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Introduction: Appropriate vancomycin trough levels are crucial for ensuring
therapeutic efficacy while minimizing toxicity. The aim of this study is to
identify clinical factors that influence the steady-state trough concentration of
vancomycin and to establish a machine learning model for accurately predicting
vancomycin’s steady-state trough concentration.

Methods: This study is a single-center, retrospective, observational investigation
involving 546 hospitalized patients who received intravenous vancomycin
therapy. A total of 57 clinical indicators were collected from the subjects.
Random forest models were constructed and validated using internal and
external datasets, with performance compared to a Bayesian PopPK model.

Results: The random forest model incorporated a comprehensive set of clinical
indicators, including creatinine clearance, C-reactive protein (CRP), B-type
natriuretic peptide (BNP), high-density lipoprotein cholesterol (HDL-C), and
daily vancomycin dose, collected 48 hours before steady-state concentration
assessment. The random forest regression model achieved correlation
coefficients of 0.94 for the training set and 0.81 for the test set, respectively.
The random forest classification model demonstrated impressive accuracy rates
of 0.99 for the training set and 0.84 for the test set. External validation further
confirmed the model’s generalization capabilities, with a predictive accuracy of
0.83, surpassing the Bayesian PopPK model’s 0.57 accuracy.

Discussion: This study presents a robust random forest model that predicts
vancomycin steady-state trough concentrations with high accuracy, offering a
significant advantage over existing Bayesian PopPK model. By integrating diverse
clinical indicators, the model supports personalized medicine approaches and
has the potential to improve clinical outcomes by facilitatingmore precise dosing
strategies.
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Introduction

Vancomycin is a glycopeptide antibiotic originally derived from
Streptomyces orientalis (Cairns et al., 2023; Levine, 2006). It is a
cornerstone in the treatment of serious gram-positive bacterial
infections, particularly for strains resistant to other antibiotics
such as methicillin-resistant Staphylococcus aureus (MRSA)
(Rybak, 2006; Nailor and Sobel, 2009). The clinical use of
vancomycin is often reserved for severe infections or when other
antibiotics are ineffective or contraindicated (Álvarez et al., 2016;
Rybak et al., 2020a). It can be used for a variety of indications,
including skin and soft tissue infections, bone and joint infections,
lower respiratory tract infections, and for the treatment of
endocarditis and bacteremia (Rybak et al., 2020a; Rybak M. et al.,
2009). Vancomycin is typically administered via intravenous
infusion for systemic infections, as it is not significantly absorbed
systemically when taken orally (Wahby et al., 2021; Kasia et al.,
2005). Vancomycin is primarily eliminated by kidney, and dosage
adjustments are necessary for patients with impaired renal function
(Rybak, 2006; Pai et al., 2014). The adverse effects of vancomycin
include nephrotoxicity, ototoxicity, and hypersensitivity reactions,
necessitating careful patient monitoring during treatment (Lestner
et al., 2016; Rybak M. J. et al., 2009).

As recommended by guidelines, monitoring steady-state trough
concentration of serum vancomycin levels is essential to ensure
therapeutic efficacy and to minimize the risk of toxicity (He et al.,
2020; Matsumoto et al., 2022). Vancomycin steady-state trough
concentrations is crucial as it helps in achieving optimal
pharmacokinetic/pharmacodynamic (PK/PD) targets, such as the
area under the curve to minimum inhibitory concentration ratio
(AUC/MIC), which is associated with treatment success (Neely
et al., 2018; Prybylski, 2017). Adequate steady-state trough levels
(10–20 μg/mL) are recommended for infections like MRSA
bacteremia, as they improve clinical outcomes and reduce the
risk of treatment failure (Matsumoto et al., 2022; Rybak et al.,
2020b). Furthermore, monitoring is significant in adjusting
dosing regimens to prevent nephrotoxicity, a potential adverse
effect, especially in patients with compromised renal function or
those receiving concurrent nephrotoxic medications (Rybak et al.,
2020a; He et al., 2020). Thus, therapeutic drug monitoring of
vancomycin is essential for personalized medicine approaches,
ensuring that each patient receives the most effective and safe
treatment possible.

Clinical dosage of vancomycin is usually tailored to the
patient’s condition, including renal function, age and body
weight, with serum trough levels closely monitored to ensure
efficacy and safety (Drennan et al., 2019; Vandecasteele et al.,
2013). However, according to the recommended dose calculation
method, a significant proportion of patients still struggle to achieve
a satisfactory serum concentration range in the initial trough
concentration monitoring after reaching steady-state. Though it
was used according to the vancomycin guidelines, over 50% of the
hospitalized patients did not have vancomycin steady-state trough
concentrations within the target range (10–20 μg/mL) after
reaching steady-state from the clinical practice of our hospital.
This indicates that determining the dosage of vancomycin based
solely on factors such as patient age, weight, renal function,

severity of infection, and pathogen sensitivity is not sufficient to
ensure satisfactory serum concentrations of vancomycin for
most patients.

Predicting vancomycin trough concentrations early before
treatment is crucial for timely clinical decision-making and
patient safety. Current models for predicting vancomycin’s
steady-state trough concentrations primarily rely on Bayesian
PopPK model (Chen et al., 2018; Berthaud et al., 2019; Hui et al.,
2022; Ohnishi et al., 2005; Wrishko et al., 2000). These models
typically incorporate clinical indicators such as creatinine levels, and
administration dose to enhance the precision of dosage adjustments.
Bayesian models for vancomycin steady-state trough concentration
prediction offer personalized dosing tailored to individual patient
characteristics, enhancing treatment efficacy and safety. However,
the complexity of patient physiology and pathophysiology may not
be fully captured, leading to potential inaccuracies in predictions.
Additionally, the reliance on certain assumptions in the Bayesian
framework can also introduce bias, affecting the model’s
generalizability across different patient populations. The
determination of the dosage of vancomycin requires more in-
depth research to identify other clinical and individual factors
that affect its blood concentration. Formulating a more scientific
dosage regimen for vancomycin is of great value for enhancing the
scientific, effective, and safe application of vancomycin in
clinical practice.

Therefore, the core objective of this study is to utilize
machine learning techniques to deeply analyze and understand
patients’ physiological, pathogen information, as well as the
pharmacokinetic and pharmacodynamic characteristics of
vancomycin. We aim to identify clinical factors, laboratory
test indicators, and pathological factors that affect vancomycin
blood concentrations. Leveraging machine learning technology,
we will integrate clinical and pathological factors significantly
related to vancomycin blood concentrations to build a calculation
model for the initial dosage of vancomycin. This is expected to
provide personalized medication guidance for patients, thereby
maximizing therapeutic effects and minimizing the risk of drug-
related toxic side effects and antibiotic resistance.

Methods

Study design and population

This is a single-center retrospective observational study. This
study enrolled 546 inpatients who were treated with vancomycin at
Beijing Chaoyang Hospital from January 2022 to February 2024.
Newborns and pregnant women were excluded. Vancomycin dosage
should meet criteria for PK-guided dosing recommendation
according to 2009 ASHP vancomycin TDM guideline (Rybak M.
J. et al., 2009). The participants must receive at least 48 h of
intravenous vancomycin therapy and underwent vancomycin
trough concentration monitoring at the hospital’s therapeutic
drug monitoring laboratory after reaching steady-state blood
concentrations, with available steady-state trough concentration
information. Additionally, we excluded those who received non-
intravenous routs of vancomycin.
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Ethical approval

All procedures performed in this study involving human
participants were conducted in accordance with the Declaration of
Helsinki and was approved by the ethics committee of Beijing Chao-
Yang Hospital (Ethics Code: 2024-Research-502). According to the
Regulations of the ethics committee of Beijing Chao-YangHospital on
Exemption of informed Consent, those who plan to use the medical
records obtained in previous clinical treatment in the study of human
subjects can be exempted from informed consent. This study met the
conditions for an exemption from informed consent and was
approved by the Ethics Committee for an exemption from
informed consent. All the clinical information were collected from
the hospital’s case system in accordance with ethical guidelines.

Clinical laboratory testing and data
collection

Demographic information, including age, gender, height,
weight, blood pressure and disease information, was recorded for
each of the subject. The first steady-state trough concentrations of
vancomycin were collected for all the enrolled subjects. The clinical
laboratory test results for clinical indicators, including blood
biochemistry, coagulation function, and complete blood count,
were obtained from the clinical laboratory reports of the
hospital’s laboratory department for all included patients. These
tests were conducted 48 h before the first steady-state trough
concentration measurement.

Grouping of subjects by vancomycin steady-
state trough concentration

According to the first steady-state trough concentrations of
vancomycin, the subjects were divided to three different groups,
including low trough group with steady-state trough levels less than
10 μg/mL (N = 154), appropriate trough group with steady-state
trough levels ranged between 10 and 20 μg/mL (N = 234), and
excessive trough group with steady-state trough levels larger than
20 μg/mL (N = 158).

Data processing and statistical analysis

Two-sided unpairedWelch’s t-test was performed for each pair of
comparing groups and adjusted P values were calculated using
Benjamini and Hochberg correction. IBM SPSS 21 (Armonk, New
York, United States) was used for Spearman’s correlation, with P <
0.05 considered as statistically significant. Scientific Platform Serving
for Statistics Professional (SPSSPRO) developed by Zhongyan
Technology Co., LTD., was used for the establishment and
validation of machine learning models (Suzhou, Jiangsu, China)
(Author Anonymous, 2022). SIMCA 14.1 (Umetrics AB, Umeå,
Sweden) was employed for multivariate statistical analysis,
including principal component analysis (PCA) and Partial least
squares discriminant analysis (PLS-DA). Graphpad Prim 8 was
used for receiver operating characteristic (ROC) and histogram

analysis. Vancomycin Calculator (https://clincalc.com/vancomycin/)
was used for prediction of vancomycin steady-state trough
concentrations based on Bayesian population pharmacokinetic
(PopPK) model (Kane, 2024). Linear regression analysis was
performed by Hiplot Pro (https://hiplot.com.cn/), a comprehensive
web service for biomedical data analysis and visualization. Formissing
values, impute them by using the average values specific to their
corresponding trough concentration level groups. Log transformation
is often used in machine learning to reduce skewness, stabilize
variance, and linearize relationships, making it easier for models to
learn effective patterns from the data. For machine learning model
development of this study, logarithmic transformations were
performed on numerical variables.

Results

Baseline characteristics of the participants

The study design was summarized in Figure 1A. A total of
546 hospitalized patients who met the inclusion and exclusion
criteria were included in the final statistical analysis. Baseline
characteristics of the participants with different vancomycin
trough levels were shown in Table 1 and heatmap of Figure 1B.
There were no statistically significant differences in body weight,
height and body mass index (BMI) among the three groups with
different steady-state trough concentrations of vancomycin. While
six variables were significantly difference among the three different
groups, including age, inpatient department, creatinine clearance,
DBP, daily dose of vancomycin, and steady-state trough. The low
trough concentration group had a lower median age, while the high
concentration group consisted of older patients. Subjects in low
trough group were primarily from the surgical system. While
subjects in excessive trough group were mainly from Emergency
(34%) and Pulmonology (19%). Patients with lower creatinine
clearance were more likely to exhibit supratherapeutic trough
concentrations, a fact that is evident and widely reported in the
literature. DBP progressively decreased across the low trough,
appropriate trough, and excessive trough groups. The median
daily dose of vancomycin was 2,000 mg in all the three groups.
However, there was still a statistical difference (P = 0.012) in the
daily dose among the three groups. Dose frequency per day was also
different among the three groups. The median steady-state trough
concentrations of vancomycin were 7, 15, and 28 µg/mL in low
trough group, appropriate trough group, and excessive trough
group, respectively.

Clinical laboratory test results

Clinical laboratory test results for 45 clinical indicators,
including blood biochemistry, coagulation function, and complete
blood count, measured 48 h before the first steady-state trough
concentration measurement are presented in Table 2 and visualized
in the heatmap of Figure 1B. Blood biochemical indicators such as
albumin, total cholesterol, HDL-C, LDL-C, direct bilirubin (DBIL),
total bile acids, urea, creatinine, uric acid, sodium (Na), blood
glucose, C-reactive protein (CRP), cardiac troponin I (cTn I),
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and B-type natriuretic peptide (BNP) showed statistically significant
differences among the low trough group, the appropriate trough
group, and the excessive trough group. Kidney function related
indicators, including urea, creatinine, and uric acid, showed the
same trend across the three different groups, with the excessive
trough group having the highest levels, followed by the appropriate
trough group and low trough group. Blood cholesterol indicators,
including the total cholesterol, HDL-C, and LDL-C, also exhibited
the same trend across the three different groups with their
significance P values less than 0.001. Highest values of blood
cholesterol indicators occurred in the low trough group, followed
by the appropriate trough group and excessive trough group. BNP
and cTn I, which are biomarkers used in clinical practice for the
assessment of cardiac function and myocardial damage, were also
significantly difference (P < 0.001) among the three groups. The

elevation of these cardiac injury biomarker levels increases the risk
of excessively high vancomycin trough concentrations. Conversely,
levels that were too low can result in suboptimal trough
concentrations that do not achieve the effective therapeutic range.

As shown in Table 2, coagulation function related indicators,
including PT (prothrombin time), PA (prothrombin activity), PR
(prothrombin time ratio), INR (international normalized ratio),
APTT (activated partial thromboplastin time), Fbg (fibrinogen)
and TT (thrombin time), were all significantly difference among
low trough group, appropriate trough group, and excessive trough
group. Complete blood count test indicators, including lymphocyte,
eosinophil, RBC, Hb, and platelet, were significantly difference
among these three groups. The results indicated that the steady-
state trough concentration levels of vancomycin were not only
closely related to kidney function but also significantly correlated

FIGURE 1
Patient enrollment, study design, and clinical indicators. (A) The schematic summary of the study design, subject enrollment, clinical indicator
collection and statistical analysis. (B) Heatmap of clinical indicators for low trough, appropriate trough and excessive trough groups.
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with cholesterol indicators, cardiac biomarkers, blood glucose,
coagulation parameters, and hematological indices.

Correlation between vancomycin steady-
state trough concentration and clinical
indicators

Correlation analysis helps to reveal clinical indicators associated
with the steady-state trough concentrations of vancomycin.
Spearman’s rank correlation analysis was conducted to study the
correlation ships between vancomycin steady-state trough

concentration and clinical indicators. To visualize the correlations
among all the clinical phenotypes, correlation coefficient from
Spearman’s rank analysis was presented as a heatmap shown in
Figure 2A. The interrelationships among various clinical indicators
were intricate, reflecting the multifactorial influences on
vancomycin treatment response and patient prognosis.

Significant correlations (P < 0.05) between vancomycin steady-
state trough concentration and the other clinical indicators were
exhibited in Figure 2B. The top five clinical indicators that showed
the most significant positive correlation with vancomycin steady-
state trough concentration were creatinine clearance, HDL-C, LDL-
C, platelet, and total cholesterol. The top five clinical indicators that

TABLE 1 Baseline characteristics of the subjects with different vancomycin trough levels.

Variable Overall
N = 546a

Low trough
N = 154

Appropriate trough
N = 234

Excessive trough
N = 158

P valueb

Gender, n (%) 0.75

Female 194 (36) 54 (35) 87 (37) 53 (34)

Male 352 (64) 100 (65) 147 (63) 105 (66)

Age, Median (IQR) 62 (49–72) 54 (38–62) 65 (53–73) 67 (57–77) <0.001

Weight, Median (IQR) 66 (60–75) 70 (60–77) 67 (60–75) 64 (58–75) 0.43

Bedridden 144 23 67 54

Height, Median (IQR) 168 (160–173) 169 (162–174) 168 (160–173) 170 (160–173) 0.69

Bedridden 144 23 67 54

BMI, Median (IQR) 24.1 (21.8–26.4) 24.2 (22.1–27.0) 24.2 (22.0–26.5) 23.5 (21.5–25.7) 0.28

Bedridden 144 23 67 54

Inpatient department, n (%) <0.001
Cardiac center 51 (9.3) 12 (7.8) 21 (9.0) 18 (11)

Emergency department 102 (19) 3 (1.9) 45 (19) 54 (34)

General surgery department 77 (14) 29 (19) 31 (13) 17 (11)

Intensive care unit 37 (6.8) 7 (4.5) 21 (9.0) 9 (5.7)

Neurology department 105 (19) 49 (32) 44 (19) 12 (7.6)

Orthopedics department 76 (14) 35 (23) 33 (14) 8 (5.1)

Pneumology department 59 (11) 10 (6.5) 20 (8.5) 29 (18)

Others 39 (7.1) 9 (5.8) 19 (8.1) 11 (7.0)

Creatinine clearance, Median (IQR) 100 (57–136) 134 (110–178) 96 (69–123) 52 (38–95) <0.001
NA 146 24 67 55

SBP, Median (IQR) 130 (120–140) 130 (121–139) 130 (120–140) 128 (114–142) 0.65

NA 1 1 0 0

DBP, Median (IQR) 78 (69–84) 80 (71–85) 78 (70–84) 72 (61–84) <0.001
NA 1 1 0 0

Daily dose (mg), Median (IQR) 2,000 (1,500–2,000) 2,000 (2,000–2,000) 2,000 (1,500–2,000) 2,000 (1,500–2,000) 0.012

Dose frequency per day, n (%)

0.33 1 (0.2) 0 (0) 1 (0.4) 0 (0)

1 188 (34) 26 (17) 83 (35) 79 (50)

1.5 1 (0.2) 1 (0.6) 0 (0) 0 (0)

2 326 (60) 119 (77) 138 (59) 69 (44)

3 25 (4.6) 6 (3.9) 11 (4.7) 8 (5.1)

4 5 (0.9) 2 (1.3) 1 (0.4) 2 (1.3)

Steady-state trough, Median (IQR) 15 (9–21) 7 (5–8) 15 (12–17) 28 (24–35) <0.001
a, N (%); Median (IQR).
b, P-values are calculated through hypothesis testing. For continuous variables, the distribution is first assessed using the Shapiro-Wilk test. Normally distributed data are analyzed using two-

sided Student’s t-tests. For non-parametric data, the Mann-Whitney U test is applied. For categorical variables, P-values are computed using the chi-square test.

Abbreviation: IQR, interquartile range; NA, not available; SBP, systolic blood pressure; DBP, diastolic blood pressure.
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TABLE 2 Clinical laboratory tests of the subjects with different vancomycin trough levels.

Variable Overall
N = 546

Low trough
N = 154

Appropriate trough
N = 234

Excessive trough
N = 158

P value

Albumin (g/L), Median (IQR) 34.2 (30.6–38.0) 34.8 (32.3–37.5) 34.5 (30.5–38.2) 32.5 (29.2–36.6) 0.003

NA 17 7 5 5

Globulin (g/L), Median (IQR) 24.0 (20.6–27.3) 23.7 (20.2–26.7) 24.3 (20.8–27.0) 23.8 (19.5–28.3) 0.61

NA 46 15 19 12

Total cholesterol (mmol/L), Median (IQR) 3.15 (2.31–3.97) 3.72 (2.95–4.20) 3.19 (2.34–3.74) 2.62 (1.95–3.61) <0.001
NA 57 21 22 14

HDL-C (mmol/L), Median (IQR) 0.66 (0.43–0.88) 0.76 (0.60–0.97) 0.70 (0.47–0.92) 0.49 (0.34–0.71) <0.001
NA 57 21 22 14

LDL-C (mmol/L), Median (IQR) 1.86 (1.18–2.62) 2.39 (1.75–3.04) 1.85 (1.27–2.50) 1.39 (0.89–2.19) <0.001
NA 58 21 23 14

TG (mmol/L), Median (IQR) 1.27 (0.90–1.81) 1.28 (0.91–1.80) 1.20 (0.86–1.68) 1.34 (0.95–1.97) 0.12

NA 57 21 22 14

Lipoprotein (a) (mg/dL), Median (IQR) 13 (7–27) 15 (7–33) 14 (7–26) 12 (6–21) 0.05

NA 61 22 24 15

AST (U/L), Median (IQR) 31 (21–55) 29 (21–48) 30 (20–53) 33 (24–58) 0.12

NA 9 4 4 1

ALT (U/L), Median (IQR) 29 (17–60) 31 (18–66) 28 (17–60) 28 (16–54) 0.41

NA 9 4 4 1

ALP (U/L), Median (IQR) 88 (64–128) 84 (63–126) 84 (65–117) 91 (62–140) 0.5

NA 42 14 16 12

GGT (U/L), Median (IQR) 44 (22–96) 47 (25–100) 40 (20–86) 44 (23–106) 0.42

NA 42 14 16 12

DBIL (µmol/L), Median (IQR) 6 (4–11) 5 (3–8) 6 (4–10) 6 (4–14) 0.021

NA 16 7 4 5

IBIL (µmol/L), Median (IQR) 6 (4–10) 6 (4–10) 6 (4–10) 6 (4–9) 0.25

NA 16 7 4 5

TBIL (µmol/L), Median (IQR) 12 (8–20) 12 (8–18) 12 (8–20) 12 (8–24) 0.54

NA 16 7 4 5

Total bile acid (µmol/L), Median (IQR) 5 (3–9) 4 (3–7) 5 (2–8) 6 (3–13) 0.037

NA 48 15 21 12

Urea (mmol/L), Median (IQR) 8 (5–13) 5 (4–7) 8 (5–12) 13 (9–18) <0.001
NA 2 1 0 1

Creatinine (µmol/L), Median (IQR) 62 (46–93) 48 (38–67) 61 (46–83) 93 (62–167) <0.001
NA 2 1 0 1

Uric acid (µmol/L), Median (IQR) 163 (106–254) 135 (89–199) 164 (108–248) 204 (132–302) <0.001
NA 2 1 0 1

Ca (mmol/L), Median (IQR) 2.02 (1.91–2.13) 2.05 (1.93–2.13) 2.03 (1.91–2.14) 2.00 (1.88–2.12) 0.14

NA 2 1 0 1

P (mmol/L), Median (IQR) 0.94 (0.74–1.15) 0.95 (0.75–1.16) 0.92 (0.73–1.15) 0.94 (0.76–1.15) 0.58

NA 2 1 0 1

Mg (mmol/L), Median (IQR) 0.83 (0.74–0.90) 0.83 (0.76–0.88) 0.84 (0.75–0.90) 0.81 (0.73–0.91) 0.45

NA 29 12 10 7

Na (mmol/L), Median (IQR) 139 (136–144) 138 (136–141) 140 (136–144) 140 (136–145) 0.026

NA 2 1 0 1

K (mmol/L), Median (IQR) 4.10 (3.70–4.40) 4.00 (3.80–4.30) 4.10 (3.70–4.40) 4.10 (3.70–4.50) 0.39

NA 2 1 0 1

(Continued on following page)
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exhibited the most significant negative correlation with vancomycin
steady-state trough concentrations were ranked as urea, creatinine,
BNP, age and cTn I. The linear regression scatter plots for the six
clinical indicators with the most significant correlation to
vancomycin steady-state trough concentrations are shown in

Figure 2C, which were creatinine clearance, urea, creatinine,
BNP, age, and HDL-C. Significant correlations (P < 0.05) among
these six indicators and the other clinical indicators were shown in
Figure 2D. The above results of the Spearman’s rank correlation
analysis indicated that the steady-state trough concentration of

TABLE 2 (Continued) Clinical laboratory tests of the subjects with different vancomycin trough levels.

Variable Overall
N = 546

Low trough
N = 154

Appropriate trough
N = 234

Excessive trough
N = 158

P value

Cl (mmol/L), Median (IQR) 104 (101–108) 103 (101–107) 104 (100–108) 104 (100–109) 0.45

NA 2 1 0 1

Blood glucose (mmol/L), Median (IQR) 7.7 (5.4–10.6) 6.7 (5.0–9.5) 7.7 (5.6–10.5) 8.6 (6.3–11.1) 0.002

NA 56 19 22 15

CRP (mg/L), Median (IQR) 35 (12–77) 34 (12–83) 30 (10–62) 50 (22–104) 0.025

NA 244 54 106 84

cTn I (ng/mL), Median (IQR) 30 (4–170) 10 (0–64) 20 (3–138) 70 (17–420) <0.001
NA 58 25 28 5

BNP (pg/mL), Median (IQR) 176 (58–600) 73 (31–204) 160 (56–536) 492 (153–1,262) <0.001
NA 66 26 30 10

PT (s), Median (IQR) 13.30 (12.40–14.55) 12.85 (12.10–13.93) 13.30 (12.40–14.30) 13.90 (13.00–15.50) <0.001
NA 11 2 9 0

PA (%), Median (IQR) 76 (67–84) 80 (72–86) 77 (69–85) 71 (62–79) <0.001
NA 11 2 9 0

PR, Median (IQR) 1.17 (1.08–1.27) 1.12 (1.06–1.22) 1.16 (1.08–1.25) 1.23 (1.13–1.36) <0.001
NA 11 2 9 0

INR, Median (IQR) 1.17 (1.08–1.29) 1.12 (1.05–1.23) 1.16 (1.07–1.26) 1.24 (1.13–1.37) <0.001
NA 11 2 9 0

APTT (s), Median (IQR) 31 (28–36) 29 (26–34) 30 (27–35) 35 (30–42) <0.001
NA 11 2 9 0

Fbg (mg/dL), Median (IQR) 389 (269–487) 411 (297–540) 392 (272–488) 341 (250–448) 0.002

NA 11 2 9 0

TT (s), Median (IQR) 16.4 (15.4–17.7) 16.0 (15.1–16.9) 16.4 (15.4–17.8) 17.1 (16.0–18.8) <0.001
NA 11 2 9 0

D-dimer (FEU), Median (IQR) 3 (2–7) 3 (1–6) 3 (2–7) 4 (2–7) 0.36

NA 75 18 39 18

WBC (10̂9/L), Median (IQR) 9.6 (6.7–13.8) 9.4 (6.5–13.2) 9.5 (6.6–13.7) 10.5 (7.0–14.8) 0.29

Neutrophil (10̂9/L), Median (IQR) 7.9 (5.1–11.7) 7.7 (4.9–10.8) 7.8 (5.0–11.4) 8.9 (5.6–12.8) 0.16

Lymphocyte (10̂9/L), Median (IQR) 0.94 (0.61–1.39) 1.07 (0.75–1.51) 0.89 (0.61–1.38) 0.86 (0.53–1.28) 0.004

Monocyte (10̂9/L), Median (IQR) 0.48 (0.31–0.72) 0.52 (0.37–0.72) 0.46 (0.30–0.71) 0.49 (0.29–0.72) 0.22

Eosinophil (10̂9/L), Median (IQR) 0.08 (0.01–0.18) 0.11 (0.03–0.21) 0.07 (0.01–0.16) 0.07 (0.01–0.21) 0.035

Basophil (10̂9/L), Median (IQR) 0.020 (0.010–0.040) 0.030 (0.020–0.040) 0.020 (0.010–0.048) 0.020 (0.010–0.040) 0.23

RBC (10̂12/L), Median (IQR) 2.91 (2.45–3.47) 3.17 (2.66–3.56) 3.00 (2.48–3.50) 2.63 (2.25–3.14) <0.001

Hb (g/L), Median (IQR) 89 (75–104) 95 (81–109) 91 (77–107) 80 (69–94) <0.001

Platelet (10̂9/L), Median (IQR) 190 (105–280) 250 (161–331) 196 (114–286) 127 (85–223) <0.001

Abbreviation: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; AST, aspartate aminotransferase; ALT, alanine aminotransferase;

ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBIL, total bilirubin; Ca, calcium; P, phosphorus; Mg, magnesium; Na, sodium; K,

potassium; Cl, chloride; CRP, C-reactive protein; cTn I, cardiac troponin I; BNP, B-type natriuretic peptide; PT, prothrombin time; PA, protein C activity; PR, partial thromboplastin ratio; INR,

international normalized ratio; APTT, activated partial thromboplastin time; Fbg, fibrinogen; TT, thrombin time; D-dimer, D-dimer; WBC, white blood cell count; RBC, red blood cell count;

Hb, hemoglobin.
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FIGURE 2
Correlation between vancomycin steady-state trough concentration and clinical indicators. (A) Correlations of clinical phenotypes by Spearman’s
rank correlation analysis. (B) Correlation coefficient lollipop chart exhibited the significant correlations (P < 0.05) between vancomycin steady-state
trough concentration and the other clinical indicators. The Y-axis on the right is the Spearman’s correlation P-value. (C) The linear regression scatter plots
for the six clinical indicators with the most significant correlation to vancomycin steady-state trough concentrations. (D) Spearman’s correlation
network diagram among creatinine-clearance, urea, creatinine, BNP, age, HDL-C and the other clinical indicators. The figure only displayed correlations
with P values less than 0.05. Green lines represented significant negative correlations, while purple lines indicated significant positive correlations. The
thicker the line, the stronger the correlation.
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vancomycin was not only closely related to kidney function but also
significantly correlated with serum markers of cardiac function and
cholesterol-related lipid indicators.

Screening of clinical indicators related to the
grouping of vancomycin steady-state
trough concentrations

To further investigate whether the steady-state trough
concentrations of vancomycin were associated with clinical
indicators 48 h before steady-state trough concentration, we
utilized principal component analysis (PCA) and partial least
squares-discriminant analysis (PLS-DA) to explore and interpret
the complex dataset, aiming to identify the intrinsic patterns and

distinguish among low, appropriate and excessive trough groups
based on their clinical indicators. PCA effectively reduced
dimensionality, capturing the major sources of variance within the
data. The resulting score plot of PCA illustrated a clear separation
between low trough group and excessive trough group (Figure 3A).
Following PCA, we conducted PLS-DA to further investigate the
discriminatory capabilities of the three groups using the clinical
dataset. Unlike PCA, which is an unsupervised method, PLS-DA is
a supervised technique that maximizes the variation between groups,
thus enhancing the separation in the score plot (Figure 3B). PLS-DA
yielded distinct clusters of low trough, appropriate trough, and
excessive trough groups, highlighting the discriminatory potential
of the selected clinical features.

As shown in Figure 3C, 18 clinical indicators possessed VIP>1.
As depicted in Figure 3C, a total of 18 clinical indicators in the PLS-

FIGURE 3
Screening of clinical indicators related to the grouping of vancomycin steady-state trough concentrations. (A) PCA score plot based on 57 clinical
indicators. (B) PLS-DA score plot based on 57 clinical indicators. (C) The 18 selected clinical indicators by VIP>1 in PLS-DAmodel. (D) Bar chart plots of the
top 10 variables with the highest VIP values. (E) Forest plot from ordinal logistic regression analysis based on the 18 clinical indicators with VIP>1.
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DA model have variable importance in projection (VIP) values
exceeding 1, indicating their significant contribution to the model.
The levels of the top 10 variables with the highest VIP values were
shown in Figure 3D. A further ordinal logistic regression analysis
was conducted based on these clinical indictors with VIP>1
(Figure 3E). In the logistic regression analysis, creatinine
clearance, BNP, age and LDL-C exhibited p-values less than 0.05,
which indicated a strong association between these four predictor
variables and the steady-state trough concentrations of vancomycin.
The odds ratios (ORs) of creatinine clearance and LDL-C were less
than 1, suggesting an inverse relationship with the steady-state
trough concentration of vancomycin. Conversely, the ORs of
1.466 and 1.267 indicated that the steady-state trough
concentrations were positively correlated with both BNP
levels and age.

Development of vancomycin steady-state
trough concentration prediction model
utilizing machine learning techniques

The aforementioned research findings indicate that the clinical
factors affecting vancomycin’s steady-state trough concentrations
were not solely kidney function and dosage. Cholesterol-related lipid
indicators and BNP levels at the initiation of vancomycin therapy
were also significantly correlated with the steady-state trough
concentrations. To facilitate earlier predictions of vancomycin’s

steady-state trough concentrations, we tried to develop a machine
learning model using clinical indicators collected 48 h prior to the
concentration measurement, specifically for forecasting
vancomycin’s steady-state trough levels. Among the
546 participants, a random selection of 446 (82%) was used to
construct and internally validate the machine learning model, with
the remaining 100 (18%) reserved for external validation of the
model. By comparing a variety of machine learning models, we
found that the random forest algorithm demonstrated the highest
accuracy in predicting the steady-state trough concentrations.

In the development phase of random forest model, all dataset
from the 446 subjects were divided into a training set and a testing
set in a 7:3 ratio. Creatinine clearance, CRP, BNP, HDL-C and daily
dose were selected for the construction of the random forest
regression model to predict the steady-state trough
concentrations. The feature importance of the regression model
was shown in Figure 4A. A comparison between the actual and
predicted steady-state trough concentrations of vancomycin in the
training set and testing set was illustrated in Figure 4B. The
correlation coefficients between the predicted trough
concentrations and the actual trough concentrations in the
training and test sets were 0.94 and 0.81, respectively (Figure 4B).

To predict whether vancomycin’s steady-state trough
concentrations fall within the recommended guidelines, a random
forest classification model was further developed based on creatinine
clearance, CRP, BNP, HDL-C, and daily dose. The feature
importance of the classification model was shown in Figure 4C.

FIGURE 4
Development of vancomycin steady-state trough concentration prediction model based on creatinine clearance, CRP, BNP, HDL-C and daily dose
by random forest. (A) Feature importance of the random forest regression model. (B) Correlations between the actual and predict steady-state trough
concentrations in both training and testing set. (C) Feature importance of the random forest classificationmodel. (D)Confusionmatrix heatmaps for both
training set and testing set of random forest classification model. (E) ROC curves of both training set and testing set from random forest
classification model.
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FIGURE 5
External validation of random forest models and comparative analysis with Bayesian PopPK model. (A) The correlation between the actual steady-
state trough concentrations and the predict steady-state trough concentrations by the random forest model and the Bayesian PopPK model,
respectively. (B) Line charts comparing the predicted steady-state trough concentrations by this study’s random forest regression model, the actual
steady-state trough concentrations, and the predicted steady-state trough concentrations using the Bayesian PopPK model for each group. (C)
Confusion matrix heatmaps for random forest model and Bayesian PopPK model. (D) ROC curves of random forest classification model and Bayesian
PopPK model.
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This model was designed to distinguish low trough, appropriate
trough, and excessive trough groups. The heat maps of the confusion
matrix for both the training and testing set were depicted in
Figure 4D. The accuracy for the training and testing set were
0.99 and 0.84, respectively. ROC curves and their respective areas
under the curve (AUC) for distinguishing between the low,
appropriate, and excessive trough groups in both the training
and testing set were shown in Figure 4E. The model
demonstrated exceptional discrimination capability, with AUC
achieving a perfect score of 1 for the training dataset, and
maintaining a high level of accuracy with an AUC exceeding
0.93 for the independent testing dataset.

External validation of random forest models
and comparative analysis with Bayesian
population pharmacokinetic model

To evaluate the generalization capability and robustness of the
machine learning model for predicting vancomycin steady-state
trough concentrations, we further conducted external validation
of the random forest regression model and the random forest
classification model using an additional 100 subjects. To compare
the accuracy of the random forest model with the Bayesian PopPK
model for predicting vancomycin steady-state trough
concentrations, the Bayesian PopPK-based calculator for
vancomycin steady-state trough concentrations (https://clincalc.
com/vancomycin/) was also used to compute the concentrations
for 100 subjects in the external validation set (Kane, 2024).

The correlation coefficient between the vancomycin steady-state
trough concentrations predicted by the random forest model and the
actual steady-state trough concentrations was 0.72 (upper panel of
Figure 5A). In contrast, the correlation coefficient between the
vancomycin steady-state trough concentrations predicted by the
Bayesian PopPK model and the actual trough concentrations was
only 0.59 (lower panel of Figure 5A). Figure 5B presented line charts
comparing the predicted trough concentrations by this study’s
random forest regression model, the actual trough
concentrations, and the predicted trough concentrations using
the Bayesian PopPK model. It was evident that the random
forest model constructed in this study was significantly more
accurate in predicting vancomycin trough concentrations than
the Bayesian PopPK model, especially for the subjects in
appropriate trough group, and excessive trough group.

Subsequently, the accuracy of the random forest classification
model and the Bayesian PopPK model in classifying the external
validation set was further examined. The random forest model
achieved accuracy rates of 66.7%, 92.3%, and 87.1% for the
identification of groups low, appropriate, and excessive trough,
respectively (upper panel of Figure 5C). In contrast, the Bayesian
PopPK model’s accuracy rates for the identification of groups low,
appropriate, and excessive trough were 65.5%, 43.6%, and 64.5%,
respectively, which were significantly lower than those of the
random forest model established in this study (lower panel of
Figure 5C). The overall predictive accuracy rates for the random
forest model and the Bayesian PopPK model were 0.83 and 0.57,
respectively. The random forest model demonstrated impressive
AUC values under the ROC curves for low, appropriate, and

excessive trough groups in the external validation cohort, with
values reaching 0.92, 0.92, and 0.96, respectively (upper panel of
Figure 5D). However, the Bayesian PopPK model only achieved
areas under the ROC curves of 0.76, 0.56, and 0.83 for low,
appropriate, and excessive trough groups in the external
validation cohort, respectively (Figure 5D lower panel). By
comparing the predictive results of the currently most popular
Bayesian PopPK models, the random forest model constructed in
this study has a significant advantage in the accuracy of predicting
vancomycin steady-state trough concentrations.

Discussion

Monitoring vancomycin steady-state trough concentrations is
vital for optimizing treatment efficacy and safety, preventing
resistance, and minimizing nephrotoxicity (Rybak et al., 2020a).
However, current clinical methods measure steady-state
concentrations around 48 h post-administration, causing delays
in treatment adjustments (Prybylski, 2017). This study aims to
construct an early prediction model for vancomycin steady-state
trough concentrations. We elucidate the complex interplay among
factors influencing vancomycin pharmacokinetics and constructs a
random forest model for predicting vancomycin’s steady-state blood
concentrations by incorporating a broader spectrum of clinical
indicators beyond renal function. Random forest is a powerful
machine learning method that uses multiple decision trees to
make predictions. For regression tasks, it averages the predictions
from individual trees, while for classification tasks, it uses majority
voting to determine the final outcome. The model introduces
randomness by creating bootstrapped subsets of the data and
selecting random subsets of features at each split, which helps
reduce overfitting and improve robustness. This combination of
ensemble learning, randomness, and aggregation makes random
forest effective for both predicting continuous values and classifying
categorical outcomes. Utilizing the machine learning model
developed in this research, clinicians have the capability to
evaluate a patient’s prospective steady-state trough concentration
prior to the initial detection of steady-state concentration. It enables
an early prediction of whether vancomycin’s steady-state trough
concentration will fall within the recommended therapeutic range,
essentially from the moment treatment commences. This prediction
model for vancomycin steady-state trough concentrations offers a
practical advantage for clinical decision-making, enabling more
precise dosing strategies and enhancing patient safety.

For patients with normal kidney function, the half-life of
vancomycin is 6–12 h. According to pharmacokinetic theory, it
generally takes about 4-5 half-lives to reach steady-state, which is
around 24–48 h. Therefore, for subjects with normal kidney
function, the first steady-state trough concentration monitoring
(the lowest concentration during the dosing interval) was begin
on the third day (48 h after the first administration). For patients
with impaired kidney function, the half-life of vancomycin is
prolonged; for instance, in patients with acute or chronic renal
failure, the half-life of vancomycin can even extend to 8 days
(Vandecasteele and De Vriese, 2010). In this study, the time
point for the first steady-state trough concentration
determination of vancomycin was determined by a senior
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clinician. Before model construction, we initially screened clinical
indicators that affect vancomycin steady-state trough
concentrations. A total of 57 different clinical indicators collected
from all the 546 subjects within 48 h prior to reaching the steady-
state trough concentration of vancomycin were examined for their
correlation with first steady-state vancomycin trough
concentrations. Statistical results indicated that, in addition to
indicators related to kidney function, other clinical indicators
such as BNP, cTn I, HDL-C, LDL-C, and platelet, also exhibited
significant correlations with vancomycin’s steady-state trough
concentrations (Figures 2C,D). All the subjects were further
divided into low (<10 μg/mL), appropriate (10–20 μg/mL), and
excessive (>20 μg/mL) trough concentration groups, and univariate
analysis confirmed statistical differences (P < 0.001) in the
mentioned indicators (Table 2), supporting the need for a
broader clinical factor consideration in vancomycin trough
concentration predication models.

BNP and cTn I are cardiac markers used in clinical practice to
assess heart function and detect cardiac conditions (Chapelle, 1999;
Hubers et al., 2021). Elevated levels of these biomarkers can indicate
heart failure, myocardial infarction, or other cardiac issues.
However, there is currently no research that explicitly indicates
that BNP and cTn I have a direct impact on the metabolism of
vancomycin in the body. The result of the ordinal logistic regression
indicated that BNP is a risk factor for exceeding the target steady-
state trough concentration of vancomycin, with OR value 1.466
(95%CI: 1.167–1.841) (Figure 3E). Elevated levels of BNP indicate
potential heart damage, suggesting that the patient may be
experiencing cardiac dysfunction. Impaired heart function can
affect blood circulation and the distribution of drugs throughout
the body, indirectly impacting vancomycin’s pharmacokinetics and
pharmacodynamics (Chuphan et al., 2022). Therefore, in clinical
practice, if elevated levels of cardiac enzymes such as BNP are
detected in patients, the dose of vancomycin should be adjusted in a
timely manner to prevent excessive drug exposure and potential
toxic reactions.

Both HDL-C and LDL-C showed a significant negative
correlation with vancomycin steady-state trough concentration.
Lipoproteins are pivotal for the transport and metabolism of
cholesterol in the body, their role in the drug metabolism
process, particularly for antibiotics like vancomycin, remains less
understood (Yamamoto et al., 2017; Grace, 2012). Further research
is warranted to elucidate the complex interplay between lipid
metabolism, drug disposition, and the efficacy and safety of
vancomycin in various patient populations. The findings in this
study highlighted the importance of incorporating patients’ serum
HDL-C and LDL-C levels into the dosing strategy for vancomycin.
In cases where patients have HDL-C and LDL-C levels below the
normal range, it may be necessary to cautiously reduce the dose of
vancomycin to decrease the likelihood of toxic effects.

Given the findings of our research that, in addition to renal
function, other indicators, such as cardiac biomarkers and
lipoprotein also have a significant impact on vancomycin serum
concentration, we utilized random forest machine learning models
to construct a new predictive model for vancomycin’s steady-state
trough concentration. The model incorporated values of creatinine
clearance, CRP, BNP, HDL-C, and the daily dose, which were

collected 48 h prior to the steady-state concentration
measurement. In the random forest regression model, the
correlation coefficients between the actual and predicted steady-
state trough concentrations of vancomycin for the training and
testing sets can reach 0.94 and 0.81, respectively (Figure 4A). The
model achieved accuracy rates of 0.99 for the training set and
0.84 for the testing set (Figure 4B), with AUCs of ROC curves
reaching 1 for the training set and above 0.93 for the testing set
(Figure 4C). The random forest models predicted vancomycin
trough levels with high accuracy, factoring in renal function,
cardiac biomarkers, lipoproteins, and administration dose.

External validation of our machine learning model has
demonstrated its superior predictive accuracy for vancomycin
steady-state trough concentrations compared to the traditional
Bayesian PopPK model. In the external validation cohort of
100 subjects, the predictive accuracy of the random forest model
established in this study reached 0.83, significantly exceeding the
predictive accuracy of the Bayesian PopPK model, which was 0.57
(Figure 5). The machine learning model established in this study has
improved the accuracy of predicting vancomycin steady-state
trough concentrations by 0.26 compared to the Bayesian PopPK
model. Compared to Bayesian PopPK models, random forest
models have advantages in handling complex nonlinear
relationships and high-dimensional data but may require more
computational resources and time. Therefore, when
indiscriminately including clinical patients, the random forest
model established in this study has a significantly higher
predictive accuracy for vancomycin’s steady-state trough
concentration compared to the Bayesian model.

The random forest model’s good accuracy and high AUC values
of ROCs for the classification of trough concentration groups
underscore its strength in capturing the nuances of vancomycin
pharmacokinetics. The robustness of the random forest model is
evident from its consistent performance across the training and
testing sets, and its generalization capabilities are supported by the
external validation results. These findings suggest that the
integration of diverse clinical indicators and advanced machine
learning techniques can significantly enhance the predictive
power of pharmacokinetic models, potentially leading to
improved clinical outcomes through personalized dosing
strategies. However, we recognize that our single-center cohort
design may introduce geographic bias and result in a relatively
homogeneous patient population. This limitation could potentially
affect the generalizability of our findings to other regions or patient
groups with different demographics, comorbidities, or clinical
practices. Therefore, further research is needed to refine the
model by incorporating additional research centers and validating
model performance in diverse patient populations and clinical
settings. Longitudinal follow-up studies are also essential to assess
the model’s long-term impact on clinical outcomes, such as
treatment efficacy, nephrotoxicity incidence, and patient safety.
Additionally, future work should focus on integrating the model
into clinical decision support systems to facilitate real-time decision-
making and enhance clinical workflow. Overall, ongoing model
refinement and validation are crucial for successful clinical
translation and broader applicability of machine learning in
optimizing antibiotic therapies.

Frontiers in Pharmacology frontiersin.org13

Hu et al. 10.3389/fphar.2025.1549500

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1549500


Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Ethics statement

The studies involving humans were approved by All
procedures performed in this study involving human
participants were conducted in accordance with the
Declaration of Helsinki and was approved by the ethics
committee of Beijing Chao-Yang Hospital (Ethics Code: 2024-
Research-502). The studies were conducted in accordance with
the local legislation and institutional requirements. Written
informed consent for participation was not required from the
participants or the participants’ legal guardians/next of kin in
accordance with the national legislation and institutional
requirements.

Author contributions

TH: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Visualization, Writing – original
draft, Writing – review and editing. XD: Data curation, Formal
Analysis, Methodology, Writing – original draft, Writing – review
and editing. FH: Data curation, Formal Analysis, Investigation,
Methodology, Supervision, Writing – original draft,
Writing – review and editing. ZA: Conceptualization, Data

curation, Investigation, Methodology, Software, Supervision,
Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Author Anonymous, (2022). Ceramide accumulation Induces the integrated stress
response in AML, Cancer Discov. 12 (7), Of14. doi:10.1158/2159-8290.Cd-rw2022-083

Álvarez, R., López Cortés, L. E., Molina, J., Cisneros, J. M., and Pachón, J. (2016).
Optimizing the clinical use of vancomycin. Antimicrob. Agents Chemother. 60 (5),
2601–2609. doi:10.1128/aac.03147-14

Berthaud, R., Benaboud, S., Hirt, D., Genuini, M., Oualha, M., Castelle, M., et al.
(2019). Early bayesian dose adjustment of vancomycin continuous infusion in children:
a randomized controlled trial. Antimicrob. Agents Chemother. 63 (12). doi:10.1128/aac.
01102-19

Cairns, K. A., Udy, A. A., Peel, T. N., Abbott, I. J., Dooley, M. J., and Peleg, A. Y.
(2023). Therapeutics for vancomycin-resistant enterococcal bloodstream infections.
Clin. Microbiol. Rev. 36 (2), e0005922. doi:10.1128/cmr.00059-22

Chapelle, J. P. (1999). Cardiac troponin I and troponin T: recent players in the field of
myocardial markers. Clin. Chem. Lab. Med. 37 (1), 11–20. doi:10.1515/cclm.1999.002

Chen, Y., Wu, D., Dong, M., Zhu, Y., Lu, J., Li, X., et al. (2018). Population
pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and
young infants. Eur. J. Clin. Pharmacol. 74 (7), 921–930. doi:10.1007/s00228-018-2454-0

Chuphan, C., Sukarnjanaset, W., Puthanakit, T., and Wattanavijitkul, T. (2022).
Population pharmacokinetics and pharmacodynamics of vancomycin in pediatric
patients with various degrees of renal function. J. Pediatr. Pharmacol. Ther. 27 (5),
419–427. doi:10.5863/1551-6776-27.5.419

Drennan, P. G., Begg, E. J., Gardiner, S. J., Kirkpatrick, C. M. J., and Chambers, S. T.
(2019). The dosing and monitoring of vancomycin: what is the best way forward? Int.
J. Antimicrob. Agents 53 (4), 401–407. doi:10.1016/j.ijantimicag.2018.12.014

Grace, E. (2012). Altered vancomycin pharmacokinetics in obese and morbidly obese
patients: what we have learned over the past 30 years. J. Antimicrob. Chemother. 67 (6),
1305–1310. doi:10.1093/jac/dks066

He, N., Su, S., Ye, Z., Du, G., He, B., Li, D., et al. (2020). Evidence-based guideline for
therapeutic drug monitoring of vancomycin: 2020 update by the division of therapeutic

drug monitoring, Chinese pharmacological society. Clin. Infect. Dis. 71 (Suppl. 4),
S363–s371. doi:10.1093/cid/ciaa1536

Hubers, S. A., Schirger, J. A., Sangaralingham, S. J., Chen, Y., Burnett, J. C., Jr., Hodge,
D., et al. (2021). B-type natriuretic peptide and cardiac remodelling after myocardial
infarction: a randomised trial. Heart 107 (5), 396–402. doi:10.1136/heartjnl-2020-
317182

Hui, K. H. M., Lam, H. S., Chow, C. H. T., Li, Y. S. J., Leung, P. H. T., Chan, L. Y. B.,
et al. (2022). Using electronic health records for personalized dosing of intravenous
vancomycin in critically ill neonates: model and web-based interface development
study. JMIR Med. Inf. 10 (1), e29458. doi:10.2196/29458

Kane, A. A. (2024). SP. Vancomycin calculator. ClinCalc. Available online at: https://
clincalc.com/vancomycin (Accessed December 30, 2024).

Kasiakou, S. K., Sermaides, G. J., Michalopoulos, A., Soteriades, E. S., and Falagas, M.
E. (2005). Continuous versus intermittent intravenous administration of antibiotics: a
meta-analysis of randomised controlled trials. Lancet Infect. Dis. 5 (9), 581–589. doi:10.
1016/s1473-3099(05)70218-8

Lestner, J. M., Hill, L. F., Heath, P. T., and Sharland, M. (2016). Vancomycin toxicity
in neonates: a review of the evidence. Curr. Opin. Infect. Dis. 29 (3), 237–247. doi:10.
1097/qco.0000000000000263

Levine, D. P. (2006). Vancomycin: a history. Clin. Infect. Dis. 42 (Suppl. 1), S5–S12.
doi:10.1086/491709

Matsumoto, K., Oda, K., Shoji, K., Hanai, Y., Takahashi, Y., Fujii, S., et al. (2022).
Clinical practice guidelines for therapeutic drug monitoring of vancomycin in the
framework of model-informed precision dosing: a consensus review by the Japanese
society of chemotherapy and the Japanese society of therapeutic drug monitoring.
Pharmaceutics 14 (3), 1928. doi:10.3390/pharmaceutics14091928

Nailor, M. D., and Sobel, J. D. (2009). Antibiotics for gram-positive bacterial
infections: vancomycin, teicoplanin, quinupristin/dalfopristin, oxazolidinones,
daptomycin, dalbavancin, and telavancin. Infect. Dis. Clin. N. Am. 23 (4), 965–+.
doi:10.1016/j.idc.2009.06.010

Frontiers in Pharmacology frontiersin.org14

Hu et al. 10.3389/fphar.2025.1549500

https://doi.org/10.1158/2159-8290.Cd-rw2022-083
https://doi.org/10.1128/aac.03147-14
https://doi.org/10.1128/aac.01102-19
https://doi.org/10.1128/aac.01102-19
https://doi.org/10.1128/cmr.00059-22
https://doi.org/10.1515/cclm.1999.002
https://doi.org/10.1007/s00228-018-2454-0
https://doi.org/10.5863/1551-6776-27.5.419
https://doi.org/10.1016/j.ijantimicag.2018.12.014
https://doi.org/10.1093/jac/dks066
https://doi.org/10.1093/cid/ciaa1536
https://doi.org/10.1136/heartjnl-2020-317182
https://doi.org/10.1136/heartjnl-2020-317182
https://doi.org/10.2196/29458
https://clincalc.com/vancomycin
https://clincalc.com/vancomycin
https://doi.org/10.1016/s1473-3099(05)70218-8
https://doi.org/10.1016/s1473-3099(05)70218-8
https://doi.org/10.1097/qco.0000000000000263
https://doi.org/10.1097/qco.0000000000000263
https://doi.org/10.1086/491709
https://doi.org/10.3390/pharmaceutics14091928
https://doi.org/10.1016/j.idc.2009.06.010
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1549500


Neely, M. N., Kato, L., Youn, G., Kraler, L., Bayard, D., van Guilder, M., et al. (2018).
Prospective trial on the use of trough concentration versus area under the curve to
determine therapeutic vancomycin dosing. Antimicrob. Agents Chemother. 62 (2),
e02042-17. doi:10.1128/aac.02042-17

Ohnishi, A., Yano, Y., Ishibashi, T., Katsube, T., and Oguma, T. (2005). Evaluation of
Bayesian predictability of vancomycin concentration using population pharmacokinetic
parameters in pediatric patients. Drug Metab. Pharmacokinet. 20 (6), 415–422. doi:10.
2133/dmpk.20.415

Pai, M. P., Neely, M., Rodvold, K. A., and Lodise, T. P. (2014). Innovative approaches
to optimizing the delivery of vancomycin in individual patients. Adv. Drug Deliv. Rev.
77, 50–57. doi:10.1016/j.addr.2014.05.016

Prybylski, J. P. (2017). A strategy for dosing vancomycin to therapeutic targets using
only trough concentrations. Clin. Pharmacokinet. 56 (3), 263–272. doi:10.1007/s40262-
016-0435-y

Rybak, M., Lomaestro, B., Rotschafer, J. C., Moellering, R., Jr., Craig, W., Billeter, M.,
et al. (2009a). Therapeutic monitoring of vancomycin in adult patients: a consensus
review of the American society of health-system pharmacists, the infectious diseases
society of America, and the society of infectious diseases pharmacists.Am. J. Health Syst.
Pharm. 66 (1), 82–98. doi:10.2146/ajhp080434

Rybak, M. J. (2006). The pharmacokinetic and pharmacodynamic properties of
vancomycin. Clin. Infect. Dis. 42, S35–S39. doi:10.1086/491712

Rybak, M. J., Le, J., Lodise, T. P., Levine, D. P., Bradley, J. S., Liu, C., et al. (2020a).
Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus
aureus infections: a revised consensus guideline and review by the American society of
health-system pharmacists, the infectious diseases society of America, the pediatric
infectious diseases society, and the society of infectious diseases pharmacists. Clin.
Infect. Dis. 71 (6), 1361–1364. doi:10.1093/cid/ciaa303

Rybak, M. J., Le, J., Lodise, T. P., Levine, D. P., Bradley, J. S., Liu, C., et al. (2020b).
Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus
aureus infections: a revised consensus guideline and review by the American society of
health-system pharmacists, the infectious diseases society of America, the pediatric
infectious diseases society, and the society of infectious diseases pharmacists. Am.
J. Health Syst. Pharm. 77 (11), 835–864. doi:10.1093/ajhp/zxaa036

Rybak, M. J., Lomaestro, B. M., Rotschafer, J. C., Moellering, R. C., Craig, W. A.,
Billeter, M., et al. (2009b). Vancomycin therapeutic guidelines: a summary of consensus
recommendations from the infectious diseases society of America, the American society
of health-system pharmacists, and the society of infectious diseases pharmacists. Clin.
Infect. Dis. 49 (3), 325–327. doi:10.1086/600877

Vandecasteele, S. J., and De Vriese, A. S. (2010). Recent changes in vancomycin use in
renal failure. Kidney Int. 77 (9), 760–764. doi:10.1038/ki.2010.35

Vandecasteele, S. J., De Vriese, A. S., and Tacconelli, E. (2013). The pharmacokinetics
and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties.
J. Antimicrob. Chemother. 68 (4), 743–748. doi:10.1093/jac/dks495

Wahby, K. A., Cunmuljaj, L., Mouabbi, K., Almadrahi, Z., and Wilpula, L. (2021).
Evaluation of dosing strategies and trough concentrations of vancomycin in patients
undergoing continuous venovenous hemofiltration. Pharmacotherapy 41 (7), 554–561.
doi:10.1002/phar.2535

Wrishko, R. E., Levine, M., Khoo, D., Abbott, P., and Hamilton, D. (2000).
Vancomycin pharmacokinetics and Bayesian estimation in pediatric patients. Ther.
Drug Monit. 22 (5), 522–531. doi:10.1097/00007691-200010000-00004

Yamamoto, H., Takada, T., Yamanashi, Y., Ogura, M., Masuo, Y., Harada-Shiba, M.,
et al. (2017). VLDL/LDL acts as a drug carrier and regulates the transport and
metabolism of drugs in the body. Sci. Rep. 7 (1), 633. doi:10.1038/s41598-017-
00685-9

Frontiers in Pharmacology frontiersin.org15

Hu et al. 10.3389/fphar.2025.1549500

https://doi.org/10.1128/aac.02042-17
https://doi.org/10.2133/dmpk.20.415
https://doi.org/10.2133/dmpk.20.415
https://doi.org/10.1016/j.addr.2014.05.016
https://doi.org/10.1007/s40262-016-0435-y
https://doi.org/10.1007/s40262-016-0435-y
https://doi.org/10.2146/ajhp080434
https://doi.org/10.1086/491712
https://doi.org/10.1093/cid/ciaa303
https://doi.org/10.1093/ajhp/zxaa036
https://doi.org/10.1086/600877
https://doi.org/10.1038/ki.2010.35
https://doi.org/10.1093/jac/dks495
https://doi.org/10.1002/phar.2535
https://doi.org/10.1097/00007691-200010000-00004
https://doi.org/10.1038/s41598-017-00685-9
https://doi.org/10.1038/s41598-017-00685-9
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1549500

	Machine learning approach for personalized vancomycin steady-state trough concentration prediction: a superior approach ove ...
	Introduction
	Methods
	Study design and population
	Ethical approval
	Clinical laboratory testing and data collection
	Grouping of subjects by vancomycin steady-state trough concentration
	Data processing and statistical analysis

	Results
	Baseline characteristics of the participants
	Clinical laboratory test results
	Correlation between vancomycin steady-state trough concentration and clinical indicators
	Screening of clinical indicators related to the grouping of vancomycin steady-state trough concentrations
	Development of vancomycin steady-state trough concentration prediction model utilizing machine learning techniques
	External validation of random forest models and comparative analysis with Bayesian population pharmacokinetic model

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


