 trials and 194/542 (35.8%) in
phase 1 trials]; it was the primary objective in 90.3% (188/208) phase
2 trials and 16.4% (32/194) of phase 1 trials.

Safety/toxicity was included as an objective in 404 oncology
Bayesian trials; it was the primary objective in 75.6% (152/201) of all
Bayesian oncology phase 1 trials. Dose-finding objectives were
present in 366 Bayesian oncology trials, with 62.6% (229/366)
being phase 1 studies and 31.4% (115/366) phase 1/2 studies.
Among the trials that implemented Bayesian analysis, this was
primarily used for dose-finding (n = 317; 49.5%), and mostly
when used as a primary endpoint in phase 1 (Table 1).

Bayesian oncology clinical trials
assessing efficacy

Efficacy was analyzed through Bayesian approaches in 198 trials,
mostly in phase 2 trials (132/198; 66.7%), and, among these, mostly
as the main analysis of the primary endpoint (117/132; 88.6%). In
confirmatory phases, Bayesian analysis of efficacy was applied to
5.5% of the trials (Table 1). Of the 198 trials that used Bayesian
analysis for efficacy assessment, 126 trials (63.6%) were single-arm
trials, and 41 (20.7%) had two-arm designs. Binary variables were
used more frequently (118 trials; 59.6%) than time-to-event
variables (63 trials; 31.8%) and continuous variables (17 trials;
8.6%). Binary assessments of tumor response were the most
frequent type of primary endpoint (61.6%), followed by
progression-free survival or similar time-to-event-based

endpoints (25.8%). Overall survival was assessed as a secondary
endpoint in 60.1% of the trials (Table 2).

The sample size was generally higher in trials with primary
events based on time-to-event endpoints (eFigure2, Supplementary
Data Sheet 1).

Discussion

This cross-sectional analysis of oncology clinical trials using
Bayesian approaches reveals an upward trend in the adoption of
these methods in absolute terms, with 50% of all trials registered on
clinicaltrials.gov using these methodologies being conducted in the
last 5 years. However, this increase likely reflects the overall rise in
oncology trials rather than a specific preference for Bayesian
methods, as shown by the steady profile of proportions over
this period.

Our data indicate an uptick in Bayesian trial registrations from
2010 to 2012, coinciding with the release of the first regulatory
guidance on Bayesian designs (although applied to medical devices).
The draft guidance available in 2007 and its final version in 2010
(Food and Drug Administration, 2010) may have contributed to
increased awareness and adoption of these methods. However, from
2012 onward, the trend appears to be relatively flat and constant,
with some fluctuations between years. While some previous reports
have suggested a rising adoption of these methods (Golchi, 2022;
Kidwell et al., 2022; Best et al., 2024), our study does not confirm this
when considering the relative preference for Bayesian methods in
relation to the total number of oncology trials.

Traditionally employed in exploratory phases for safety, toxicity
monitoring, and dose-finding (Ashby, 2006; Gaydos et al., 2006;

FIGURE 2
Bayesian trials by cancer type.
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TABLE 1 Characteristics Bayesian trials in oncology, overall and by phase.

Bayesian clinical trial Phase 1 Phase 1/2 Phase 2 Phase 2/3 Phase 3 Total

Number of studies, No. (%) 263 (41.1) 139 (21.7) 215 (33.6) 9 (1.4) 14 (2.2) 640

Sponsor types, No. (%)

Industry 111 (55.5) 58 (29) 26 (13) 1 (0.5) 4 (2) 200

Academy 43 (44.3) 17 (17.5) 26 (26.8) 6 (6.2) 5 (5.2) 97

Hospitala 93 (29.4) 61 (19.3) 157 (49.7) 2 (0.6) 3 (0.9) 316

NIHb 16 (59.3) 3 (11.1) 6 (22.2) 0 (0) 2 (7.4) 27

Status, No. (%)c

Pre-recruitment 25 (53.2) 12 (25.5) 10 (21.3) 0 (0) 0 (0) 47

Recruiting 81 (40.3) 57 (28.4) 53 (26.4) 7 (3.5) 3 (1.5) 201

Ongoing 40 (38.1) 13 (12.4) 50 (47.6) 0 (0) 2 (1.9) 105

Completed 109 (40.2) 55 (20.3) 97 (35.8) 2 (0.7) 8 (3) 271

Unknown status 8 (50) 2 (12.5) 5 (31.2) 0 (0) 1 (6.2) 16

Number of arms, No. (%)

1 170 (43.8) 70 (18) 136 (35.1) 7 (1.8) 5 (1.3) 388

2 43 (35.2) 27 (22.1) 45 (36.9) 1 (0.8) 6 (4.9) 122

3 23 (39.7) 19 (32.8) 15 (25.9) 0 (0) 1 (1.7) 58

4 9 (31) 11 (37.9) 9 (31) 0 (0) 0 (0) 29

≥5 18 (41.9) 12 (27.9) 10 (23.3) 1 (2.3) 2 (4.7) 43

Number of patients, No. (%)

0–10 28 (51.9) 9 (16.7) 17 (31.5) 0 (0) 0 (0) 54

11–20 51 (59.3) 12 (14) 21 (24.4) 1 (1.2) 1 (1.2) 86

21–30 47 (54.7) 13 (15.1) 20 (23.3) 6 (7) 0 (0) 86

31–40 34 (46.6) 9 (12.3) 30 (41.1) 0 (0) 0 (0) 73

41–50 24 (39.3) 16 (26.2) 20 (32.8) 0 (0) 1 (1.6) 61

51–70 26 (34.7) 19 (25.3) 28 (37.3) 0 (0) 2 (2.7) 75

71–100 24 (34.3) 19 (27.1) 27 (38.6) 0 (0) 0 (0) 70

101–150 10 (17.9) 20 (35.7) 25 (44.6) 0 (0) 1 (1.8) 56

151–200 7 (23.3) 10 (33.3) 12 (40) 0 (0) 1 (3.3) 30

201–300 8 (30.8) 10 (38.5) 5 (19.2) 1 (3.8) 2 (7.7) 26

>300 4 (17.4) 2 (8.7) 10 (43.5) 1 (4.3) 6 (26.1) 23

Trial objectives, No. (%)d

Efficacy 194 (35.8) 124 (22.9) 208 (38.4) 8 (1.5) 8 (1.5) 542

Primary objective 32 (9.9) 88 (27.3) 188 (58.4) 8 (2.5) 6 (1.9) 322

Secondary objective 162 (73.6) 36 (16.4) 20 (9.1) 0 (0) 2 (0.9) 220

Safety/toxicity 201 (49.8) 91 (22.5) 103 (25.5) 6 (1.5) 3 (0.7) 404

Primary objective 152 (62.8) 56 (23.1) 33 (13.6) 0 (0) 1 (0.4) 242

Secondary objective 49 (30.2) 35 (21.6) 70 (43.2) 6 (3.7) 2 (1.2) 162

Dose-finding 229 (62.6) 115 (31.4) 19 (5.2) 1 (0.3) 2 (0.5) 366

Primary objective 223 (62.8) 111 (31.3) 18 (5.1) 1 (0.3) 2 (0.6) 355

Secondary objective 6 (54.5) 4 (36.4) 1 (9.1) 0 (0) 0 (0) 11

Otherse 2 (10.5) 0 (0) 8 (42.1) 1 (5.3) 8 (42.1) 19

Primary objective 2 (10.5) 0 (0) 8 (42.1) 1 (5.3) 8 (42.1) 19

Implementation of Bayesian analysis, No. (%)

Dose finding 211 (66.6) 91 (28.7) 13 (4.1) 1 (0.3) 1 (0.3) 317

Primary endpoint 205 (68.1) 87 (28.9) 8 (2.7) 1 (0.3) 0 (0) 301

Secondary endpoint 6 (37.5) 4 (25) 5 (31.2) 0 (0) 1 (6.2) 16

Efficacy 20 (10.1) 35 (17.7) 132 (66.7) 6 (3) 5 (2.5) 198

Primary endpoint 9 (5.6) 26 (16.2) 117 (73.1) 6 (3.8) 2 (1.2) 160

(Continued on following page)
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Biswas et al., 2009; Chevret, 2012; Jack Lee and Chu, 2012;
Bhattacharjee, 2014; Tidwell et al., 2019), our data indicate that
Bayesian methods are now increasingly used to address efficacy
objectives. Bayesian analyses are primarily used for dose-finding,
particularly in phase 1 studies and as part of the efficacy analysis for
the primary endpoint in phase 2 studies. This aligns with previous

reports suggesting that these methods are perceived as a valuable
solution in complex scenarios, such as those lacking effective
alternatives and with challenging patient recruitment, when
classical randomized trials are impractical, or when surrogate
endpoints may be unreliable (Prasad and Oseran, 2015). Bayesian
methods are increasingly used in complex settings like adaptive
designs (Morgan et al., 2014; FDA, 2019; Ben-Eltriki et al., 2024),
pediatric studies (Gamalo-Siebers et al., 2017; Huff et al., 2017;
European Medicines Agency, 2018; Travis et al., 2023), and rare
diseases (Gupta et al., 2011; Bogaerts et al., 2015; Goring et al., 2019;
Partington et al., 2022; Mackay and Springford, 2023). Additionally,
their frequent use in innovative trial frameworks such as master
protocols (Berry, 2015; Renfro and Sargent, 2017; Simon, 2017;
Woodcock and LaVange, 2017; Hirakawa et al., 2018; Meyer et al.,
2020; Food and Drug Administration FDA, 2022; Quintana et al.,
2023) leverages their flexibility and effectiveness in uncertain
research scenarios.

Overall, oncology is deemed to be the area with greater
adoption of the Bayesian framework (Sridhara et al., 2015;
Blagden et al., 2020). Although determining the proportion of
all Bayesian studies that are implemented in oncology was not an
objective of our study, when our filters for Bayesian descriptors
were applied to the clinicaltrials.gov database for interventional
studies before selecting oncological conditions, 879 records were
retrieved out of the 384,298 records (0.23%) for the study period,
resulting in 61.2% (538/879) of all Bayesian designs identified at
this step being in the oncology setting. The higher acceptance and
adoption of Bayesian designs in oncology may be due to several
factors, led by the precedent of Bayesian methods traditionally
applied to first-in-human studies with chemotherapeutics.
Acceptability may also be related to a broader awareness of
the benefits of using such an approach in adaptive designs,
allowing decision-making informed by current data,
incorporating external information to the previous
distribution to inform treatment arms, bolster control data
arms, or include external control arms. These may lead to
potential gains in efficiency, either through adaptive designs
or the use of external data, and thus to expedited drug
development, shorter trial durations, more comprehensive
information for decision-makers, smaller trial sizes, and

TABLE 1 (Continued) Characteristics Bayesian trials in oncology, overall and by phase.

Bayesian clinical trial Phase 1 Phase 1/2 Phase 2 Phase 2/3 Phase 3 Total

Secondary endpoint 11 (28.9) 9 (23.7) 15 (39.5) 0 (0) 3 (7.9) 38

Monitoring 10 (17.5) 5 (8.8) 42 (73.7) 0 (0) 0 (0) 57

Safety/toxicity 20 (45.5) 5 (11.4) 19 (43.2) 0 (0) 0 (0) 44

Primary endpoint 20 (62.5) 4 (12.5) 8 (25) 0 (0) 0 (0) 32

Secondary endpoint 0 (0) 1 (8.3) 11 (91.7) 0 (0) 0 (0) 12

Otherse 2 (8.3) 3 (12.5) 9 (37.5) 2 (8.3) 8 (33.3) 24

Primary endpoint 1 (5.3) 3 (15.8) 7 (36.8) 2 (10.5) 6 (31.5) 19

Secondary endpoint 1 (20) 0 (0) 2 (40) 0 (0) 2 (40) 5

aOf the hospital-sponsored trials, 67.1% (212) were sponsored by a single sponsor (M.D., Anderson Cancer Center), and included 39 phase 1 trials, 40 phase 1/2 trials, 130 phase 2 trials, and

3 phase 3 trials.
bNIH: National Institutes of Health.
cStatus as of 1 October 2024.
dTrials may involve multiple objectives; hence, totals may exceed the number of trials.
eOthers include objectives such as diagnosis, screening, and prevention.

TABLE 2 Characteristics of oncology Bayesian trials assessing efficacy.

Bayesian clinical trial No. (%)

Number of studies 198 (100)

No of arms

1 126 (63.6)

2 41 (20.7)

3 14 (7.1)

4 6 (3)

≥5 11 (5.6)

Endpoint typesa

Response as the primary endpoint 122 (61.6)

Progression-/recurrence-/relapse-/disease-/
event-free survival as primary endpoint

51 (25.8)

Overall survival as the primary endpoint 18 (9.1)

Overall survival as the secondary endpoint 119 (60.1)

Variable types for Bayesian analysis

Binary 118 (59.6)

Time-to-event 63 (31.8)

Continuous 17 (8.6)

Bayesian complex designs

Adaptive phase 1/2 design 35 (17.7)

Adaptive phase 2/3 design 6 (3)

Bayesian umbrella design 7 (3.5)

Bayesian MAMsb design 1 (0.5)

Bayesian platform design 9 (4.5)

Bayesian platform of basket designs 8 (4)

aTrials may involve multiple endpoints; hence, totals can exceed the number of trials.
bMAMs: multi-arm multi-stage trials.
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overall lower costs (FDA, 2010; Gupta, 2012; Jack Lee and Chu,
2012; Schmidli et al., 2014; Hummel et al., 2015; Spiegelhalter
et al., 2015; Ryan et al., 2019).

Advancements in computational challenges (Chevret, 2012;
Bhattacharjee, 2014) and increased familiarity with Bayesian
approaches among stakeholders are expected to gradually reduce
reluctance from regulatory bodies and sponsors (European
Medicines Agency, 2007; European Medicines Agency, 2024;
Food and Drug Administration, 2017, Food and Drug
Administration, 2019, Food and Drug Administration, 2020).
However, reliance on priors and their potential impact on trial
outcomes remain significant barriers, particularly in confirmatory
settings where unbiased and reproducible results are critical. This
may explain why, in our study, Bayesian trials generally involve
small sample sizes associated with phase 1 and 2 stages, typically
consisting of fewer than 150 patients, with only a few trials featuring
larger sample sizes.

While our analysis highlights the significant role of hospitals
and academia in implementing Bayesian designs in exploratory
settings, the industry is also widely sponsoring Bayesian trials,
mostly in phase 1 and phase 1/2 studies, as already described
previously (Califf et al., 2012; Fors and González, 2020). This
uptake by industry sponsors in early development with
exploratory objectives may reflect the usefulness of these
methods for decision-making, whereas the relatively low
uptake in confirmatory development may indicate a reluctance
to assume the regulatory risk associated with non-
frequentist designs.

Of note, we observed that Bayesian methods were primarily
applied to binary endpoints when sample sizes were small, regardless
of the number of trial arms, whereas those with more than
100–150 patients generally relied on time-to-event variables. In
addition, small sample sizes were paralleled by a high proportion
of single-arm trials, a design that may further hamper the
methodological robustness of clinical studies and the generation
of solid evidence (Pontes et al., 2018). The use of Bayesian
approaches in these trials reflects that one of the main
advantages of Bayesian designs is that they can add value,
particularly when there is limited availability of potential
candidates for trial recruitment, by incorporating external
information into the prior distribution when assessing efficacy,
thus allowing for a more robust design than designs based solely
on a single-arm strategy (Viele et al., 2014; FDA, 2020; Mackay and
Springford, 2023).

Furthermore, the frequent use of binary endpoints in Bayesian
approaches highlights that these variables allow gathering evidence
more quickly than time-to-event endpoints, which typically require
longer follow-ups and larger sample sizes.

Despite the aforementioned advantages, we observed that
Bayesian approaches accounted only for 0.75% of all oncology
clinical trials, which appears to be a missed opportunity. The
reasons for this may be related to regulatory reluctance to depart
from classical standards so that even in cases where such designs
are feasible, regulatory bodies may be prone to request a
frequentist approach rather than a Bayesian one. Given the
efficiency advantages that a Bayesian approach can offer (Food
and Drug Administration, 2010; Gupta, 2012; Jack Lee and Chu,
2012; Schmidli et al., 2014; Hummel et al., 2015; Spiegelhalter

et al., 2015; Ryan et al., 2019), it is reasonable that these methods
could be more widely accepted and promoted, especially in
clinical settings where obtaining evidence is challenging
(Chevret, 2012).

For instance, the Bayesian framework facilitates the
integration of information from earlier trial phases or
previous studies into the current analysis using prior
distributions. This capability is frequently highlighted as a key
practical advantage, as it enables ongoing optimization of the
trial design within predefined rules. The inherent flexibility of
Bayesian methods makes them particularly valuable in contexts
requiring efficiency improvements, such as potentially reducing
sample size requirements, while maintaining the reliability of
clinical trial results, provided that appropriate statistical
operating characteristics are established before trial initiation
(Wang, 2007; Veenman et al., 2024). These advantages prove to
be useful in the following situations: a) when sample sizes are
small and patient recruitment is challenging, b) when assigning
patients to negative control arms may be logistically or ethically
complex (e.g., in severe conditions or when studying highly
vulnerable populations), c) when there is a need for swift
adjustments in response to an evolving disease (Garczarek
et al., 2023) and dynamic environment (Polack et al., 2020;
Ruberg et al., 2023), and d) in dose-finding settings (Garrett-
Mayer, 2006).

Additionally, Bayesian approaches offer direct probabilistic
interpretations of parameters (e.g., “there is a 95% probability
that the parameter lies within this range”), which are often more
intuitive for decision-makers. In contrast, frequentist methods,
such as p-values or confidence intervals, do not provide such
straightforward probabilistic interpretations. Although
confidence intervals are widely used, they are frequently
misunderstood as probabilistic statements about the
parameter. In fact, they indicate the range that would
encompass the true parameter in 95% of repeated samples
under identical conditions. This distinction makes Bayesian
methods particularly valuable in clinical and regulatory
contexts, where clear and actionable insights are critical
(Greenland et al., 2016; Ryan et al., 2019). By providing
increased flexibility and taking advantage of incremental
learning (Schönbrodt et al., 2017), Bayesian approaches follow
the same logic of continuous and evolving human learning, which
may prove especially useful in early clinical development and
exploratory research (Labos and Thanassoulis, 2020).

Currently, the European Medicines Agency is sponsoring an
initiative to increase the applicability and acceptability of
Bayesian approaches in clinical trials (European Medicines
Agency, 2024). Bayesian approaches are particularly relevant
to oncology research due to their ability to address challenges
in patient recruitment, seamlessly integrate data from multiple
sources, and adapt dynamically through their inherent learning
capabilities. Consequently, there is significant potential to
expand their application in the oncology field (Food and Drug
Administration, 2010; Gupta, 2012; Jack Lee and Chu, 2012;
Schmidli et al., 2014; Hummel et al., 2015; Spiegelhalter et al.,
2015; Ryan et al., 2019; European Medicines Agency, 2024). With
progress in targeted and advanced therapies (Sridhara et al., 2015;
Nass et al., 2018), their increasing potential in the design of
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oncology clinical trials should be relevant in the evolving
landscape of cancer treatment research.

Limitations

This analysis has limitations. First, it depends on the accurate
self-identification of Bayesian designs in trial registries, which may
overlook studies using Bayesian methods that are described
differently. In addition, trial features may not always be updated
in databases following protocol amendments. However, the
complementary literature search for NCT-identified oncology
trials with Bayesian characteristics has likely compensated, at
least partially, for this limitation. Furthermore, the classification
of trials by phase, objective, and endpoint type relies on subjective
interpretation, particularly when registry details are sparse. Finally,
results may be underestimated if relevant studies were not identified
through our search parameters, or remained unpublished, thus
escaping inclusion in the databases we reviewed.

Conclusion

This cross-sectional study reveals that Bayesian methods are
infrequently used in oncology trials, with the majority of
implementations occurring in phase 1 and phase 2 studies.
Notably, two-thirds of Bayesian trials with efficacy objectives are
single-arm designs, often utilizing binary endpoints, such as overall
response, as the primary measure.

Despite their potential to enhance the drug development process by
providing a structured framework to improve trial efficiency, optimize
decision-making, and incorporate external data, the adoption of
Bayesian methods has remained limited in recent years. This
indicates untapped potential for broader implementation,
particularly in areas where traditional approaches have limitations.

Future efforts should address barriers to adoption, such as
regulatory hesitancy and computational challenges while
promoting education and stakeholder familiarity with Bayesian
methodologies. By overcoming these hurdles, Bayesian
approaches could play a more prominent role in transforming
the design and execution of clinical trials.
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