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Drug-induced liver injury (DILI) results from the liver toxicity caused by drugs or
their metabolites. Gallic acid (GA) is a naturally occurring secondary metabolite
found inmany fruits, plants, and nuts. Recently, GA has drawn increasing attention
due to its potent pharmacological properties, particularly its anti-inflammatory
and antioxidant capabilities. To the best of our knowledge, this is the first review
to focus on the pharmacological properties of GA and related molecular
activation mechanisms regarding protection against hepatotoxicity. We also
provide a thorough explanation of the physicochemical properties, fruit
sources, toxicity, and pharmacokinetics of GA after reviewing a substantial
number of studies. Pharmacokinetic studies have shown that GA is quickly
absorbed and eliminated when taken orally, which restricts its use in
development. However, the bioavailability of GA can be increased by
optimizing its structure or changing its form of administration. Notably,
according to toxicology studies conducted on a range of animals and clinical
trials, GA rarely exhibits toxicity or side effects. The antioxidation mechanisms
mainly involved Nrf2, while anti-inflammatory mechanisms involved MAPKs and
NF-κB signaling pathways. Owing to itsmarked pharmacological properties, GA is
a prospective candidate for the management of diverse xenobiotic-induced
hepatotoxicity. We also discuss the applications of cutting-edge technologies
(nano-delivery systems, network pharmacology, and liver organoids) in DILI. In
addition to guiding future research and development of GA as a medicine, this
study offers a theoretical foundation for its clinical application.
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1 Introduction

The liver accounts for approximately 2% and 3% of the body weight in adults and
adolescents, respectively, and is the largest internal parenchymatous organ of the body (Juza
and Pauli, 2014). This organ performs physiological functions by regulating glycolipid and
protein metabolism, stimulating the secretion of bile, and detoxifying products, such as
drugs, plasma ammonia, and ethanol (Reinke and Asher, 2016; Driskill and Pan, 2021;
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Almazroo et al., 2017). Thus, the liver is highly vulnerable to toxins.
Drug-induced liver injury (DILI) refers to the liver injury caused by
adverse drug reaction, including chemicals, biological products,
traditional Chinese patent medicines, health products, dietary
supplements, as well as their metabolites, excipients, or
impurities, which can deteriorate from asymptomatic liver
dysfunction to liver failure and even death (Andrade et al., 2019;
Li X. et al., 2022). DILI is typically divided into intrinsic and
idiosyncratic categories based on the potential mechanism of
drug action (Hoofnagle and Bjornsson, 2019). Intrinsic DILI is
dose-dependent and predictable, with a relationship between the
cytotoxic properties of the causative drug, whereas idiosyncratic
DILI is primarily host-dependent and unpredictable because of its
interactions with environmental and host elements (Andrade et al.,
2019; Chen et al., 2015). The annual incidence of DILI in China is
23.80 per 100,000, and the two leading causes of DILI were
traditional Chinese medicines and anti- -tuberculosis (TB) drugs
(Shen et al., 2019).

Oxidative stress (OS) refers to a state of imbalance between
oxidant agents and antioxidant effects in the body, with a tendency
towards oxidation, which is recognized as one of the most central
mechanisms participating in the progression of liver diseases,
especially DILI (Cichoz-Lach and Michalak, 2014; Villanueva-Paz
et al., 2021). In addition to OS, a number of other processes are
involved in DILI, including activation of the immune response (Liu
et al., 2004; Andrade et al., 2023), bile salt export pump inhibition
(Morgan et al., 2010) and direct damage to toxicological drug
properties (Price et al., 2009). Here, we discuss the role of OS in
DILI. OS leads to generation of reactive radical species (ROS),
included by superoxide radical (O2·-), nitric oxide (NO·),
hydroxyl radical (HO·), peroxynitrite (ONOO·), and hydrogen
peroxide (H2O2), which exert an influence on mitochondrial
dysfunction and endoplasmic reticulum stress (Zorov et al., 2014;
Uzi et al., 2013). Therefore, an acceptable therapeutic strategy using
natural antioxidants instead of conventional treatments may
ameliorate liver injury. Simultaneously, many plants and their
extracts have been added to liver injury therapy owing to their
antioxidant properties.

Gallic acid (GA) is a natural bioactive phenolic compound with
antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic,
antiviral, antiultraviolet, and antimicrobial properties,
contributing to the protection of organs against toxic compound-
induced injury (Fanaei et al., 2021; Shruthi and Shenoy, 2021; Wang
et al., 2023a; Govea-Salas et al., 2016). Despite the numerous
pharmacological actions of GA, its function in DILI has not been
elucidated. Thus, this paper aimed to provide a more conceptual and
novel insight by reviewing the scientific evidence related to the
hepatoprotective effects of GA, indicating that GA has the potential
to be extensively used in medical treatments to attenuate liver injury
caused by toxicity.

2 The chemistry and source of GA

GA monohydrate appears as white or yellowish needle-shaped
crystals or powder and was discovered in 1786 b y Scheele. The
molecular weight of GA is 170.12 g/mol (Akbari et al., 2019), with a
relative density of 1.694, and it is also a relatively thermostable

compound (melting point of 252°C and boiling point of 501.1°C). It
is soluble in ethanol and ether; hardly soluble in cold water and
methanol; and insoluble in benzene and chloroform. Heating to
100°C–120°C will result in the loss of crystal water from GA. Further
heating above 200°C will lead to the loss of carbon dioxide and
formation of pyrogallic acid. The molecular formula of GA is
C7H6O5; structurally, it contains one carboxyl group and three
hydroxyl groups attached at positions 3, 4, and 5 on a benzene ring.

GA is a dietary polyphenol found in various fruits, vegetables,
plants, and nuts, such as pomegranates and grapes, Acacia confuse
Merr. and Graptopetalum paraguayense E. Walther (Tung et al.,
2009; Duh et al., 2011; Zhou et al., 2019). Here, we discuss the
sources of GA in various fruits (Figure 1). According to the Duke’s
Phytochemical and Ethnobotanical Databases, mangoes have the
highest average GA concentration, reaching up to 9,000 mg per
100 g of fresh fruit. Up to 95% of all polyphenols have been found in
mango pulp from several commercial types and these polyphenols
are primarily GA and galloyl-derived polyphenols, such as mono-
galloyl glucose and gallotannins (Kim et al., 2021). Furthermore,
pomegranates are thought to contain the second highest
concentration of GA in any fruit, ranging from 0.45523 to
2045.00000 mg/100 g (Rothwell et al., 2013). Some fruits with
lower GA content (such as strawberries, bananas, lemons, and
apples) promote gastric acid secretion and encourage
gastrointestinal peristalsis due to their natural phenolic acid
content, which is beneficial for the digestion and absorption of
food in the body. In addition, GA is present in a wide range of plants
and vegetables, including Mentha spicata L., Camellia japonica L.,
Guazuma ulmifolia Lam., and Momordica charantia L. As
anticipated, it has been determined that the majority of fruits
and plants have the ability to eliminate heat, detoxify, and induce
diuresis, all of which help to partially explain the biological
actions of GA.

3 The toxicity of GA

GA combines critical proteins or minerals, such as zinc, calcium,
and iron to form an insoluble complex that disturbs other bioactive
substances. In vivo studies have been performed with oral
administration of GA to animals, and the edible LD50 value for
GA is 5,000 mg/kg in rabbits and >2000 mg/kg in mice (Variya et al.,
2019; Niho et al., 2001). However, limited information is available
regarding the long-term toxicity of GA. Hematological studies
showed no discrepancies in serum biomarkers (ALT, AST, GGT,
and ACP) (Abarikwu et al., 2016). Histopathological findings
demonstrated that only a small number of adipocytes were
inhibited without bone marrow suppression. In addition, Variya
et al. verified that a high dose of 900 mg/kg GA administered orally
to Swiss albino mice daily for 28 days showed no significant
morphological and behavioral alterations, and the
histopathological findings proved the safety of GA (Variya
et al., 2019).

Fischer rats were orally administered 0%–5% GA for 13 weeks.
The toxic effects following 5% and 0.6% in females and males,
respectively, included anemia (reduction of red blood cell counts,
hematocrit, and hemoglobin concentration, and an increase in
reticulocytes) and liver cell hypertrophy (Niho et al., 2001).
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Based on the present toxicology data in vivo models, 0.2% GA is
regarded as a no-observed-adverse-effect level, which translates to
119 and 128 mg/kg/day for male and female rats, respectively (Niho
et al., 2001). GA exhibits anti-tumor properties by inducing
apoptosis in cancerous cell lines; however, it can also be harmful
to normal cells by causing chemical changes in the GA molecule
(Park et al., 2007; You and Park, 2011; Park et al., 2008). The major
difference in cytotoxic potential between molecules is the length of
the carbon chain, which influences the physical and chemical
properties of GA (including its solubility and dispersion
coefficient). Furthermore, changes in the propagation potential
through the lipid membrane can affect interactions between
molecules and their intracellular targets. The lipophilicity of GA
determines its pharmacological activity and drug reaction, which
leads to its binding to other targets that induce DNA damage
(Locatelli et al., 2008).

4 Antioxidant properties of GA

In most cases, liver damage involves oxidative stress, which
gradually evolves into hepatitis, cirrhosis, and hepatocellular
carcinoma (HCC) without proper therapy. GA contains three
adjacent reductive phenolic hydroxyl groups in its structural
formula, which can bind to surrounding free radicals. Therefore,
the antioxidant properties of GA play a considerable role in
alleviating the accumulation of free radicals and delay the
progression of liver damage (Duh et al., 2011; Gholamine et al.,
2021; Wu et al., 2023). A 25-μM dose of GA exerts antioxidative
effects by decreasing the inflammatory mediators (such as TNF-α,
IL-1β, MCP-1, and iNOS) and promoting the expression of
antioxidant enzymes in a co-culture of lipid-laden HEPA one to
six hepatocytes and RAW 264 macrophages (Tanaka et al., 2020).

GA and its derivatives can neutralize hypochlorous acid (HOCl) to
protect α-1-protease against the inactivation, and reduce the
peroxidation of the phospholipids in brain when dissolved in
ethanol (Aruoma, 1993). In animal models of DILI, the activity
of serum antioxidant biomarkers (including glutathione [GSH],
superoxide dismutase [SOD], catalase [CAT], and GPx)
significantly increased and lipid peroxidation products decreased
in the GA-treated group compared with those in the model group
(Go et al., 2016; Omobowale et al., 2018; Esmaeilzadeh et al., 2020).
Altogether, GA exhibits antioxidative effects on liver damage as well
as on other diseases associated with oxidative stress, such as cancer,
cardiovascular disease, degenerative disease, and metabolic disease
(Bashar et al., 2021; Heidarian et al., 2016; Yan et al., 2019; Mori
et al., 2020). Therefore, GA is a potential dietary supplement owing
to its ability to scavenge ROS and improve antioxidant capacity.

5 Anti-inflammatory properties of GA

Liver diseases, such as HCC, are linked to underlying chronic
inflammation and fibrosis caused by drug/environment toxicity,
alcoholic and non-alcoholic fatty liver diseases, and hepatitis virus
infections (Marengo et al., 2016; Yang et al., 2019). The anti-
inflammatory properties of GA have been extensively investigated
in recent in vivo and in vitro studies. In an in vitro experiment, GA
inhibited secretion of pro-inflammatory cytokines (TNF-α, IL-1β,
and IL-6), thereby preventing the damage response of
lipopolysaccharide (LPS)-stimulated murine BV-2 cells (Lin et al.,
2015). GA can impede intracellular receptor-interacting protein
(RIP)1 and RIP3 increases and extracellular high mobility group
box 1 protein (HMGB1) elevation induced by ethanol in an in vitro
study of LO2 cells, resulting in inhibition of hepatocyte necroptosis
(Zhou et al., 2019). Consistently, GA significantly protected against

FIGURE 1
The resources of gallic acid from fruits.
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TABLE 1 The hepatoprotective effects of gallic acid under various conditions of liver damage models in vivo.

No. Condition Animal Modeling
dose and
time

Treatment Effects Signaling
pathway

Findings References

1 Carbon tetrachloride
-induced liver damage
and inflammation

Male
Sprague
Dawley
rats
4-week-old

CCl4 solution
(CCl4/olive oil =
1/4) 0.5 mL/kg
by oral
administration;
twice a week for
8weeks

WGP 50 and 300 mg/kg
by oral administration
Daily for 8 weeks

AST↓; ALT↓;
MDA↓; GSH↑;
TNF-α↓; TC↓;
TG↓; GPx↑;
CAT↑; SOD↑;
GR↑; TBARs↓

Scavenge free
radical and
suppress serum
enzymes
representing liver
toxicity

Duh et al. (2011)

2 Carbon tetrachloride-
induced
hepatotoxicity

Male
Institute
Cancer for
Research
mice; 10-
week-old

CCl4 solution
(CCl4/olive oil =
1/9) 0.7 mL/kg
A single dose by
IP injection

GEGR 250, 500 and
1,000 mg/kg distilled
water by intragastric
gavage
Daily for 5 days

ALP↓; AST↓;
ALT↓; SOD↑;
MDA↓; TNF-α↓;
IL-6↓; IL-10↑;
TGF-β1↓

p-P38↑;
p-JNK↓;
MMP-2↓;
MMP-1↑;
Smad2/3↓

Suppress lipid
peroxidation by
increasing the
expression of
antioxidant
enzyme

Go et al. (2016)

3 Carbon tetrachloride-
induced liver fibrosis

Male
BALB/c
mice
Weighing
18–22 g

CCl4 solution
(CCl4/olive oil =
3/7) 3 mL/kg by
SC injection
Once a week for
8 weeks

GA 5 and 15 mg/kg by
intragastric gavage
Daily for 6 weeks

HA↓; cIV↓;
MDA↓; ALT↓;
AST↓; γ-GT↓

MMP-2↓;
TIMP-1↓

Alleviate liver
fibrosis and
improve liver
function

Wang et al.
(2014)

4 Carbon tetrachloride-
induced acute liver
injury

Male
Wistar rats
8-week-old
and
weighing
180–200 g

Exposed to CCl4
vapor for
20 min

GA 240 mg/kg by oral
administration; daily for
3 days
GA 0.24 mg/kg by IP
injection; daily for
3 days

GOT↓; GPT↓;
O2 radical-
scavenging
activities in
serum↑; O2

radical-
scavenging
activities in
hepatocyte↓

Prevent the
progression of liver
injury by
stabilizing cell
membranes

Kanai and Okano
(1998)

5 Carbon tetrachloride-
induced chronic liver
injury

Male
Sprague
Dawley
rats
Weighing
220–330 g

CCl4 solution
(CCl4/olive oil =
2/3) 0.75 mL/kg
by SC injection
Once a week for
6 weeks

ACBE 50, 250 mg/kg by
oral administration;
daily for 8 weeks
GA 50 mg/kg by oral
administration; daily for
8 weeks

AST↓; ALT↓;
CAT↑; GRD↑;
GPx↑; MDA↓;
CYP2E1↓;
TBARs↓; GSH/
GSSG↑;
TG↓; TC↓

Increase
antioxidant
enzyme expression
and inhibit
CYP2E1 activation

Tung et al. (2009)

6 Carbon tetrachloride-
induced acute and
chronic hepatotoxicity

Male
Wistar
albino rats
Weighing
180–200 g

CCl4 solution
(CCl4/olive oil =
1/1) 1 mL/kg by
single IP
injection
CCl4 solution
(CCl4/olive oil =
3/7) 3 mL/kg by
IP injection
twice a week

GA 100 mL/kg by oral
administration; daily for
7 days
GA 50 and 100 mg/kg
by oral administration;
twice a week for 4 weeks

ALT↓; AST↓;
GGT↓; TBARS↓;
GSH↑; GPx↑

p53↑ Improve
nonenzymatic
antioxidant level
and increase the
expression of
p53 gene

Perazzoli et al.
(2017)

7 Doxorubicin-induced
hepatotoxicity

Male
Wistar rats
Weighing
120–180 g

Dox 15 mg/kg
A single dose by
IP injection

GA 60 and 120 mg/kg
by oral administration
Daily for 7 days

ALT↓; ALP↓;
T-Bilirubin↓;
MDA↓; SOD↑;
CAT↓; H2O2↓;
GSH↑; GPx↑;
NO↑; GST↑;
NPT↑; TT↓

Decrease oxidative
markers by
strengthening
antioxidant
defense system

Omobowale et al.
(2018)

8 Methotrexate-induced
toxicity

Male
Wistar rats
Weighing
180–220 g

MTX 20 mg/kg
A Single dose by
IP injection

GA 30 mg/kg by oral
administration
Daily for 10 days

AST↓; ALT↓;
MDA↓; ALP↓;
GSH↑; SOD↑;
GPx↑; CAT↑

Enhance the
decreased
antioxidant
enzymes activity to
improve
antioxidant
defenses

Safaei et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) The hepatoprotective effects of gallic acid under various conditions of liver damage models in vivo.

No. Condition Animal Modeling
dose and
time

Treatment Effects Signaling
pathway

Findings References

9 Cyclophosphamide-
induced toxicity

Swiss
albino mice
8–10-
week-old
and
weighing
23–27 g
3 females
and
2 males per
group

CP dissolved in
distilled water
50 mg/kg
A single dose by
IP injection

GA dissolved in 0.5%
carboxymethyl cellulose
100, 200 and 400 mg/kg
by oral administration
Daily for 5 days

SOD↑; GSH↑ Improve gene-
protected
properties and
elevate biomarkers
of antioxidant
defense system

Shruthi and
Shenoy (2021)

10 Cisplatin-induced
nephrotoxicity and
hepatotoxicity

Male
Wistar
albino rats
8–10-
week-old
and
weighing
150–250 g

Cisplatin 3 cc
per rat for once
on the day 4 in a
7-day study

GA and silymarin
dissolved in water
8 mg/kg by gastric
gavage

CAT↑; MDA↓;
GSH↑; 8OH-
dG↓; SOD↑;
Urea↓;
Creatinine↓

Ameliorate
oxidative stress
through increasing
antioxidant
enzymes

Dogan et al.
(2022)

11 Diclofenac-induced
liver toxicity

Male
Wistar rats
6-8-week-
old and
weighing
180–220 g

DIC 50 mg/kg
by IP injection
Daily for 5 days

GA 50 and 100 mg/kg
by oral administration
Daily for 5 days

AST↓; ALT↓;
ALP↓;
T-Bilirubin↓;
MDA↓; GSH↑;
SOD↑; GPx↑;
CAT↑; IL-1β↓;
ferric reducing/
antioxidant
power↑

Suppress
inflammatory
response and
improve
antioxidant
enzymes

Esmaeilzadeh
et al. (2020)

12 Acetaminophen-
induced acute liver
injury

Male Swiss
albino mice
Weighing
25–35 g

APAP dissolved
in saline
400 mg/kg
A single dose by
IP injection

E.G., dissolved in
distilled water 10 and
20 mg/kg
A single dose by oral
administration

AST↓; ALT↓;
LPO↓; SOD↑;
CAT↑; GSH↑;
GST↑; GR↑;
GPx↑; TNF-α↓;
IL-1↓

NF-κb↓; p65↓;
p52↓; COX2↓

Prevent the
decrease of
antioxidant and
repress
inflammatory
response

Ezhilarasan et al.
(2024)

13 Paracetamol-induced
liver damage

Male
crossbreed
Swiss
albino mice
Weighing
20–25 g

Paracetamol
900 mg/kg
A single dose by
IP injection

GA dissolved in saline
100 mg/kg
A single dose by IP
injection

ALT↓; AST↓;
ALP↓; GPx↑;
GR↑; GST↑;
lipid
peroxidation↓;
TNF-α↓;
SOD↑; CAT↑

Mitigate the
accumulation of
inflammatory
mediators and
reverse the
depletion of
antioxidants

Rasool et al.
(2010)

14 Ethanol-induced acute
intoxication

Adult
female
Sprague
Dawley
albino rats
Weighing
180–220 g

Ethanol
8 mL/kg
A single dose by
oral gavage

GA dissolved in saline
solution 50, 100 and
200 mg/kg
A single dose by oral
administration

ALT↓;
AST↓; LDH↓

paraoxanse
(PON)↑;
arylesterase↑

Rejuvenate the
antioxidant
enzymes activity
and activate
PPARγ to
ameliorate liver
damage

Kartkaya et al.
(2013)

15 Ethanol-induced liver
disease

Male
C57BL/6J
mice
8-week-old
and
weighing
16–20 g

52% alcohol
solution
7.5 mL/kg by
oral gavage
Daily for
12 weeks

SL-GAC 100, 200 and
400 mg/kg by oral
administration
Daily for 12 weeks

ALT↓; AST↓; γ-
GT↓; serum and
liver iron↓;
UIBC↑; TS↓;
MDA↓; SOD↑;
TC↓;
TG↓; GSH↑

TfR1↓;
Hepcidin↑

Suppress the
downregulation of
hepcidin and
adjust the
expression of
TfR1 to ameliorate
hepatic damage

Wu et al. (2019)

16 Fluoxetine-induced
oxidative stress and
liver damage

Male
Wistar rats
10–12-
week-old
and
weighing
180–220 g

Fluoxetine
dissolved in
pure corn oil
24 mg/kg by
oral
administration
Daily for
4 weeks

GA solution (GA/
ethanol-distilled water =
1/10) 50, 100 and
200 mg/kg by oral
administration
Daily for 4 weeks

GOT↓; GPT↓;
MDA↓; TNF-α↓;
CAT↑; SOD↑;
Vit C↑; ferric
reducing ability
of plasma
(FRAP)↑; TC↓;
TG↓; LDL-C↓;
VLDL-C↓;

Elevate properties
of free radical
scavenging to
retard progression
of liver damage

Karimi-Khouzani
et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) The hepatoprotective effects of gallic acid under various conditions of liver damage models in vivo.

No. Condition Animal Modeling
dose and
time

Treatment Effects Signaling
pathway

Findings References

HDL↑; serum
protein
carbonyl↓

17 Ketamine-induced
oxidative damage

Male
Wistar rats
Weighing
150–200 g

KET 50 mg/kg
A single dose by
IM injection

GA 13.5 mg/kg by oral
gavage
Once a day for 3 days

Protein
carbonyl↓;
NPSH↓

Alleviate liver
damage by
improving
antioxidant
properties

Schimites et al.
(2020)

18 Lipopolysaccharide-
induced inflammation

Male
Sprague
Dawley
rats
Weighing
300–400 g

LPS 50 μg/kg
A single dose by
IP injection

GJ 10 or 30 mg/kg and
GA 1 or 10 mg/kg
A single dose by
intragastric gavage

AST↓; ALT↓ JNK2/1↓; p38↓ Improve anti-
inflammatory
properties by
suppressing JNK
and p38 MAPKs
activity

Lin et al. (2015)

19 Aflatoxin B1-induced
oxidative and
inflammatory stress
damage

Adult
Wistar rats
10-week-
old and
weighing
181–191 g

AFB1 75 μg/kg
by oral
administration
Daily for
28 days

GA 20 and 40 mg/kg by
oral administration
Daily for 28 days

AST↓; ALT↓;
ALP↓; LDH↓;
RONS↓; LPO↓;
MPO↓; IL-1β↓;
IL-10↑; TNF-α↓;
caspase-3↓;
SOD↑; CAT↑;
GPx↑; GST↑;
GSH↑; NO↓

Ameliorate liver
damage by
regulating the
detoxification and
abating oxidative
stress

Owumi et al.
(2020a)

20 Isoniazid and
rifampicin-induced
liver injury

Male
Wistar rats
4-6-
month-old
and
weighing
200–250 g

Isoniazid
150 mg/kg and
rifampicin
150 mg/kg by
intragastric
gavage
Once a day for
28 days

GA 50, 100 and
150 mg/kg by oral
administration
Daily for 28 days

Total oxidant
capacity ↓;
AST↓; ALT↓;
ALP↓;
Bilirubin↓;
HMGB-1↓; IFN-
γ↓; SOD↑;
CAT↑;
GPx↑; GSH↑

Nrf2-p↑;
GCLC↑;
PRDX6↑; NF-
κB↓; TLR4↓;
NOS2↓; IL-1β↓

Promote activation
of Nrf2 to increase
the expression of
antioxidant and
inhibit NF-κB
activation against
inflammatory
responses

Sanjay et al.
(2021)

21 Dimethylnitrosamine-
induced liver fibrosis

Male
Sprague
Dawley
rats;
weighing
180–200 g

DMN 3 mg/kg
by IP injection;
three times in
the first week
DMN 7 mg/kg
by IP injection;
three times for
3 weeks

GA 25, 50 and
100 mg/kg by
intragastric gavage
Daily for 5 weeks

AST↓; ALT↓;
ALP↓; TB↓;
SOD↑; CAT↑;
GSH↑; MDA↓;
TGF-β1↓; EGF↓;
hydroxyproline↓

α-SMA↓;
TIMP-1↓;
TIMP-2↓;
p-Smad2↓;
p-Smad3↓

Improve
antioxidant
capacity and block
phosphor-isoform
signaling

Chen et al. (2018)

22 Dimethylnitrosamine-
induced acute liver
injury

Adult
Kunming
mice
Weighing
18–22 g

DMN 30 mg/kg
A single dose by
IP injection

GA dissolved in 0.5%
carboxymethylcellulose
sodium 50 and
100 mg/kg by oral
administration
Twice daily for 3 days

MDA↓; GSH↑;
ALT↓; AST↓;
SOD↑; GST↑

HO-1↑; Nrf2↑;
GST-α3↑

Mitigate acute liver
injury by
promoting the
induction of HO-1
and GST-α3 via
Nrf2 pathway

Ma (2014)

22 Sodium arsenite-
induced renal and
hepatic toxicity

Male
Wistar
albino rats;
Weighing
200–250 g

SA 10 mg/kg by
oral
administration
Daily for
14 days

GA 10 and 30 mg/kg by
oral administration
Daily for 21 days

AST↓; ALT↓;
ALP↓; MDA↓;
NO↓; GSH↑;
SOD↑; CAT↑;
GPx↑; IL-1β↓;
BUN↓; Cr↓

Improve
antioxidant
capacity by
facilitating to
scavenge reactive
free radicals

Gholamine et al.
(2021)

23 Paraquat-induced
liver toxicity

Male
Wistar rats
6-8-week-
old and
weighing
180–220 g

Paraquat
25 mg/kg by
oral gavage
Daily for
14 days

GA 25, 50 and
100 mg/kg by oral
administration
Daily for 14 days

AST↓; ALT↓;
ALP↓; TG↓;
TC↓; MDA↓;
T-Bilirubin↓; IL-
1β↓; SOD↑;
CAT↑; LDL-C↓;
VLDL-C↓;
HDL-C↑;
FRAP↑; Vitamin
C↑; PC↓

Diminish serum
lipid level and
oxidative effects
caused by paraquat

Nouri et al.
(2021)

(Continued on following page)
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alcohol-induced stomach ulcers by lowering submucosal edema and
cell infiltration in a dose-dependent manner by blocking the
production of TNF-α and IL-1β/6 (Zhou et al., 2020). The
downregulation of these pro-inflammatory factors by GA may be
due to action of some transcriptional factors and kinases, such as
c-JUN N-terminal kinases (JNK), NF-κB, and mitogen-activated
protein kinase (MAPK) (Fanaei et al., 2021; Lin et al., 2015; Cai et al.,
2024). Taken together, these results demonstrate that GA has anti-
inflammatory properties and can serve as a powerful anti-
inflammatory agent.

6 Anti-hepatotoxic properties of GA

Hepatotoxicity is defined as liver dysfunction or damage caused
by exposure to drugs or xenobiotics during liver metabolism (Anita
and Om, 2014). Jaundice, edema, and discomfort are the first signs
of liver disease, and these symptoms are accompanied by
biochemical alterations, including elevated blood levels of hepatic
enzymes and reduced hepatic enzymatic activity (Anita and Om,
2014). The examination of histology often reveals the common
findings of destruction of intracellular organelles, fatty degeneration
and necrosis of central hepatocytes, along with fibrosis and cirrhosis
(Omobowale et al., 2018; Chen et al., 2018; Safaei et al., 2018).
Hepatotoxicity could be caused by the combined action of the
primary substance and reactive metabolites, as well as by
immunologically mediated reactions that affect hepatocytes,
biliary epithelial cells, the liver vasculature system, and other
organs or tissues (Deng et al., 2009). Reactive metabolites refer to
the metabolic pathways activated by drugs (including free radicals,
quinones, unstable conjugates, and epoxides) that can combine with
macromolecular substances (such as proteins and nucleic acids)
intracellularly and interfere with the normal metabolism or
structure of cells (Attia, 2010). Collectively, GA showed
hepatoprotective properties against various liver-damaging agents
in rodent models (Table 1).

6.1 Carbon tetrachloride (CCl4)

CCl4 is frequently employed as a model chemical for liver injury
to evaluate the effects of hepatoprotective treatments and illustrate

the mechanisms underlying hepatotoxic reactions. The unstable free
radicals trichloromethyl (CCl3·) and trichloromethyl peroxyl
(CCl3O2·), which are produced when cytochrome P450 (CYP450)
enzymes metabolize CCl4 in the endoplasmic reticulum of
hepatocytes (Andritoiu et al., 2014), stimulate Kupffer cells to
produce ROS, which results in lipid peroxidation, causing
centrilobular hepatic necrosis, inflammation, and fibrosis (Weber
et al., 2003). GA ameliorates CCl4-induced chronic liver injury by
inhibiting lipid peroxidation and suppressing the activity of
CYP2E1, a core component of the CYP450 enzyme superfamily
and one of the key enzymes in the human body that metabolizes
drugs (Tung et al., 2009). According to Perazzoli et al., GA elevates
p53 gene expression in correlation with hepatic GSH concentration,
which appears to be related to hepatocyte regeneration and
antioxidative responses (Perazzoli et al., 2017). Additionally, GA
directly produced antioxidant effects by stabilizing cell membranes
and scavenging free radicals (Duh et al., 2011; Kanai and Okano,
1998). Natural extracts containing GA have antifibrotic
characteristics, as evidenced by the high expression of
metalloproteinase-1 (MMP-1) and the downregulation of
profibrotic factors (such as transforming growth factor-β1 [TGF-
β1], Smad2/3, matrix metalloproteinase-2 [MMP-2], and tissue
inhibitor of matrix metalloproteinase [TIMP-1]) (Go et al., 2016;
Wang et al., 2014). -

6.2 Antineoplastic drugs

Currently, more than 80 commonly used antineoplastic drugs
are roughly divided into six categories (cytotoxic drugs, hormone
drugs, biological response modifiers, monoclonal antibody drugs,
adjuvant drugs, and other types of drugs) in clinical practice, which
are specifically used for cancer therapy. Nevertheless, DILI, a
common organ ailment among the adverse responses to
antineoplastic medication, limits the therapeutic efficacy of these
treatments to some extent. Doxorubicin, an anthracycline class of
compounds, has been widely used over the past several decades as a
chemotherapeutic drug to treat various types of cancers (including
lymphomas, leukemias, breast carcinoma, ovarian carcinoma, and
thyroid carcinomas) by altering DNA and producing free radicals,
which induce diverse cardiac, hepatic, hematological, and testicular
toxicities (Omobowale et al., 2018; Prasanna et al., 2020). In

TABLE 1 (Continued) The hepatoprotective effects of gallic acid under various conditions of liver damage models in vivo.

No. Condition Animal Modeling
dose and
time

Treatment Effects Signaling
pathway

Findings References

24 Manganese-induced
inflammatory and
oxidative sress

Adult male
Wistar rats

Mn 15 mg/kg by
oral gavage
Daily for
14 days

GA 15 and 30 mg/kg by
oral gavage
Daily for 14 days

ASL↓; ALT↓;
ALP↓; LDH↓;
GGT↓; RONS↓;
LPO↓; MPO↓;
NO↓; TNF-α↓;
IL-1β↓; SOD↑;
CAT↑; GST↑;
GSH↑; GPx↑

Exert
hepatoprotective
effect by limiting
oxidative and
inflammatory
responses

Owumi et al.
(2020b)
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doxorubicin-induced hepatotoxicity, GA enhanced hepatocyte
survival by scavenging ROS and bolstering the antioxidant
defense system (Omobowale et al., 2018). Cisplatin, cisplatinum,
or cis-diamminedichloroplatinum (II) is commonly employed as an
anti-tumor agent for treating solid tumors and hematological
malignancies, and simultaneously leads to hepatotoxicity,
nephrotoxicity, and ototoxicity (Volarevic et al., 2019; Wang
et al., 2023b; Dogan et al., 2022). The protective effects of GA
were linked to a decrease in oxidative stress and increase in
antioxidant enzymes, both of which successfully reduced
cisplatin-induced hepatotoxicity and nephrotoxicity caused by
cisplatin (Dogan et al., 2022). Cyclophosphamide (CP), one of
the most successful antineoplastic agents, shows acute or long-
term toxic consequences, including hematological, cardiac,
gonadal, hepatotoxic, and other toxic effects (Emadi et al., 2009).
GA has anticlastogenic and antigenotoxic effects against CP-
induced chromosomal damage in mouse bone marrow cells and
reduces the pathological changes in hepatocytes caused by CP,
including lobular necrosis, congestion with sinusoid dilatation,
irregular arrangement, and rupture of hepatocytes (Shruthi and
Shenoy, 2021). In addition, GA can mitigate biochemical and
oxidative stress parameters (the reduction of ALT, ALP,
malondialdehyde [MDA], and H2O2; and elevation of GSH, SOD,
and CAT) in the liver of Wistar rats exposed to methotrexate, which
inhibits dihydrofolate reductase from converting dihydrofolate to
tetrahydrofolate to prevent DNA synthesis and cell proliferation
(Safaei et al., 2018).

6.3 Nonsteroidal anti-inflammatory
drugs (NSAIDs)

Owing to their widespread use and efficacy in reducing pain and
swelling, NSAIDs are listed on the World Health Organization
Model List of Essential Medicines. However, several placebo-
controlled trials and meta-analyses have documented the negative
effects of NSAIDs on hepatic, renal, gastrointestinal, cardiovascular,
cerebral, and pulmonary problems (Bindu et al., 2020). Acetaminophen
(paracetamol), originally known as 4-hydroxyacetanilide, is frequently
used because of its analgesic and antipyretic qualities. Acetaminophen is
themost common cause of drug-induced acute liver failure (ALF) in the
United States, with an incidence of 0.59 per 1,000,000 person-years of
ALF arising from idiosyncratic DILI (Andrade et al., 2019).
Acetaminophen overdose causes a multitude of interrelated
metabolic events in hepatocytes, including lipid peroxidation, protein
oxidation, covalent modification, oxidative stress, mitochondrial
dysfunction, and centrilobular necrosis (Jaeschke et al., 2012). Apart
from guarding against oxidative stress and minimizing the damage
caused by acetaminophen to the liver, GA also exhibits promise in
reducing inflammation by dramatically downregulating pro-
inflammatory factors (TNF-α, IL-1, p65, and p52) and upregulating
IκB expression in liver tissue, which functions as a blocker for the NF-
κB pathway (Rasool et al., 2010; Ezhilarasan et al., 2024). Among
NSAIDs with anti-inflammatory, antipyretic, and antinociceptive
properties, diclofenac (DIC) has severe adverse effects, including
gastrointestinal injury and damage to hepatic, renal, lung, and
cardiac tissues (Tomic et al., 2008). GA mitigates DIC-induced liver
damage by reducing cellular ROS production, suppressing IL-1β gene

expression, replenishing enzymatic and non-enzymatic antioxidants,
and improving liver function enzymes (Esmaeilzadeh et al., 2020).

6.4 Alcohol

Excessive alcohol consumption poses a substantial public health
challenge worldwide. Alcohol can affect all the organ systems in the
body, leading to various disorders, most prominently in the liver,
where it can cause steatosis, steatohepatitis, cirrhosis, and HCC
(Mackowiak et al., 2024). GA stimulated the expression levels of
peroxisome proliferator-activated receptor γ (PPAR γ), which is
crucial for lipogenesis and lipid production and highly expressed in
white adipose tissue (Christofides et al., 2021; Kartkaya et al., 2013).
Reportedly, GA reversed the ethanol-induced decrease in
paraoxonase (PON) activity by promoting PON1 expression and
release from hepatocytes via the PPAR γ-PKA-cAMP intracellular
signaling cascade (Kartkaya et al., 2013; Khateeb et al., 2010). In a
mouse model of alcoholic liver disease (ALD) with iron overload,
Wu et al. found that GA not only boosted antioxidant enzyme
activity but also cured ALD-associated iron overload by regulating
hepcidin downregulation and decreasing iron absorption in the gut
(Wu et al., 2019).

6.5 Biotoxins

Biotoxins, commonly known as natural toxins, are chemical
substances produced by animals, plants, and microorganisms
that exert toxic effects on other biological species. LPS, composed
of lipids and polysaccharides, and the primary element of the
outer membrane of gram-negative bacteria, results in a
significant increase in the release of pro-inflammatory
cytokines and ROS, which leads to liver damage (Lai et al.,
2023). LPS-induced injury is characterized by the increased
expression of nitric oxide synthase (iNOS), IL-1, IL-6, TLR4,
cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) (Guo
et al., 2021). GA treatment demonstrated antioxidant and anti-
inflammatory effects in Sprague-Dawley rats with LPS-induced
liver injury by lowering COX-2 expression and JNK2/1 MAPK
phosphorylation (Lin et al., 2015). Aflatoxins, as the most studied
largely among the mycotoxins produced by fungi, have multiple
derivatives, such as aflatoxin B1 (AFB1), aflatoxin B2 (AFB2),
aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2). and AFB1 is the
most toxic and can cause a variety of health problems, including
cancers of the liver, lung, and gastrointestinal tract, delayed
development, immunosuppression, and genotoxic effects
(Deng et al., 2018; Marchese et al., 2018). Additionally, GA
reduces AFB1-induced hepatorenal impairment by reversing
the increase in caspase-3 levels, inhibiting AFB1 activation,
and scavenging AFB1-O (exo-8,9-epoxide) (Owumi S.
et al., 2020).

6.6 Antidepressant

Polypharmacy in patients with depression has increased the
incidence of antidepressant-induced DILI over the past two decades.
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Therefore, the hepatotoxicity of various antidepressants has gained
interest. Fluoxetine is an antidepressant belonging to the serotonin
reuptake inhibitor class and is used as a first-line treatment for
depression. It has been proven to cause oxidative damage, which is
associated with changes in the liver tissue and blood markers
(Inkielewicz-Stępniak, 2011). In addition to reducing oxidative stress
andmitigating fluoxetine-induced liver damage, GAmodifies the activity
of hepatic enzymes that metabolize drugs, such as the inhibition of
monooxygenases involved in CYP450 (Karimi-Khouzani et al., 2017). In
contrast, GA reduces hyperlipidemia caused by the effects of fluoxetine
on the expression of genes linked to fatty acid synthesis and acetyl-CoA
carboxylase 1, a lipogenic isoform found in the liver and adipose tissue
(Karimi-Khouzani et al., 2017; Cheng et al., 2007). Ketamine (KET) is an
anesthetic commonly used in both humans and animals. Recently, it has
been shown to effectively and quickly reduce depressive symptoms in
individuals with treatment-resistant depression as an N-methyl-D-
aspartate receptor (NMDAR) antagonist (Smith-Apeldoorn et al.,
2022). Even with acute administration and sub-anesthetic dosage, KET
has possible pro-oxidant activity and causes oxidative stress by raising
lipoperoxidation while lowering GSH levels, as was previously observed in
the prefrontal cortex (De Oliveira et al., 2009). GA administration can
prevent and reverse the oxidative damage caused by acute KET
administration in brain regions (such as the cortex and hippocampus)
and liver, minimizing its noxious effects (Schimites et al., 2020).

6.7 Isoniazid and rifampicin

Isoniazid (INH) and rifampicin (RFP) are the first-line drugs
used to treat tuberculosis. DILI caused by anti-tuberculosis drugs is
the most common in India, accounting for 58% of all cases of DILI
and 5%–22% of cases of acute liver failure caused by drugs
(Devarbhavi et al., 2010; Kumar et al., 2010). By blocking the
main bile salt exporter pump, the basolateral Na+/taurocholate
cotransporting polypeptide (NTCP), rifampicin causes conjugated
hyperbilirubinemia (Mita et al., 2006; Saukkonen et al., 2006). In
addition, isoniazid undergoes either direct or indirect metabolism to
acetyl hydrazine and hydrazine via N-acetyltransferase (NAT) and
amidohydrolase. CYP450 monooxygenases in the liver oxidize these
metabolites, producing electrophilic intermediates and free radicals
that have been identified as hepatotoxins responsible for liver injury
(Tasduq et al., 2005). GA can prevent liver toxicity caused by INH
and RFP by maintaining the plasma membrane integrity of
hepatocytes, as evidenced by biochemical and histological
markers (Sanjay et al., 2021). Moreover, GA has a preventive
effect on INH- and RFP-induced liver damage by inhibiting pro-
inflammatory signals mediated by NF-κB and upregulating gene
production of endogenous antioxidants through the nuclear factor
erythroid 2-related factor 2 (Nrf2) pathway (Sanjay et al., 2021). The
Nrf2 transcription factor is a major regulator of the antioxidant
defense system, which modulates the expression of cytoprotective
genes in their regulatory regions and encodes detoxifying enzymes
for drug metabolism and redox balance (Kumar et al., 2014).
Previous research investigated the inhibitory effects of GA on
NF-κB mediated inflammatory response; Kim et al. found that
GA reduced NF-κB activation and downregulated the expression
of pro-inflammatory cytokines, such as TNF-α and IL-6 (Kim
et al., 2006).

6.8 Others

Paraquat is an abrasive chemical compound that is widely used
to kill plants, particularly for controlling weeds and grasses in
developing countries. A blood content of 8.5 μg/mL of paraquat
causes harmful effects on organs including the heart, liver, kidneys,
and lungs (Amin et al., 2021). The findings of a previous study
provided further insight into the free radical scavenging properties
of GA by showing that GA (100 mg/kg, po) reduced the levels of
plasma protein C, thereby inhibiting the oxidative effects of paraquat
on the hepatocytes of Wistar rats (Nouri et al., 2021). Ma et al.
demonstrated that GA was able to reduce dimethylnitrosamine
(DMN; a potent hepatotoxin, carcinogen, and mutagen)-induced
acute liver damage in mice, suggesting the potential mechanism is
that detoxifying capacity of liver tissue can be improved by
upregulating the expression levels of hemeoxygenase-1 (HO-1)
and glutathione-s-transferase-α3 (GST-α3) (Ma, 2014).
Simultaneously, another study offered the first evidence that GA,
through its enhanced antioxidant capacity and involvement in the
regulation of cytokine expression, can reduce DMN-induced liver
fibrosis in rats (Chen et al., 2018). Due to its antioxidant qualities,
which raise intracellular antioxidant capacity, GA prevented sodium
arsenite-induced renal and kidney damage, which was demonstrated
by ameliorating tissue histological alterations and serum levels
(ALT, AST, ALP, Cr, BUN, MDA, IL-1β, SOD, and CAT)
(Gholamine et al., 2021). Additionally, combining polyphenols,
such as GA with stable ω-3 fatty acids (ω-3FA) may provide
therapeutic drug candidates for treating injuries to target organs
caused by oxidative and inflammatory reactions in individuals who
have been exposed to manganese or related toxic chemicals at work
or in the environment (Owumi SE. et al., 2020).

Altogether, through a number of regulatory mechanisms, the
most significant of which are its anti-inflammatory and
antioxidant properties, GA ameliorates liver damage caused by
hepatotoxicity (Figure 2). Without appropriate treatment, liver
injury typically progresses to hepatitis, cirrhosis, and even the
most serious form, HCC. HCC arising from the hepatocytes, as a
late consequence of chronic progressive liver disease, is a
malignant tumor that has grown to be a major global public
health concern (Severi et al., 2010; Maida et al., 2014). Notably,
previous research demonstrated that the Fuzheng Jiedu Xiaoji
formulation of traditional Chinese medicine, which contains GA
and chlorogenic acid, considerably increased overall and
progression-free survival while lowering the death rate of
patients with HCC (Yang et al., 2021). Jagan et al.
demonstrated that GA is a strong anti-proliferative agent
against diethylnitrosamine-induced HCC by lowering the
levels of proliferation markers (Jagan et al., 2008).
Consequently, GA plays a critical role in the prevention of
HCC by ameliorating liver injury and exerting its anti-
tumor property.

7 Absorption, distribution, metabolism,
and bioavailability of GA

The significant biological and pharmacological activities of GA
have led to its widespread use in pharmacokinetic testing to study its
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absorption, distribution, metabolism, and excretion. Evaluation of
the optimal dose of GA for disease prevention and treatment is
highly beneficial because of these findings.

7.1 Absorption of GA

The release of GA from unprocessed dietary ingredients is its
primary source of bioactivity. The gastrointestinal tract quickly
absorbs dietary GA when administered orally. The absorption of
GA in various intestinal segments revealed that the upper end of the
gut was superior to the lower end and the absorption process was
passive diffusion, based on a rat intestinal unidirectional perfusion
model. Furthermore, intestinal efflux transporters, such as
P-glycoprotein (P-gp) and multidrug resistance protein 2 (MRP2)
may bind to GA (Cheng et al., 2021). Yu et al. conducted
comprehensive analyses that identified the following
pharmacokinetic properties of GA in SD rats: the maximum
plasma concentration (Cmax), terminal elimination half-life (T1/2),
mean time to peak concentration (Tmax), and area under the curve
(AUC) of plasma-concentration time at 0.83 μg/mL, 1.5 h, 2.56 h,
and 0.137 mg·min/mL, respectively (Yu et al., 2018). Similarly, when
rats were orally administered pomegranate flower extract
(23.94 mg/kg of GA), Tmax of 0.5 h, Cmax of 707.58 ng/mL, and
AUC of 5,711.06 (ng·h/mL) of GA were noted (Yisimayili et al.,
2022). GA and its derivatives are widely found in plants and have a
basic chemical structure, therefore, the ability of the gastrointestinal
tract to absorb GA following oral administration is dependent on
several variables, including sex, age, health state, drug form, and

dosage. Therefore, to establish a solid scientific foundation for the
dietary supplementation of GA, particular emphasis should be
placed on the bioavailability and gastrointestinal absorption
mechanism of GA in plant extracts.

7.2 Distribution of GA

GA is rapidly absorbed into the circulatory system and
distributed to various organs in a wide range of areas. Healthy
Sprague-Dawley rats were orally administered Polygonum chinense
Linn extract equivalent to 2.68 mg/kg of GA. The tissue-to-plasma
concentration ratios of GA decreased in the following order: kidneys
(6.50), heart (0.99), liver (0.93), lungs (0.473), and spleen (0.155)
(Chen et al., 2020). Furthermore, the accumulation of GA in the
brain within the first 15 s of the experiment was almost 11 times
higher than the basal concentration in the control group, indicating
that GA may have brain-targeting characteristics (Gasperotti et al.,
2015). As previously indicated, the brain distribution propensity of
GA correlates with its protective benefits against neurological
disorders caused by medicines, diseases, and environmental
toxins; hence, its significance in brain disorders warrants further
investigation. The findings of the aforementioned studies indicate
that following oral administration, GA is preferentially distributed
to the kidney, heart, liver, and brain, and associated with the
metabolic processes of the kidney and liver, as well as the
pumping function of the heart. Nevertheless, current research has
ignored the distribution patterns of GA metabolites in organs,
focusing on the detection of these metabolites (such as 3-

FIGURE 2
The primary mode of action of gallic acid in alleviating liver damage.
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dihydroshikimic acid, syringic acid, ethyl gallate, and propyl gallate)
in plasma, urine, and feces instead (Choubey et al., 2015; Ow and
Stupans, 2003). Hence, designing and conducting additional
correlation studies between the distribution of GA and its
metabolites in tissues, and their biological activities are crucial.

7.3 Metabolism of GA

There is a growing consensus that twomajor phases are involved
in the metabolism of GA, and more than 30 metabolites (mostly
pyrogallol, protocatechuic acid, methylates, sulfates, and
glucuronides associated with these two compounds) have been
found in the plasma, urine, and feces (Liang et al., 2013; Zhang
et al., 2017). In the phase I metabolism of GA, the principal phase
biotransformation pathways are decarboxylation and
dehydroxylation processes according to the structure of GA,
which produce pyrogallol and protocatechuic acid, respectively,
the two main GA-metabolite structures in investigations
involving humans (Liang et al., 2013; Zhong et al., 2016). The
metabolites of GA are created by sulfation (pyrogallol-2-O-
sulfate, protocatechuic acid-3-O-sulfate, and GA sulfate),
glucuronidation (GA glucuronide, pyrogallol-O-glucuronidation,
and protocatechuic acid glucoside), and methylation (4-O-
methylgallic acid) following the creation of phase I metabolites,
which are excreted through urine and feces (Wang et al., 2019). The
liver is responsible for phase II metabolism of GA, which involves
the action of sulfotransferases (SULTs), UDP-glucosyltransferases
(UGTs), and catechol-O-methyltransferases (COMTs) (Isvoran
et al., 2022; Jarrar and Lee, 2021; Bastos et al., 2017). Similarly,
the intestinal microbiota was capable of regulating GA metabolism
involving five metabolic reactions (including methylation,
dimethylation, trimethylation, decarboxylation, and
dehydroxylation) in a cultivation system in which GA and
protocatechuic acid were incubated with the intestinal flora fluid
of SD rats (Luo et al., 2017).

7.4 Bioavailability of GA

Bioavailability is the relative quantity and rate at which drugs are
absorbed into the circulation by the body and is influenced by
formulation factors (including the size and crystal shape of the drug
particles, molecular structure, excipients, tightness of fillers, and
manufacturing procedures) and physiological factors (including
digestibility, intestinal flora, transporter proteins, and
metabolizing enzyme availability) (Kreider et al., 2022). Although
GA has been shown to be effective in treating a range of diseases, one
of its disadvantages is that it has a low bioavailability due to rapid
elimination and poor absorption, which restricts its clinical
application and promotion (Shahrzad et al., 2001).

The bioactivity of GA depends largely on its bioavailability,
therefore, numerous attempts have been made to increase its
bioavailability to enhance its nutritional benefits. In a study using
a rat model of hepatotoxicity generated by CCl4, a phospholipid
complex of GA was designed to improve lipophilicity and prevent
poor absorption, boosting antioxidant capacity with enhanced
bioavailability (Bhattacharyya et al., 2013). Further investigations

found that GA was more stable and sustained when conjugated with
phosphatidylcholine or polyamidoamine dendrimers, which
enhanced its bioavailability and increased its hepatoprotective
effects (Abdou and Masoud, 2018). Furthermore, compared with
the polyherbal extracts of amla and pomegranate fruit peels, Patil
et al. demonstrated a significant improvement in the oral
bioavailability and anti-colon cancer activity of polyherbal
nanoparticles (GA isolated from amla and quercetin separated
from pomegranate fruit peel extract) (Patil and Killedar, 2021).
The incorporation of GA into nanocarriers has the potential to
improve oral bioavailability by enhancing its stability in the
gastrointestinal tract, increasing its solubility, promoting organ
targeting, facilitating barrier penetration, and extending
circulation time (Sahyon et al., 2023).

8 Future perspectives

Due to the low bioavailability of GA, its therapeutic applicability
in hepatoprotection is currently limited. Therefore, it is critical to
advance our understanding of drug delivery technologies and
conduct further preclinical research using in vivo and in vitro
models. The physicochemical properties of small molecules play
a major role in determining how well drugs are absorbed into the
body, therefore, efforts to improve the solubility, release control,
activity range, and pharmacokinetics of drugs should come first in
the delivery process. In the relatively new but rapidly expanding
fields of nanomedicine and nano-delivery systems, nanoscale
materials (liposomes, nanoparticles, polymeric micelles, polymer-
drug conjugates, nanosuspensions, and nano-emulsions) are used as
diagnostic tools or to carefully distribute therapeutic medicines to
precise target areas (Li B. et al., 2022). Simultaneously, it is
challenging to attain effective therapeutic results focused
exclusively on a single target for a variety of chronic disorders
(such as chronic liver damage) caused by multiple factors related to
clinical practice. Consequently, network pharmacology has been
widely used to discover drugs and active compounds in traditional
Chinese medicine. This clarifies the overall mechanism of action,
analyzes drug combinations, and determines the formula
compatibility to design multi-target molecular drugs, and provide
new ideas for the study of complex systems in traditional Chinese
medicine and new technological support for rational clinical drug
use (Jiashuo et al., 2022; Li and Zhang, 2013; Nogales et al., 2022).
Molecular docking, as a chemical calculation method, can
theoretically simulate interactions between small molecule
medicines and their targets (such as protein receptors), predicting
the manner and affinity of binding (Paggi et al., 2024). Combining
network pharmacology and molecular docking can significantly
increase drug discovery efficiency and contribute to
comprehensive evaluation of multi-target mechanisms of action
(Zhou et al., 2024; Tan et al., 2023). Moreover, organoid models
are more similar to physiological cells in composition and activity,
have a more stable genome, and require fewer operations during
model development than typical 2D cell lines and animal models.
They offer several considerable benefits in cost, clinical relevance,
and high-throughput screening (Han et al., 2024; Heydari et al.,
2021). Liver organoids can also be used in toxicological research,
medication screening, and regenerative medicine, particularly for
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irreversible liver diseases (Prior et al., 2019; Messina et al., 2020).
These new techniques will undoubtedly reveal hitherto unidentified
molecular pathways and initiate an important new avenue of
research on liver damage caused by hepatic toxicity (Figure 3).

9 Concluding remarks

Recently, the scientific community has gradually become
interested in GA, a naturally occurring polyphenolic molecule,
owing to its antioxidant, anti-inflammatory, and hepatotoxic
properties. This paper reviewed recent developments in GA
research on its physicochemical properties, fruit origin, toxicity,
prevention of hepatotoxicity, molecular mechanisms,
pharmacokinetics, and bioavailability. In vivo models have
provided convincing evidence that GA ameliorated liver toxicity
induced by CCl4, antineoplastic drugs, NSAIDs, alcohols, biotoxins,
antidepressants, anti-tuberculosis drugs, and other environmental
toxins. GA is anticipated to be a successful medication for the long-

term prevention of DILI because of its weak toxicity in animal and
clinical trials. The main mechanisms by which GA reduces DILI
include modulation of CYP450 enzyme activity, regulation of the
MAPKs signaling pathway, free radical scavenging, upregulation of
Nrf2, and downregulation of NF-κB and pro-inflammatory
cytokines. Notably, further research is needed on the interactions
between GA and other medicines to determine whether GA
intervenes in the efficacy of other medicines. Although there is
still much to learn about the hepatoprotective properties of GA,
preclinical research and clinical trials are required to assess the
pharmacological potential of GA metabolites, either in conjunction
with medical interventions or as a dietary supplement to prevent
toxicity-related liver damage.

Low bioavailability is a characteristic of GA that is influenced by
several factors, including absorption, metabolism, distribution,
excretion, and disease condition. Consequently, although GA
improves DILI, its therapeutic application may be limited due to
these disadvantages. Additionally, it is now an accepted practice to
enhance the bioavailability of GA and adjust its physicochemical

FIGURE 3
New technologies are applied in liver injury caused by toxins. Nano-delivery systems, network pharmacology, and liver organoid can all be used to
reveal more molecular processes in diseases and develop novel treatment strategies.
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properties using nanotechnology to improve common dosage forms.
Common types of nanocarriers include nanoliposomes,
nanoparticles, nanosuspensions, nano-emulsions, polymeric
micelles, polymer-drug conjugates, and nanosheets. However,
more thorough investigations are needed to determine the
biocompatibility and stability of the antioxidant activity of these
nano-combinations at the animal level. Finally, the quick
advancement of cutting-edge methods, such as the use of
network pharmacology and emergence of organoids present
previously unknown opportunities to research molecular
pathways and subsequent pharmacological development in DILI
therapy. These groundbreaking investigations could represent a
substantial advancement in the search for naturally occurring
substances with positive effects on humans and provide a
foundation for future research aimed at preventing, mitigating, or
curing liver damage caused by xenobiotic exposure or illness. In
conclusion, several disorders linked to DILI can be treated with the
robust anti-hepatotoxic properties of GA.
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