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Dysregulated cell cycle progression is a well-established hallmark of cancer,
driving the development of targeted antitumor therapies that intervene at specific
phases of the cell cycle. Among these therapeutic targets, cyclin-dependent
kinases 4 and 6 (CDK4/6) have emerged as critical regulators of cell cycle
progression, with their aberrant activation being strongly implicated in
tumorigenesis and cancer progression. Currently, multiple CDK4/6 inhibitors
have received clinical approval for hormone receptor (HR)-positive/human
epidermal growth factor receptor 2 (HER2)-negative breast cancer,
demonstrating dual therapeutic mechanisms through both cell cycle arrest
and enhancement of antitumor immunity. However, clinical implementation
faces two major challenges: the inevitable development of acquired resistance
during prolonged treatment, and the need for optimized combination strategies
with other anticancer agents to achieve synergistic efficacy. This review
systematically examines the molecular mechanisms underlying CDK4/
6 inhibitor function and characterizes currently approved therapeutic agents.
Importantly, it synthesizes recent discoveries regarding resistance mechanisms,
including dysregulated cell cycle checkpoints, compensatory signaling pathway
activation, and tumor microenvironment adaptations. Furthermore, we critically
evaluate emerging combination therapeutic approaches targeting these
resistance mechanisms. By integrating mechanistic insights with clinical
evidence, this analysis aims to provide actionable strategies for overcoming
therapeutic resistance and maximizing the clinical potential of CDK4/
6 inhibitors in breast cancer management.
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1 Introduction

The cell cycle encompasses the series of events through which actively dividing cells
progress from the completion of one division to the next, sequentially traversing the G1, S,
G2, and M phases (Matthews et al., 2022). This process is governed by tightly regulated
checkpoints that enforce strict quality control, ensuring genomic fidelity before progression
to subsequent phases. In cancer, however, dysregulation of cell cycle control mechanisms
leads to uncontrolled proliferation—a hallmark of malignancy. Targeting cell cycle
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regulators has consequently emerged as a cornerstone of modern
oncology drug development (Asghar et al., 2015). Cyclin dependent
kinases (CDKs) are key kinases involved in cell cycle regulation,
which play an important role in cell cycle initiation and transition
regulation at various stages (Jirawatnotai et al., 2020). There are four
types of CDK involved in the regulation of cell growth cycle in
human body, namely CDK1/2/4/6. While CDK1 and CDK2 regulate
mitotic entry (M-phase) and G1/S transition respectively. CDK4/
6 specifically drive G1-phase progression by phosphorylating
retinoblastoma (Rb) protein to promote cell cycle commitment,
which have gained prominence as therapeutic targets (Guo et al.,
2025; Rubin et al., 2020). Notably, all clinically approved CDK
inhibitors to date target CDK4/6, reflecting their pivotal role in
oncogenic proliferation (Goel et al., 2022; Fassl et al., 2022). These
inhibitors induce G1-phase arrest by blocking Rb phosphorylation,
thereby suppressing tumor growth across multiple malignancies.
Their clinical impact, is most pronounced in hormone receptor-
positive (HR+) and human epidermal growth factor receptor 2-
negative (HER2-) breast cancer, which accounts for approximately
70% of all breast malignancies (Parikh et al., 2024; Jia et al., 2025).

The preferential efficacy of CDK4/6 inhibitors in HR+/HER2-
breast cancer stems from this subtype’s unique molecular
dependencies. HR+ tumors rely on estrogen receptor (ER)-
mediated cyclin D1 upregulation to activate CDK4/6, creating
therapeutic vulnerability. HER2- status further preserves this
dependency, as HER2 signaling can bypass CDK4/6 through
alternative pathways (Parikh et al., 2024; Jia et al., 2025). Over
80% of metastatic HR+/HER2− breast cancer patients now receive
CDK4/6 inhibitors as first-line therapy (Goel et al., 2022; Fassl et al.,
2022; Parikh et al., 2024; Jia et al., 2025). Despite this success,
acquired resistance develops in >50% of patients within 2 years of
treatment initiation, often mediated by Rb loss, cyclin E
amplification, or PI3K/AKT/mTOR pathway activation.
Understanding these mechanisms is critical given that resistance-
driven progression accounts for >90% of deaths in metastatic HR+/
HER2− breast cancer (Álvarez-Fernández and Malumbres, 2020).
This review systematically examines CDK4/6 inhibitor
pharmacology, delineates resistance pathways, and evaluates
emerging strategies to overcome therapeutic limitations.

2 Mechanism of CDK4/6 inhibitors

CDK4/6 inhibitor is a class of drugs with cell cycle regulation
function, and their mechanism of action is mainly to regulate the
activity of CDK4 and CDK6 subtypes. The primary function of
CDK4/6 inhibitors is to block the cell cycle and thus control the cell
proliferation process. Recent studies have shown that CDK4/
6 inhibitors also play an important role in inducing antitumor
immunity (Klein et al., 2018).

2.1 Blocking the tumor cell cycle

CDK4 and CDK6 are pivotal regulators of the G1-to-S phase
transition. During cell cycle re-entry from quiescence into early
G1 phase, rising cyclin D levels promote the formation of CDK4/6-
cyclin D heterodimeric complexes, which phosphorylate the

retinoblastoma protein (Rb) (Wu et al., 2020). In their
unphosphorylated state, Rb family proteins bind and inhibit E2F
transcription factors, suppressing S-phase gene expression.
Phosphorylation by CDK4/6-cyclin D complexes reduces Rb-E2F
binding affinity, enabling E2F-mediated transcriptional activation of
cell cycle progression genes and driving G1/S transition (Figure 1a)
(Dick et al., 2018). Overactivation of CDK4/6 accelerates the G1/S
phase transition, forcing cells to prematurely enter S phase without
completing DNA damage repair or replication stress checkpoint
responses. This leads to the accumulation of replication errors and
DNA breaks. Additionally, CDK4/6 may phosphorylate non-
canonical substrates, disrupting mitotic spindle assembly and
elevating the risk of Chromosome missegregation (Jirawatnotai
et al., 2020; Wu et al., 2020). CDK4/6 activity is further
modulated by two inhibitory protein families: the INK4 family
(p16, p15, p18, and p19), which competitively blocks cyclin D
binding to CDK4/6, and the CIP/KIP family (p21, p27 and p53),
which exhibits dual regulatory roles (Sherr and Roberts, 1999; Chen
et al., 2025). p16 is the most widely characterized, while
p16 stabilizes inactive CDK4/6 conformations to prevent Rb
phosphorylation, p27 paradoxically assists CDK4/6-cyclin D
assembly but requires proteasomal degradation for full kinase
activation (Shapiro et al., 1995; Lee et al., 1995). Notably,
persistent p27 binding diminishes CDK4/6 inhibitor efficacy by
shielding the kinase complex from pharmacological interference
(Guiley et al., 2019).

CDK4/6 overexpression is a hallmark of numerous malignancies,
driving tumorigenesis through Rb hyperphosphorylation-induced
genomic instability and dysregulated cell cycle progression, which
accelerates G1/S phase transition and enables uncontrolled
proliferation (Krupa et al., 2025). Oncogenic signaling
cascades—including JAK/STAT, PI3K/AKT/mTOR, RAS/RAF/
MEK/ERK, BTK/NF-κB, and Wnt/β-catenin pathways—converge
on the CDK4/6-cyclin D-Rb axis to sustain malignant growth by
bypassing cell cycle checkpoints (Qi and Ouyang, 2022; Schoninger
and Blain, 2020; Presti and Quaquarini, 2019). Concurrently, tumor
suppressor mutations (e.g., p53 loss) indirectly activate this axis via
p21 CIP1 suppression, further entrenching CDK4/6 as a central hub
for oncogenic signaling (Engeland, 2022). Preclinical studies
demonstrate CDK4/6 knockout selectively inhibits tumor growth
while sparing normal cells, underscoring its therapeutic potential
(Moreno et al., 2025; Zhang et al., 2025). Clinically approved
CDK4/6 inhibitors exploit this specificity by competitively blocking
cyclin D binding, thereby preventing Rb phosphorylation and E2F-
mediated S-phase gene transcription to restore cell cycle control (Gao
et al., 2020). Therapeutic efficacy critically depends on intact CDK4/6-
cyclin D-Rb signaling, with heightened sensitivity observed in tumors
exhibiting pathway dependency—such as ER-positive breast cancers
with cyclin D1 amplification and Rb-proficient colorectal carcinomas
(Klein et al., 2018; Spring et al., 2020; Vasaikar et al., 2019).

2.2 Enhancing the antitumor immunity

CDK4/6 inhibitors exert dual anticancer effects by directly
arresting tumor cell proliferation and enhancing immunogenicity
to activate antitumor immunity (Figure 1b) (Klein et al., 2018).
Clinical analyses of patient biopsies reveal robust upregulation of
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inflammatory and immune-related genes following CDK4/6 inhibitor
treatment, including components of interferon (IFN) signaling and
antigen presentation pathways (André et al., 2023; Goodwin et al.,
2023). Mechanistically, these inhibitors induce tumor cell expression
of endogenous retroviral elements through genome-wide
retrotransposon hypomethylation—a process mediated by E2F-
dependent suppression of DNA methyltransferase (DNMT)
expression during Rb-mediated cell cycle arrest (Shen et al., 2025;
Roulois et al., 2015). The resultant accumulation of double-stranded
RNA triggers antiviral defense mechanisms, upregulating major
histocompatibility complex (MHC) class I molecules and type III
IFN (IFN-λ), which promote cytotoxic T lymphocyte recognition and
tumor cell elimination (Kimura et al., 2003). Furthermore, CDK4/
6 inhibitors increase PD-L1 surface expression via dual regulation: (1)
blocking cyclin D-CDK4-mediated phosphorylation of SPOP, a
substrate recognition component of the Cullin 3 E3 ubiquitin
ligase complex, thereby stabilizing PD-L1 by impairing its
proteasomal degradation (Dougan et al., 2019; Zhang et al., 2018).
And (2) enhancing transcriptional activation of PD-L1 through IFN
signaling potentiation (Schaer et al., 2018). These immunomodulatory
synergies not only amplify intrinsic antitumor responses but also
sensitize tumors to immune checkpoint blockade therapies.

Beyond their direct antitumor effects, CDK4/6 inhibitors
modulate T-lymphocyte immunity through multifaceted
mechanisms. These agents enhance cytotoxic T-cell activation
while selectively suppressing regulatory T-cells (Tregs)
proliferation, thereby reshaping the intratumoral T-cell repertoire
toward effector/memory phenotypes (Ameratunga et al., 2019). The
nuclear factor of activated T cell (NFAT) protein family is a class of
transcription factors that are critical for T cell activation (Macian,
2005). Mechanistically, CDK4/6 inhibitors potentiate T-cell
responses via nuclear factor of activated T cells (NFAT)
activation: they induce IL-2 secretion and phosphorylate NFAT
to upregulate CXCL9/CXCL10 chemokines, facilitating T-cell
infiltration (Zhang et al., 2018; Deng et al., 2018). Tregs exhibit
heightened CDK6 dependency, rendering them particularly
vulnerable to CDK4/6 inhibition through dual epigenetic and cell
cycle regulation—downregulating DNAmethyltransferase (DNMT)

and activating p21 CIP1, which disproportionately reduces Treg
populations compared to CD8+ cytotoxic T-cells (Malumbres et al.,
2004; Obata et al., 2014). Concurrently, CDK4/6 inhibitors
promote immunological memory by skewing CD8+ T-cells
toward central memory precursors via MYC target gene
suppression, thereby sustaining long-term antitumor immunity
(Heckler et al., 2021).

3 CDK4/6 inhibitors approved in clinical

Currently, five CDK4/6 inhibitors—Palbociclib, Ribociclib,
Abemaciclib, Dalpiciclib, and Trilaciclib—have been globally
approved for clinical use (Table 1). While Trilaciclib is
specifically indicated to mitigate chemotherapy-induced
myelosuppression, the remaining four agents are predominantly
utilized in combination with endocrine therapies for HR+/HER2-
breast cancer, reflecting their established role as first-line treatments
in this molecular subtype.

3.1 Palbociclib

Palbociclib, developed by Pfizer as the first oral selective CDK4/
6 inhibitor, received FDA approval in February 2015 for HR+HER2-
locally advanced or metastatic breast cancer, specifically in
combination with aromatase inhibitors as first-line endocrine
therapy for postmenopausal women (Samjoo et al., 2024).
Administered at 125 mg once daily via a 21-day on/7-day off
regimen within a 28-day cycle, treatment continuation is
contingent on sustained clinical benefit and tolerable toxicity
(Rauthan et al., 2024). Pharmacokinetic studies demonstrate peak
plasma concentrations (Cmax) occurring 6–12 h post-dose, with an
absolute bioavailability of 46%. Hepatic metabolism predominates
via sulfation (SULT2A1-mediated) and oxidation (CYP3A4-
mediated) pathways, complemented by secondary glucuronidation
and acylation processes, collectively governing its systemic clearance
(Groenland et al., 2020).

FIGURE 1
Activation mechanism of CDK4/6. (a) Blocking the tumor cell cycle. (b) Enhancing the antitumor immunity.
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The PALOMA-2 trial, a randomized double-blind phase III
study, evaluated palbociclib plus letrozole versus letrozole alone in
666 postmenopausal women with treatment-naïve, unresectable,
locally advanced or metastatic HR+/HER2- breast cancer.
Participants were randomized 2:1 to receive palbociclib (125 mg,
21/7-day cycle) + letrozole or placebo + letrozole, with investigator-
assessed progression-free survival (PFS) by RECIST v1.1 as the
primary endpoint. The palbociclib arm demonstrated superior
efficacy, achieving a median PFS of 38.8 months versus
28.8 months in the placebo group, reducing the risk of disease
progression and the risk of survival and death (Rugo et al., 2024;
McShane et al., 2018). In clinical studies, the most common (≥20%)
adverse events of any grade reported in patients treated with
Palbociclib were neutropenia, infection, leukopenia, fatigue,
nausea, stomatitis, anemia, alopecia, and diarrhea. The most
common (≥2%) grade ≥3 adverse events associated with

Palbociclib were neutropenia, leukopenia, anemia, fatigue/
infection, and elevated aspartate amino acid transferase
(Cazzaniga et al., 2019; Beaver et al., 2015).

3.2 Ribociclib

Ribociclib, a Novartis-developed oral CDK4/6 inhibitor
structurally analogous to palbociclib, received FDA approval in
March 2017 as the first-in-class agent for premenopausal women
with HR+HER2- locally advanced or metastatic breast cancer. It is
indicated in combination with aromatase inhibitors (AIs) as initial
endocrine therapy, with concurrent luteinizing hormone-releasing
hormone (LHRH) agonist administration required for pre-/
perimenopausal patients (Braal et al., 2021). The recommended
regimen—600 mg once daily for 21 days followed by a 7-day hiatus

TABLE 1 CDK4/6 inhibitors approved in clinical.

Agent, structural and Selectivity
(IC50)

Clinical development
(patient populations)

Clinical trials and efficacy Side effects

Palbociclib (Ibrance®)

CDK4 (11 nM), CDK6 (16 nM)

• HR-positive and HER2-negative
locally advanced or metastatic breast
cancer in combination with hormonal
therapy

• PALOMA-2
Palbociclib + Letrozole vs. Placebo +
Letrozole (median PFS: 38.8 months
vs. 28.8 months)

• neutropenia, infection, leukopenia,
fatigue, nausea, stomatitis, anemia,
alopecia, and diarrhea

Ribociclib (Kisqali®)

CDK4 (10 nM), CDK6 (39 nM)

• HR-positive and HER2-negative
locally advanced or metastatic breast
cancer in combination with hormonal
therapy

• MONALEESA-2
Ribociclib + Letrozole vs. Placebo +
Letrozole (median PFS: 25.3 months
vs. 16.0 months)

• MONALEESA-7
Ribociclib + Tamoxifen or NSAI +
Goserelin vs. Placebo + Tamoxifen
or NSAI + Goserelin (median PFS:
23.8 months vs. 13.0 months)

• neutropenia, infection, nausea,
fatigue, diarrhea, leukopenia,
vomiting, pain, constipation, hair
loss, cough, rash, back pain,
anemia, and abnormal liver
function tests

Abemaciclib (Verzenio®)

CDK4 (2 nM), CDK6 (10 nM)

• HR-positive and HER2-negative
advanced breast cancer in
combination with hormonal therapy

• Monotherapy for advanced HR-
positive and HER2-negative breast
cancer

• Adjuvant therapy for high-risk, early-
stage HR-positive, HER2-negative and
lymph node positive breast cancer in
combination with hormonal therapy

• MONARCH E
Abemaciclib + Endocrine therapy
vs. Endocrine therapy (4-year IDFS:
85.8% vs. 79.4%)

• MONARCH 3
Abemaciclib + Anastrozole or
Letrozole vs. Placebo + Anastrozole
or Letrozole (median PFS:
28.18 months vs. 14.76 months)

• MONARCH 2
Abemaciclib + Ffulvestrant vs.
Placebo + Ffulvestrant (median PFS:
16.4 months vs. 9.3 months)

• diarrhea, infection, neutropenia,
leukopenia, anemia, fatigue,
nausea, vomiting, hair loss, and
decreased appetite

Dalpiciclib (艾瑞康®)

CDK4 (12 nM), CDK6 (10 nM)

• Approved for HR-positive and HER2-
negative breast cancer in combination
with hormonal therapy

• SHR6390-III-301
Dalpiciclib + Fulvestrant vs. Placebo
+ Fulvestrant (median PFS:
15.7 months vs. 7.2 months)

• decreased neutrophil counts,
decreased white blood cell counts,
anemia, decreased platelet counts,
rash, elevated liver enzymes,
nausea, decreased lymphocyte
counts, skeletal muscle pain, oral
catarrh, fatigue, and elevated serum
creatinine

Trilaciclib (Cosela®)

CDK4 (1 nM), CDK6 (4 nM)

• Approved to reduce chemotherapy-
induced bone marrow suppression in
patients with extensive-stage SCLC.

• GIT28-02
Trilaciclib + Etoposide/Carboplatin
vs. Placebo + Etoposide/Carboplatin
(patients with severe neutropenia
5.1% vs. 42.1%)

• injection site reactions, acute drug
hypersensitivity, and interstitial
lung disease/pulmonary
inflammation
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(28-day cycle)—is maintained until disease progression or
intolerable toxicity (Parati et al., 2022). Pharmacokinetic studies
demonstrate rapid absorption (Cmax achieved within 1–4 h post-
dose) with 65.8% absolute bioavailability. Ribociclib is extensively
metabolized by the liver in humans primarily through CYP3A4. The
main metabolic pathways involve oxidation (dealkylation of C and/
or N-oxidation, oxidation (-2H)) and different combinations of the
various metabolic pathways in them. The I conjugates of phase
1 metabolites of this product include n-acetylation, sulfation,
cysteine binding, glycosylation, and glucosylation (Ji et al., 2024).

The MONALEESA-2 trial, a phase III randomized double-blind
study, evaluated ribociclib + letrozole versus placebo + letrozole in
668 treatment-naïve postmenopausal women with HR+/HER2-
advanced breast cancer. Participants were stratified 1:1, with PFS
assessed by investigators using RECIST v1.1 and confirmed via
blinded independent central review. At the prespecified interim
analysis (80% PFS events), the ribociclib arm demonstrated superior
efficacy: median PFS was 25.3 months versus 16.0 months, with
54.7% of ribociclib-treated patients versus 35.9% in the placebo
group remaining progression-free at 24 months (Sanò et al., 2022;
Büyükkaramikli et al., 2019). The MONALEESA-7 trial, a phase III
randomized double-blind study, enrolled 672 pre-/perimenopausal
women with HR+/HER2- advanced breast cancer to evaluate
ribociclib + endocrine therapy (tamoxifen or non-steroidal
aromatase inhibitors [NSAI] + goserelin) versus placebo +
endocrine therapy. After 318 PFS events, ribociclib combined
with NSAI + goserelin achieved a median PFS of 27.5 months
versus 13.8 months for placebo, with the overall cohort (including
tamoxifen subgroups) showing 23.8-month vs. 13.0-month median
PFS (Tanguy et al., 2018; Shah et al., 2020). The most common
adverse reactions to Ribociclib in clinical studies (incidence ≥20%,
higher than Placebo group) were neutropenia, infection, nausea,
fatigue, diarrhea, leukopenia, vomiting, pain, constipation, hair loss,
cough, rash, back pain, anemia, and abnormal liver function tests
(Stanciu et al., 2023; Kassem et al., 2018).

3.3 Abemaciclib

Abemaciclib, an oral CDK4/6 inhibitor developed by Eli Lilly,
received FDA approval in September 2017 and holds distinction as
the only CDK4/6 inhibitor approved for both early-stage and
advanced HR+/HER2- breast cancer. For early-stage disease, it is
indicated in combination with endocrine therapy (tamoxifen or
aromatase inhibitors) for adults with lymph node-positive, high-risk
recurrence HR+/HER2- breast cancer; and as monotherapy or
combined with fulvestrant for HR+/HER2- locally advanced or
metastatic disease, including first-line endocrine therapy in
postmenopausal women or post-endocrine progression settings
(Yang et al., 2022). The standard dose is 150 mg twice daily with
continuous dosing, requiring concurrent gonadotropin-releasing
hormone agonists in pre-/perimenopausal patients (O’Keefe et al.,
2024). Abemaciclib is slowly absorbed, with a peak time of 8 h after
the recommended oral dose of 150 mg and an average absolute
bioavailability of about 45%. Liver metabolism is the main clearance
pathway of Abemaciclib, mainly through cytochrome P450(CYP)
3A4 metabolites to hydroxylation, N-demethylation and
N-demethylation hydroxyl metabolites, which are active and

similar in potency to Abemaciclib (Robert et al., 2019; Martorana
et al., 2024).

The MONARCH E trial, a phase III open-label study, evaluated
abemaciclib combined with adjuvant endocrine therapy versus
endocrine therapy alone in 5,637 high-risk patients with HR+/
HER2-, lymph node-positive early breast cancer. With invasive
disease-free survival (IDFS) as the primary endpoint, Abemaciclib
combined with endocrine therapy significantly improved IDFS, and
the 4-year IDFS rate was 85.8% in the combined treatment group
and 79.4% in the endocrine therapy group alone, and the 4-year
absolute benefit was 6.4% (Martín et al., 2023; Orozco Leal et al.,
2023). The MONARCH 3 trial, a phase III randomized double-blind
study, evaluated abemaciclib combined with nonsteroidal aromatase
inhibitors (NSAI: anastrozole/letrozole) versus NSAI + placebo in
493 postmenopausal women with HR+/HER2- locally advanced or
metastatic breast cancer. With investigator-assessed progression-
free survival (PFS) by RECIST v1.1 as the primary endpoint, the
abemaciclib arm achieved a median PFS of 28.18 months versus
14.76 months, representing a 46% reduction in disease progression
or death risk (Tanguy et al., 2018). The MONARCH 2 trial, a phase
III randomized double-blind study, evaluated abemaciclib combined
with fulvestrant versus fulvestrant + placebo in 669 women with
HR+/HER2- locally advanced or metastatic breast cancer. With PFS
as the primary endpoint, the abemaciclib arm demonstrated a
median PFS of 16.4 months versus 9.3 months, corresponding to
a 44.7% reduction in disease progression/death risk and a 7.2-month
PFS improvement (El et al., 2021; Sobhani et al., 2019). The most
common adverse effects of Abemaciclib in clinical studies include
diarrhea, infection, neutropenia, leukopenia, anemia, fatigue,
nausea, vomiting, hair loss, and decreased appetite. Among the
most common adverse reactions, grade >3 events were less than 5%
except for neutropenia, leukopenia and diarrhea (Wekking et al.,
2023; Gebbia et al., 2020).

3.4 Dalpiciclib

Dalpiciclib, China’s first domestically developed selective
CDK4/6 inhibitor by Jiangsu Hengrui Medicine, received
NMPA approval in December 2021 for HR+/HER2− recurrent/
metastatic breast cancer post-endocrine progression when
combined with fulvestrant (Chen and Shen, 2023). In June
2023, its indication expanded to first-line therapy with
aromatase inhibitors for HR+/HER2− locally advanced/
metastatic disease (Zhao et al., 2023). The recommended
regimen is 150 mg once daily under fasting conditions (1 h
pre- and post-dose) via a 21-day on/7-day off cycle.
Premenopausal patients require concurrent gonadotropin-
releasing hormone agonists (Nabieva and Fasching, 2023; Wang
et al., 2022). Pharmacokinetically, Dalpiciclib reaches peak plasma
concentration at 3.5 h post-dose, with CYP3A4-mediated
oxidation serving as the primary metabolic pathway
(cyclopentane/piperidine ring modifications), complemented by
CYP2C9/2C8-mediated glucuronidation and sulfation (Zhang
et al., 2021; Tao et al., 2023).

The phase II SHR6390-III-301 trial evaluated Dalpiciclib,
China’s first domestically developed CDK4/6 inhibitor, combined
with fulvestrant versus placebo + fulvestrant in 361 patients with
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HR+/HER2- recurrent/metastatic breast cancer progressing after
endocrine therapy. Participants were randomized 2:1, receiving
Dalpiciclib + fulvestrant or placebo + fulvestrant until
progression or intolerance. Investigator-assessed PFS by RECIST
v1.1 demonstrated superiority for Dalpiciclib: median PFS 15.7 vs.
7.2 months (Zhang et al., 2021; Yanke et al., 2019). The most
common adverse events (incidence >10%) associated with the use
of Dalpiciclib in combination with Fulvestrant in the treatment of
recurrent or metastatic breast cancer include decreased neutrophil
counts, decreased white blood cell counts, anemia, decreased platelet
counts, rash, elevated liver enzymes, nausea, decreased lymphocyte
counts, skeletal muscle pain, oral catarrh, fatigue, and elevated
serum creatinine. Adverse reactions with severity of grade 3 and
above with an incidence of >2% included decreased neutrophil
count, decreased white blood cell count, decreased platelet count,
decreased lymphocyte count, and anemia (Shi et al., 2024).

3.5 Trilaciclib

Trilaciclib, an intravenous CDK4/6 inhibitor developed by
G1 Therapeutics, received FDA approval in February 2021 as the
first and only myeloprotective agent to mitigate chemotherapy-
induced myelosuppression (Crawford et al., 2024). By inducing
transient G1 arrest in bone marrow hematopoietic stem/
progenitor cells, it shields proliferating hematopoietic lineages
from cytotoxic damage during platinum/etoposide regimens for
extensive-stage small cell lung cancer (ES-SCLC) in
chemotherapy-naïve patients (Goldschmidt et al., 2023). The
recommended dose of Trilaciclib is 240 mg/m2, which should be
completed by intravenous infusion for 30 min within 4 h before
chemotherapy administration on the same day. When Trilaciclib is
given for several consecutive days, the interval between
administration should not exceed 28 h (Roskoski, 2024). The
average terminal half-life of Trilaciclib is about 14 h, and
clearance is estimated at 158L/hr. Trilaciclib is metabolized
extensively and is excreted mainly through the fecal pathway
(Dhillon, 2021).

The G1T28-02 trial, a randomized double-blind study, evaluated
trilaciclib’s myeloprotective efficacy in 75 chemotherapy-naïve
extensive-stage small cell lung cancer (ES-SCLC) patients
receiving first-line etoposide/carboplatin (E/P). Participants were
randomized to receive trilaciclib or placebo, with carboplatin (AUC
5) administered on day 1 and etoposide on days 1–3. Trilaciclib
significantly reduced hematologic toxicity: cycle one severe
neutropenia duration decreased from 3 days (placebo) to 0 days
(trilaciclib), with incidence rates of 5.1% vs. 42.1%. Hemoglobin
reduction ≥grade 3 occurred in 10% vs. 18% of patients, while
erythrocyte transfusion requirements decreased from 1.9 to
0.5 events/100 weeks. Erythropoiesis-stimulating agent use was
halved (3% vs. 5%) (Crawford and Oswalt, 2023; Falandry et al.,
2023). Adverse effects of Trilaciclib in clinical studies include
injection site reactions, including phlebitis and thrombophlebitis,
acute drug hypersensitivity, and interstitial lung disease/pulmonary
inflammation. Other most common adverse events include fatigue,
hypocalcemia, hypokalemia, hypophosphatemia, elevated aspartate
aminotransferase, headache, and infectious pneumonia (Dubey
et al., 2024; Roberts et al., 2020).

4 Resistance of CDK4/6 inhibitors

CDK4/6 inhibitors significantly suppress disease progression in
HR+/HER2- breast cancer, demonstrating marked therapeutic
synergy when combined with endocrine therapies. However, not
all patients have a good clinical benefit from this class of drugs, and
most patients will develop acquired resistance after receiving CDK4/
6 inhibitor treatment (Zhang et al., 2025). Elucidating resistance
mechanisms—particularly those enabling tumor adaptation through
cell cycle rewiring or bypass signaling—has consequently emerged
as a critical research priority. Current models classify resistance into
two broad categories: cell cycle specific resistance (changes in cell
cycle progression) and cell cycle non-specific resistance (changes in
upstream signaling pathways) (Figure 2) (Foffano et al., 2025).

4.1 Cell cycle specific resistance

4.1.1 Absence of Rb and overexpression of cyclin D,
CDK4 and CDK6

CDK4/6 inhibitors exert their therapeutic effects by targeting the
CDK4/6-cyclin D-Rb axis, making alterations in core components of
this axis—including Rb loss, CDK4/6 overexpression, or cyclin D
upregulation—primary drivers of resistance. Rb, a critical mediator
of CDK4/6 inhibitor efficacy, determines therapeutic sensitivity, as
these agents potently suppress Rb-positive tumors (e.g., breast,
colorectal, and lung cancers) but show minimal activity in Rb-
deficient malignancies (Iacovacci et al., 2025). Clinically, acquired
RB1 mutations or deletions emerge as predominant resistance
mechanisms, evidenced by polyclonal Rb alterations in metastatic
breast cancer patients progressing on palbociclib and preclinical
models demonstrating Rb loss-triggered bypass signaling via E2F
hyperactivation or CDK2-cyclin E axis compensation (Malumbres
et al., 2004; Condorelli et al., 2018; O’Leary et al., 2018).
Concurrently, CDK4/6 overexpression reduces drug efficacy, as
shown in CDK4-amplified alveolar rhabdomyosarcoma and
glioma models, while CDK6 upregulation in resistant MCF-7
cells restores Rb phosphorylation capacity (Olanich et al., 2015;
Cen et al., 2012; Ogata et al., 2021; Yang et al., 2017). Further, Cyclin
D dysregulation further complicates resistance, with CCND1
amplification occurring in ~50% of breast cancers and enabling
persistent CDK4/6-Rb signaling despite inhibitor exposure (Finn
et al., 2009). Understanding these resistance mechanisms directly
informs therapeutic strategies: Rb status assessment could guide
patient stratification, while CDK4/6 or cyclin D overexpression may
predict benefit from dose escalation or combination therapies (e.g.,
CDK2 inhibitors). Monitoring acquired RB1 mutations through
liquid biopsies enables real-time adaptation of treatment
regimens, emphasizing the need for dynamic biomarker-driven
approaches to overcome resistance and prolong clinical responses.

4.1.2 Overexpression of cyclin E, CDK2,
CDK7 and p16

Resistance to CDK4/6 inhibitors frequently arises from
compensatory upregulation of alternative cell cycle drivers,
including Cyclin E-CDK2 complexes, CDK7, and dysregulated
p16. While the canonical CDK4/6-cyclin D-Rb axis governs G1/S
progression, Cyclin E1/E2 (encoded by CCNE1/2) overexpression
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enables CDK2-mediated Rb phosphorylation, bypassing CDK4/
6 inhibition to sustain proliferation (Doostan et al., 2017; Turner
et al., 2019). Clinical relevance is underscored by the PALOMA-3
trial, where low CCNE1 expression correlated with enhanced
palbociclib efficacy, suggesting Cyclin E-CDK2 activity as a
resistance biomarker (Cristofanilli et al., 2016). Proteolytic
cleavage of Cyclin E generates low molecular weight isoforms
(LMW-E) that hyperphosphorylate Rb, independently predicting
breast cancer recurrence risk (Caruso et al., 2018). Concurrently,
CDK7—a master regulator of CDK1/2/4/6 activation—promotes
resistance through kinase cascade amplification, while p16 INK4A
deficiency reduces CDK4 inhibition efficacy by disrupting
endogenous cell cycle control (Schachter et al., 2013; Bhurta and
Bharate, 2022; Liu et al., 2022). These resistance mechanisms
highlight actionable therapeutic opportunities: CCNE1 expression
profiling could stratify patients for CDK2 inhibitor combinations,
while CDK7 targeting (e.g., THZ1) may overcome compensatory
kinase activation. Detection of LMW-E or p16 loss via tumor
sequencing enables dynamic treatment adaptation, emphasizing

the need for real-time molecular monitoring to guide sequential
therapies and prevent resistance-driven relapse.

4.1.3 Overexpression of WEE1 and MDM2
Resistance to CDK4/6 inhibitors is further mediated by

dysregulation of cell cycle checkpoints and p53 signaling,
exemplified by WEE1 and MDM2 overexpression. WEE1, a
serine/threonine kinase critical for G2/M checkpoint control via
DNA replication fidelity, is upregulated in breast cancer, leukemia,
and melanoma. Its overexpression confers CDK4/6 inhibitor
resistance by enabling G2/M progression despite CDK4/
6 blockade, though WEE1 inhibition with adavosertib
(AZD1775) restores sensitivity and synergizes with CDK4/
6 inhibitors (Matheson et al., 2016; Francis et al., 2017).
Concurrently, MDM2—overexpressed in 20%–30% of breast
cancers—antagonizes p53-mediated cell cycle arrest by degrading
p53 and suppressing its activation of p21 CIP1, thereby bypassing
CDK4/6 inhibitor-induced G1 arrest (Efeyan et al., 2007; Portman
et al., 2021). Preclinical studies demonstrate that combining

FIGURE 2
Mechanism of resistance to CDK4/6 inhibition. Several mechanisms of resistance to CDK 4/6 signaling have been established, including cell cycle
specific resistance and cell cycle non-specific resistance.
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MDM2 inhibitors (e.g., CGM097) with CDK4/6 inhibitors and
fulvestrant overcomes dual resistance to endocrine and CDK4/6-
targeted therapies (Laroche-Clary et al., 2017). Targeting WEE1 or
MDM2 provides a rational strategy to reverse CDK4/6 inhibitor
resistance: WEE1 expression profiling could identify candidates for
adavosertib combinations, while MDM2 inhibition restores p53-
dependent cell cycle control in p53-wild-type tumors. Liquid biopsy
monitoring for WEE1/MDM2 amplifications during treatment
enables adaptive therapy switching, emphasizing biomarker-
guided combinatorial approaches to prolong therapeutic efficacy
and prevent relapse.

4.1.4 Activation of HDACs and loss of FZR1
Epigenetic dysregulation, particularly through histone

deacetylase (HDAC) activation and FZR1 loss, constitutes a key
mechanism of CDK4/6 inhibitor resistance. HDACs drive resistance
by deacetylating histones (e.g., H3K27ac reduction) to silence tumor
suppressor genes and disrupt p21-mediated cell cycle arrest, while
HDAC5 deletion in breast cancer upregulates oncogenic
transcription via hyperacetylated chromatin states (Rosato and
SJJoCO, 2003; Zhou et al., 2021). Notably, HDACs recruit Rb
through LXCXE motifs to reinforce epigenetic repression,
creating a feedforward loop that sustains proliferation despite
CDK4/6 inhibition. Concurrently, FZR1 deficiency disrupts
anaphase-promoting complex/cyclosome (APC/C) function,
preventing SKP2 degradation and stabilizing CDK2/4/6 kinases.
Phosphorylated FZR1 inactivation by cyclin D-CDK4/6 further
impairs APC/C-mediated cell cycle control, enabling tumors to
bypass G1/S checkpoint dependence—a resistance mechanism
amplified by combined FZR1/Rb loss (Ramanujan and Tiwari,
2016; Turner et al., 2010). Targeting HDACs with inhibitors (e.g.,
panobinostat) alongside CDK4/6 blockade may reverse epigenetic-
driven resistance, particularly in HDAC5-deficient tumors.
FZR1 expression profiling could identify candidates for APC/C
activators or CDK2 inhibitors, while liquid biopsies monitoring
H3K27ac levels or FZR1 mutations enable dynamic therapy
adaptation. These strategies exemplify precision oncology’s
potential to convert resistance mechanisms into actionable
therapeutic vulnerabilities, extending durable responses in CDK4/
6 inhibitor-treated patients.

4.2 Cell cycle non-specific resistance

4.2.1 Activation of FGFR
Fibroblast growth factor receptor (FGFR) is a family of receptor

tyrosine kinases expressed on cell membranes, whose signaling
pathway is involved in key biological processes such as cell
proliferation and differentiation, and maintenance of cell survival
(Dai et al., 2019; Turner and Grose, 2010). Aberrant activation of
FGFR signaling—a receptor tyrosine kinase family encompassing
FGFR1-4—drives therapeutic resistance in hormone receptor-
positive breast cancer by bypassing CDK4/6 inhibitor-induced
cell cycle arrest. FGFR alterations (mutations/amplifications)
occur in 7.1% of solid tumors, with clinical studies (PALOMA-3,
MONALEESA-2) demonstrating FGFR amplification correlates
with shortened progression-free survival (PFS) and dual
resistance to CDK4/6 inhibitors/endocrine therapy via ctDNA

analysis (Helsten et al., 2016; Formisano et al., 2019; O’Leary
et al., 2021). Mechanistically, FGFR activation converges with
FGF2 to hyperactivate PI3K/AKT and RAS/RAF/MEK/ERK
pathways, sustaining proliferation while downregulating
progesterone receptors to diminish endocrine sensitivity (Du
et al., 2023). Notably, FGFR signaling induces epigenetic
suppression of cell cycle inhibitors, enabling tumor cell survival
despite CDK4/6 blockade. Current clinical trials are evaluating
FGFR inhibitors (e.g., erdafitinib) to reverse this resistance
phenotype (Turner et al., 2010). FGFR amplification status
should be incorporated into resistance biomarker panels to guide
combination therapies (e.g., CDK4/6 inhibitors + FGFR/PI3K
inhibitors). Longitudinal ctDNA monitoring for emergent FGFR
alterations during treatment enables timely therapeutic adaptation,
while progesterone receptor expression tracking may predict FGFR-
mediated endocrine resistance. These strategies exemplify the
critical need for pathway-informed sequential therapy to
counteract adaptive tumor evolution and prolong clinical benefit.

4.2.2 Activation of the PI3K/AKT/mTOR
signalling pathway

The PI3K/AKT/mTOR signaling pathway, critically involved in
tumor growth, proliferation, metabolism, and migration, represents
one of the most frequently dysregulated pathways in breast cancer
therapeutics (Liu et al., 2024). In CDK4/6 inhibitor-resistant breast
cancer cells, tumor growth shifts dependency from hormone
receptor (HR) signaling to hyperactivated PI3K/AKT/mTOR
cascades. This is exemplified by PIK3CA mutations in 30%–40%
of HR+ breast cancers, driving constitutive PI3K pathway activation
and conferring dual resistance to CDK4/6 inhibitors and endocrine
therapies (Abu-Khalaf et al., 2023). Notably, mTOR-mediated
phosphorylation of Rb and E2F activation in resistant cells
establishes CDK4/6-independent cell cycle progression, which can
be reversed through dual mTORC1/2 inhibition (Browne et al.,
2024). Furthermore, PI3K/mTOR inhibitors counteract cyclin D1/
CDK4 overexpression—a hallmark of acquired resistance—by
upregulating the translation repressor 4E-BP1, as demonstrated
in preclinical models by Cai et al. (Cai et al., 2023). These
findings position 4E-BP1 as a potential predictive biomarker and
support rational combination therapies pairing CDK4/6 inhibitors
with PI3K/mTOR pathway antagonists to circumvent resistance
(O’Brien et al., 2020). Routine PIK3CA mutation screening should
be integrated into resistance management protocols to identify
candidates for PI3K/mTOR inhibitor combinations. Monitoring
4E-BP1 expression levels could further stratify patients likely to
benefit from translational repression strategies. These approaches
exemplify the paradigm of targeting resistance pathways through
biomarker-guided therapy sequencing, ultimately extending the
clinical utility of CDK4/6 inhibitors in advanced breast cancer.

4.2.3 Loss of HR expression and overexpression of
AP-1

Resistance to CDK4/6 inhibitors in breast cancer is increasingly
linked to hormonal pathway rewiring and transcriptional
reprogramming, exemplified by hormone receptor (HR) loss and
AP-1 overexpression. Preclinical models and clinical cohorts reveal
that ~33% of patients exhibit ER/PR expression loss after CDK4/
6 inhibitor progression, with ESR1 mutations—observed in 14.7%–
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19.2% of PALOMA-3 trial participants—driving ligand-
independent ER activation to bypass therapeutic suppression (Mo
et al., 2022; Jeselsohn et al., 2015; Hortobagyi et al., 2018; Bardia and
Hurvitz, 2018). Concurrently, AP-1 (c-Fos/c-Jun heterodimer)
overexpression upregulates cyclin D1 transcription while
suppressing ER signaling, enabling dual resistance to CDK4/
6 inhibitors and endocrine therapies. In MCF-7 models, c-Jun-
mediated cyclin D1 amplification and ER antagonism correlate with
palbociclib/tamoxifen resistance, whereas AP-1 blockade synergizes
with CDK4/6 inhibition to restore therapeutic efficacy (Ye et al.,
2014; Fu et al., 2022; Pandey et al., 2019). Routine ESR1 mutation
screening and AP-1 activity profiling could stratify patients for
targeted interventions: ESR1-mutant tumors may benefit from
selective ER degraders (SERDs), while AP-1-driven resistance
warrants exploration of BET or MEK inhibitors in combination
with CDK4/6 blockade. Longitudinal monitoring of HR expression
and AP-1 biomarkers via liquid biopsies enables adaptive therapy
switching, transforming resistance mechanisms into actionable
targets to prolong disease control in advanced breast cancer.

4.2.4 Abnormal expression of EMT/TGF-β/Smad3
Epithelial-mesenchymal transition (EMT) and TGF-β/

Smad3 signaling axis dysregulation constitute critical drivers of
CDK4/6 inhibitor resistance, enabling tumor cell plasticity and
therapeutic evasion. CDK4/6 inhibition paradoxically activates
TGF-β signaling, which phosphorylates Smad2/3 to form
transcriptional complexes with Smad4, inducing EMT transcription
factors (e.g., Snail, Twist) and PI3K/AKT/mTOR-mediated
mesenchymal reprogramming (Singh and Settleman, 2010; Du and
Shim, 2016; Lamouille et al., 2014). Concurrently, Smad3—a tumor
suppressor that enforces G1 arrest—is functionally inactivated
in resistance models through CDK2-cyclin E-mediated
phosphorylation, bypassing Rb-E2F suppression to restore cell
cycle progression (Heldin and AJJoCS, 2005). Preclinical evidence
demonstrates that Smad3 reconstitution or CDK2 inhibition reverses
trastuzumab resistance by blocking Smad3 hyperphosphorylation,
while CDK4/6 inhibitor resistance correlates with CDK2-cyclin E
axis activation and Smad3 suppression (Zelivianski et al., 2010; Yang
et al., 2008). These findings suggest that EMT/TGF-β/Smad3 crosstalk
establishes a dual resistance mechanism: TGF-β-driven mesenchymal
adaptation and CDK2-mediated Smad3 inactivation. Targeting EMT/
TGF-β (e.g., galunisertib) or restoring Smad3 activity could re-
sensitize resistant tumors to CDK4/6 inhibitors. Liquid biopsy
profiling for EMT markers (e.g., circulating vimentin) or TGF-β
pathway components may identify candidates for combination
therapies, while Smad3 phosphorylation status could guide
CDK2 inhibitor coadministration. These strategies highlight the
need to disrupt compensatory signaling plasticity, transforming
resistance vulnerabilities into precision therapeutic opportunities
for metastatic breast cancer.

4.2.5 Abnormal autophagy activation and immune-
related pathways

CDK4/6 inhibitor resistance is intricately linked to aberrant
autophagy activation and immune pathway dysregulation, reflecting
the dual role of autophagy in tumor biology. While autophagy
initially suppresses tumorigenesis by maintaining cellular
homeostasis, it evolves into a pro-survival mechanism in

advanced cancers, enabling resistance by reversing CDK4/
6 inhibitor-induced G1 arrest through reactive oxygen species
(ROS) scavenging and metabolic adaptation (Vijayaraghavan
et al., 2017; Gong et al., 2024). Transcriptomic profiling of
palbociclib-resistant MCF-7 cells reveals upregulated autophagy-
related genes and increased autophagosome formation,
underscoring ER+ breast cancer’s reliance on autophagy to evade
CDK4/6 blockade (Lanceta et al., 2020; Soria-Bretones et al., 2022).
Paradoxically, although CDK4/6 inhibitors enhance antitumor
immunity via T-cell activation, resistant tumors exhibit
mutations in immune-regulatory genes (e.g., NCOR1, MUC4,
MUC16), leading to immune pathway inactivation and
diminished T-cell cytotoxicity (Pandey et al., 2021). Concurrent
PD-L1 upregulation by CDK4/6 inhibitors further complicates this
interplay, suggesting that immune checkpoint blockade may
counteract resistance by leveraging heightened tumor
immunogenicity (Zhang et al., 2018). Targeting autophagy (e.g.,
chloroquine) or combining CDK4/6 inhibitors with PD-1/PD-
L1 inhibitors offers a rational strategy to overcome resistance.
Liquid biopsy monitoring of autophagy markers (LC3B) and
immune gene mutations could enable early detection of
resistance, while PD-L1 expression dynamics may guide
immunotherapy sequencing. These approaches highlight the
imperative to co-target pro-survival and immune-evasion
pathways, transforming resistance mechanisms into therapeutic
vulnerabilities for precision oncology.

5 Combination therapy based on
CDK4/6 inhibitors

After the progresses of CDK4/6 inhibitors treatment, different
coping strategies are required for different resistance mechanisms.
The reasons for drug resistance in patients are multifaceted, and the
molecular mechanism is very complex. Treatment options after
CDK4/6 inhibitor resistance remain limited and controversial, and
there is no optimal clinical management path. At present, the main
treatment options after CDK4/6 inhibitor resistance include
replacing other endocrine drugs with CDK4/6 inhibitors,
selecting cytotoxic drugs, and combined targeted therapy,
immunotherapy, or epigenetic therapy (Figure 3) (Sahin et al.,
2025; Abdullaeva et al., 2025).

5.1 Combined with endocrine therapy

CDK4/6 inhibitors combined with endocrine therapy
(aromatase inhibitors or fulvestrant) represent the standard-of-
care for HR+HER2- advanced breast cancer, demonstrating
significant improvements in progression-free survival (PFS) and
overall survival (OS) across first- and later-line settings (Wang et al.,
2020; Howie et al., 2019). This therapeutic synergy stems from
multi-level crosstalk between ER signaling and the CDK4/6-cyclin
D-Rb axis: (1) CCND1 (cyclin D1) is transcriptionally regulated by
ER (Valerio et al., 2025); (2) ER activates E2F-driven proliferation
independently of estrogen (Miller et al., 2011); and (3) cyclin
D1 enhances ER transcriptional activity in a CDK-independent
manner (Zwijsen et al., 1997). While this dual blockade
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effectively suppresses tumor growth, acquired resistance inevitably
arises, prompting exploration of post-progression strategies such as
switching CDK4/6 inhibitors (e.g., palbociclib → ribociclib) or
altering endocrine partners (e.g., fulvestrant → exemestane)
(Schoninger and Blain, 2020; Harbeck et al., 2025). The phase II
MAINTAIN trial (NCT02632045) demonstrated modest benefit
with ribociclib rechallenge (median PFS: 5.3 vs. 2.76 months;
placebo), whereas the PACE study (NCT03147287) showed no
PFS improvement with palbociclib continuation (4.8 vs.
4.6 months) post-progression, underscoring heterogeneous
responses influenced by Rb loss, cyclin E1 overexpression, and
ESR1 mutations [147–149].

The concept of CDK4/6 inhibitor rechallenge is exemplified by
the phase II MAINTAIN trial (NCT02632045), which randomized
120 patients progressing on prior CDK4/6 inhibitors (84%
palbociclib-treated) to fulvestrant (83%) or exemestane (17%) ±
ribociclib. The ribociclib cohort achieved superior median PFS
(5.3 vs. 2.76 months), with 25% vs. 7% of patients remaining
progression-free at 12-month follow-up (Kalinsky et al., 2022). In
contrast, the PACE trial (NCT03147287) evaluated palbociclib
continuation post-resistance (91% prior palbociclib exposure),
randomizing 120 patients to fulvestrant alone, fulvestrant +
palbociclib, or fulvestrant + palbociclib + avelumab. No PFS
(4.8 vs. 4.6 months) or OS (27.5 vs. 24.46 months) benefit was
observed with palbociclib rechallenge (Mayer et al., 2018).
Biomarker-driven insights emerged from the BioPER study,
where palbociclib rechallenge in HR+/HER2- patients yielded
median PFS of 1.9 months versus 6.7 months in subgroups with

Rb loss, cyclin E1 amplification, or ESR1 mutations (Albanell et al.,
2023). These findings informed the CSCO 2022 Breast Cancer
Guidelines to cautiously recommend CDK4/6 inhibitor switching
post-progression, albeit with low evidence strength due to limited
trial sizes. However, implementing rechallenge strategies faces
critical challenges. First, overlapping toxicity profiles (e.g.,
neutropenia from sequential CDK4/6 inhibitors) may limit
tolerability. Second, clonal evolution under therapy pressure
generates heterogeneous resistance mechanisms (e.g., Rb loss vs.
cyclin E1 amplification), necessitating dynamic biomarker
monitoring. Finally, the lack of standardized criteria for patient
selection—particularly in distinguishing true CDK4/6 inhibitor
resistance from endocrine therapy failure—compromises therapeutic
precision. Addressing these limitations requires adaptive trial designs
integrating real-time genomic profiling and combinatorial approaches
targeting non-overlapping resistance pathways.

5.2 Combined with cytotoxic therapy

Cytotoxic therapies (e.g., radiotherapy, chemotherapy) exert
antitumor effects by disrupting critical cellular processes such as
DNA replication and protein synthesis in cancer cells (Kornepati
et al., 2023). Combining chemotherapy with CDK4/6 inhibitors
post-resistance shows therapeutic potential due to their non-
overlapping resistance mechanisms. Mechanistically, CDK4/
6 inhibitors induce tumor cell cycle arrest and apoptosis, while
chemotherapy-induced DNA damage may sensitize tumors to cell

FIGURE 3
Combination strategies after CDK4/6 inhibitor resistance.
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cycle-targeted therapies (Bisi et al., 2016; He et al., 2017). However,
chemotherapy’s dose-limiting hematologic toxicities (e.g., bone
marrow suppression) often restrict its clinical utility. Notably, co-
administration of CDK4/6 inhibitors may protect hematopoietic
stem cells from chemotherapy-induced myelotoxicity (Bisi et al.,
2016; He et al., 2017). Preclinical models demonstrate enhanced
efficacy when microtubule stabilizers or DNA-damaging agents
precede CDK4/6 inhibition, as suppressed E2F target gene
expression impairs homologous recombination-mediated DNA
repair (Dean et al., 2012; Salvador-Barbero et al., 2020).
Additionally, Rb-independent effects of CDK4/6 inhibitors—such
as blocking phosphorylation of FOXM1 and FOXO3—further
compromise DNA repair capacity post-chemotherapy or
radiotherapy across diverse tumor types (Hashizume et al., 2016).

For patients developing resistance to first-line CDK4/
6 inhibitors, switching endocrine therapies or reintroducing
CDK4/6 inhibitors may prove ineffective in those with Rb loss,
CCNE1 amplification, or ESR1 mutations (Turner et al., 2018; Xi
et al., 2019). Here, cytotoxic therapies could eliminate clones
harboring these resistance drivers, potentially resensitizing
tumors to CDK4/6 inhibitors. Thus, sequential administration of
cytotoxic therapy followed by CDK4/6 inhibitor rechallenge
represents a promising strategy. Clinical practice reflects this
rationale, with chemotherapy being the most common post-
CDK4/6 inhibitor progression therapy (Park et al., 2019). In the
PALOMA-3 trial, capecitabine, eribulin, and nab-paclitaxel
dominated chemotherapy regimens for palbociclib-fulvestrant-
resistant patients. Intriguingly, patients with poor prior
palbociclib response achieved longer median progression-free
survival (mPFS) on subsequent chemotherapy than those with
initial sensitivity (Li et al., 2021). Similarly, a U.S. real-world
study reported 35.6% of post-CDK4/6 inhibitor patients receiving
second-line chemotherapy, primarily capecitabine and taxanes
(Princic et al., 2019). These findings suggest that chemotherapy
may circumvent endocrine therapy resistance pathways linked to
CDK4/6 inhibitor failure. However, this sequential approach faces
significant challenges. First, cumulative hematologic toxicity from
chemotherapy and CDK4/6 inhibitors (both myelosuppressive) may
limit therapeutic feasibility. Second, tumor heterogeneity enables
rapid evolution of alternative resistance mechanisms, undermining
sustained efficacy. Finally, the lack of validated biomarkers to
identify patients likely to benefit from cytotoxic-CDK4/
6 inhibitor sequencing hinders personalized treatment
optimization. Addressing these limitations requires prospective
studies correlating genomic instability patterns with
therapeutic responses.

5.3 Combined with targeted therapy

Extensive preclinical evidence demonstrates synergistic effects
between CDK4/6 inhibitors and mitotic signaling pathway
inhibitors across multiple tumor models. CDK4/6 inhibition
exhibits bidirectional crosstalk with oncogenic kinases, including
components of the PI3K-AKT and MAPK pathways, as well as
upstream receptors such as EGFR, HER2, and fibroblast growth
factor receptors (Goel et al., 2016; Hallin et al., 2020).
Mechanistically, sustained CDK4/6 activity can mediate resistance

to kinase-targeted therapies, while hyperactivation of mitotic
signaling pathways conversely drives resistance to CDK4/
6 inhibitors—phenomena frequently observed concurrently (Lou
et al., 2019; Kwong et al., 2012). A hallmark example is
compensatory CDK2 activation through enhanced Rb
phosphorylation via upstream signaling, enabling S-phase entry
despite CDK4/6 blockade. This reciprocal resistance underscores
the therapeutic rationale for combining CDK4/6 inhibitors with
upstream kinase inhibitors tailored to tumor-specific signaling
aberrations (Formisano et al., 2019; Heilmann et al., 2014).

PI3K/AKT/mTOR pathway activation constitutes a key
endocrine therapy resistance mechanism, prompting clinical
investigations into combining pathway inhibitors with endocrine
therapy post-CDK4/6 inhibitor progression (Vora et al., 2014). The
SOLAR-1 trial demonstrated that in PIK3CA-mutated, CDK4/
6 inhibitor-resistant HR+/HER2− metastatic breast cancer,
fulvestrant combined with the PI3K inhibitor alpelisib achieved a
median progression-free survival (mPFS) of 5.5 months versus
1.8 months with fulvestrant alone (André et al., 2021). Similarly,
the CAPItello-291 study reported doubled mPFS (7.2 vs.
3.6 months) for AKT inhibitor capivasertib plus fulvestrant in
advanced HR+/HER2− breast cancer, with consistent benefits
observed in CDK4/6 inhibitor-pretreated subgroups (5.5 vs.
2.6 months) (Turner et al., 2023). The TRINITI-1 trial further
supported this strategy, showing a 41.1% clinical benefit rate in
CDK4/6 inhibitor-resistant patients receiving ribociclib, everolimus
(mTOR inhibitor), and exemestane (Bardia et al., 2021). These
findings position PI3K/AKT/mTOR inhibitors as viable options
for patients progressing on frontline CDK4/6 inhibitor-endocrine
therapy combinations. Emerging strategies also target kinase-driven
resistance mechanisms, as exemplified by the Phase Ib trial
(NCT03238196) evaluating palbociclib/fulvestrant with erdafitinib
(pan-FGFR inhibitor) in FGFR-amplified, CDK4/6 inhibitor-
resistant cases, which demonstrated manageable safety and
preliminary efficacy. However, implementing such combination
therapies faces substantial challenges. First, overlapping metabolic
toxicities (e.g., hyperglycemia from PI3K/AKT inhibitors and
gastrointestinal/hepatic effects from CDK4/6 inhibitors)
complicate dose optimization and tolerability. Second, dynamic
tumor evolution may bypass dual pathway inhibition through
compensatory mechanisms, such as MAPK pathway reactivation.
Finally, the absence of predictive biomarkers beyond PIK3CA
mutations limits patient stratification, risking unnecessary toxicity
in non-responders. Addressing these limitations requires
longitudinal biomarker monitoring and adaptive trial designs to
match therapies with evolving tumor dependencies.

5.4 Combined with immunotherapy

The immune escape caused by increased programmed death
receptor-ligand 1 (PD-L1) expression following CDK4/6 inhibitor
treatment is a recognized contributor to treatment resistance. Two
primary mechanisms underlie this drug resistance phenomenon.
First, CDK4/6 inhibitors suppress CDK4-Cyclin D-mediated SPOP
phosphorylation, thereby preventing ubiquitination-dependent
degradation of PD-L1 protein and leading to its intracellular
accumulation (Dougan et al., 2019). Second, studies indicate that
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CDK4/6 inhibition upregulates the oncoprotein Myc, which directly
binds to the PD-L1 gene promoter to enhance its transcriptional
activation (Tarrado-Castellarnau et al., 2017; Casey et al., 2018;
Casey et al., 2016). Both pathways ultimately promote tumor
immune evasion through PD-L1 overexpression. Preclinical
studies demonstrate synergistic antitumor effects of combined
CDK4/6 and PD-L1/PD-1 inhibitors, including enhanced antigen
presentation, T-cell activation, and cell cycle arrest (Zhang et al.,
2018). Consequently, evaluating the clinical efficacy of immune
checkpoint inhibitors following CDK4/6 inhibitor resistance
represents a critical area of current clinical research.

Monotherapy with immune checkpoint inhibitors remains
uncommon in HR+/HER2- metastatic breast cancer, but
combination therapy involving CDK4/6 inhibitors and
immunotherapy is being actively investigated for patients
progressing on CDK4/6 inhibitors. Preclinical models revealed
that abemaciclib combined with PD-1 blockade significantly
improved antitumor immune responses in vivo (Zhang et al.,
2018). The Phase Ib JPCE trial further established the
manageable safety profile of this approach in pretreated HR+/
HER2- metastatic breast cancer patients (Masuda et al., 2020).
Given the emerging resistance mechanisms to CDK4/6 inhibitors,
novel immunotherapy combinations are both scientifically justified
and clinically imperative, with multiple related trials currently
underway. However, several challenges and limitations must be
addressed in implementing combination therapies. First,
overlapping toxicities (e.g., hematologic adverse events from
CDK4/6 inhibitors and immune-related adverse events from
checkpoint inhibitors) may limit treatment tolerability. Second,
patient selection remains problematic due to the lack of validated
biomarkers predicting synergistic efficacy. Additionally, tumor
heterogeneity and dynamic evolution of resistance mechanisms
during therapy could undermine long-term responses. These
biological and clinical complexities highlight the need for robust
translational research alongside clinical trials to optimize
therapeutic strategies.

5.5 Combined with epigenetic therapy

Epigenetic modifications regulate gene expression levels, with
histone deacetylase (HDAC)—a key enzyme in histone modification
processes—being frequently overexpressed in various cancers (Zhou
et al., 2021). This overexpression positions HDAC inhibitors as
promising agents in oncology. These inhibitors exert multifaceted
antitumor effects, including cell cycle arrest, induction of
differentiation/apoptosis/autophagy, senescence, and
immunomodulation, by altering histone acetylation dynamics
(Falkenberg and Johnstone, 2014; Liao et al., 2018). Beyond
conventional therapeutic combinations, emerging insights into
CDK4/6 inhibitor-induced epigenetic reprogramming of cancer
cells have spurred interest in leveraging this mechanism for
synergistic therapeutic strategies. Preclinical studies have indeed
demonstrated enhanced antitumor activity when combining CDK4/
6 inhibitors with HDAC-targeting agents (Ge et al., 2020).

Chidamide, a selective benzamide-class HDAC inhibitor, is
clinically approved for breast cancer treatment. In the Phase III
ACE trial involving 365 HR+/HER2- postmenopausal metastatic

breast cancer patients with progression after ≥1 endocrine therapy
(adjuvant, neoadjuvant, or metastatic), Chidamide combined with
exemestane achieved a median progression-free survival (PFS) of
7.4 months, significantly surpassing the 3.8-month PFS in the
placebo-exemestane cohort (Jiang et al., 2019). Real-world
analyses of CDK4/6 inhibitor-resistant populations further
illuminate its potential: among 200 HR+/HER2− metastatic
breast cancer patients, a subgroup of 21 receiving Chidamide-
based regimens post-progression attained a median PFS of
2.6 months (Li et al., 2021). Another observational study of
44 similar patients reported an overall median PFS of
2.0 months, though those initiating Chidamide immediately after
CDK4/6 inhibitor failure reached 4.5 months (Zhou et al., 2022).
These data suggest that early Chidamide intervention post-CDK4/
6 inhibitor progression may optimize efficacy, though variables like
prior treatment lines, metastatic burden, and therapeutic history
complicate outcome interpretation, necessitating prospective
validation. Integrating HDAC inhibitors with CDK4/6-targeted
therapies faces significant challenges. First, overlapping
toxicities—such as hematologic adverse events from CDK4/
6 inhibitors and gastrointestinal/hematologic effects of HDAC
inhibitors—may compromise treatment adherence. Second,
epigenetic plasticity and tumor heterogeneity could drive
adaptive resistance to combination regimens. Finally, the lack of
predictive biomarkers to identify patients most likely to benefit from
such combinations hinders personalized therapeutic optimization.
Addressing these limitations requires mechanistic studies
correlating epigenetic modulation with clinical responses and
innovative trial designs to evaluate sequential versus concurrent
administration strategies.

6 Summary and prospect

CDK4/6 inhibitors combat malignant tumors by regulating cell
cycle, changing tumor microenvironment, triggering antitumor
immunity and other mechanisms. CDK4/6 inhibitors
dramatically change the treatment landscape for patients with
HR-positive, HER2-negative advanced breast cancer. All drugs
approved by the FDA and NMPA (Palbociclib, Ribociclib,
Abemaciclib, and Dalpiciclib) have improved outcomes and
acceptable toxicity compared to endocrine therapy alone.
Unfortunately, drug resistance is an unavoidable problem. The
molecular mechanism of CDK4/6 inhibitor resistance is very
complex, and it is important to identify the mechanism of
resistance for the next treatment. On the one hand, abnormalities
in key molecules of the CDK4/-Cyclin D-Rb regulatory axis can lead
to drug resistance. On the other hand, abnormalities in upstream
regulators of cell cycle pathways are also common causes of drug
resistance. At present, treatment options after CDK4/6 inhibitor
resistance remain limited and controversial, and there is no clear and
systematic treatment strategy internationally. The treatment options
after CDK4/6 inhibitor resistance can be basically divided into three
categories: one is to switch to other endocrine drugs combined with
CDK4/6 inhibitors, the second is to use combined targeted therapy,
and the third is to switch to cytotoxic drugs for chemotherapy.
Further, with the in-depth study of the mechanism of drug
resistance, immunotherapy and epigenetic regulation have
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gradually been added to the treatment regimen after CDK4/
6 inhibitor resistance. However, due to the difference in baseline
treatment background and the heterogeneity of existing data,
although more patients can benefit, there are still some patients
who cannot withstand the serious adverse reactions of the treatment.
Therefore, trying to explore the early benefit groups, fully screen
treatment-sensitive drugs, and conduct personalized assessment
according to the specific conditions of patients may bring
treatment benefits to more patients.
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