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Corticosteroids (CSs), widely used in oncology for their anti-inflammatory and
immunosuppressive properties, help manage cancer-related symptoms and side
effects. However, their long-term use may negatively affect patient survival and
exacerbate tumor progression. Elevated glucose and glutamine metabolism,
disruption of vitamin D levels, and alterations in the microbiome are some of
the key factors contributing to these adverse outcomes. Approaches such as
ketogenic diets, fasting, sartans, and vitamin D supplementation have shown
promise in providing similar benefits to CSs while mitigating the risks associated
with the mechanisms identified as contributing to tumor progression. This
perspective underscores the necessity for a reevaluation of CSs use in cancer
care and advocates for further research into safer, more effective therapeutic
strategies.
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1 Introduction

Corticosteroids (CSs) are synthetic drugs with a broad range of effects on cells and
tissues, widely used in oncology due to their ability to regulate inflammation and
modulate the immune response (Goodman et al., 2023). These include hydrocortisone,
prednisone, prednisolone, methylprednisolone, and dexamethasone (Faggiano et al.,
2022). While hydrocortisone has both glucocorticoid (anti-inflammatory and
immunosuppressive) and mineralocorticoid (electrolyte balance) activities, the other
CSs mentioned, including prednisone, prednisolone, methylprednisolone, and
dexamethasone, exhibit little to no mineralocorticoid activity. In oncology, high-
dose CSs are commonly used for a variety of purposes: managing cancer-related
symptoms such as fatigue, shortness of breath, pain from bone metastases, or
cerebral edema caused by brain metastases; reducing side effects of cancer
treatments; managing oncological emergencies; enhancing anti-cancer effects,
particularly in hematologic cancers; and treating comorbidities like autoimmune
diseases (Faggiano et al., 2022). In this review, we will explore the effects of CSs
on survival and the long-term side effects associated with their prolonged use. We
will then investigate the mechanisms by which CSs may influence tumor progression.
Four key mechanisms have been identified that could explain the negative impact of
CSs on survival: altered cancer cell metabolism, the renin-angiotensin system (RAS),
vitamin D metabolism, and the microbiome. Based on these mechanisms, we propose
therapeutic strategies that may complement or potentially replace CSs in
oncological care.
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2 Corticosteroids use in oncology:
impact on survival, risks, and potential
adverse effects

CSs have been widely used in oncology for decades, often as part
of standardized treatment protocols for various hematologic and
solid malignancies. However, as monotherapy, CSs have not been
able to induce long-lasting remissions, let alone cures (Pearson and
Eliel, 1950). Their primary role has been in symptom management
and as adjuncts to other therapies, rather than as standalone curative
agents. In this section, we will examine the role of CSs in oncology,
assessing their true impact on treatment outcomes, their
contribution to observed survival benefits, and the risks
associated with prolonged exposure.

2.1 Effect on survival in
hematological cancers

In Non-Hodgkin Lymphoma (NHL), individuals with relapsed
or refractory large B-cell lymphoma (LBCL) treated with axi-cel
showed an association between higher cumulative corticosteroid
doses and shorter progression-free survival (PFS) and overall
survival (OS) particularly when corticosteroids were used early or
for a prolonged duration (Strati et al., 2021). Furthermore,
alternative chemotherapy regimens have shown promising results
without CSs. For instance, the bendamustine + rituximab (B + R)
regimen, which does not contain CSs, achieved a significantly longer
PFS (69.5 vs. 31.2 months; p < 0.0001) and demonstrated better
tolerability compared to Rituximab + Cyclophosphamide +
Doxorubicine + Vincristine + Prednisone (R-CHOP). However,
this improvement in PFS did not translate into a significant
overall survival benefit. These findings support B + R as a
preferred first-line treatment option for patients with previously
untreated indolent lymphoma (Rummel et al., 2013). In Diffuse
Large B-Cell Lymphoma (DLBCL), recent evidence also challenges
the necessity of CSs. Chimeric Antigen Receptor T-cell (CAR-T cell)
therapy has shown higher response rates compared to various
alternative chemotherapy regimens, including Cyclophosphamide
+ Doxorubicine + Vincristine + Prednisone (CHOP, with CSs)
(Sermer et al., 2020). Additionally, the ZUMA-1 trial
demonstrated that the CAR-T therapy axicabtagene ciloleucel
(73% without CSs) provided durable responses in patients with
relapsed or refractory large B-cell lymphoma, after failure of
multiple prior therapies, including R-CHOP with CSs (Neelapu
et al., 2017). A similar trend is observed in Hodgkin Lymphoma
(HL). Studies comparing Mustargen (mechlorethamine) + Oncovin
(vincristine) + Procarbazine + Prednisone (MOPP, which includes
prednisone) and Adriamycine + Bléomycine + Vinblastine +
Dacarbazine (ABVD, which does not) indicate that ABVD
achieves superior efficacy in terms of complete response rate and
failure-free survival, with fewer hematologic toxicities. However,
overall survival at 5 years did not differ significantly between the
treatment groups (Canellos et al., 1992). Alternating MOPP/ABVD
regimens remained similar to ABVD monotherapy (Duggan et al.,
2003). Another study found no significant difference in survival
between MOPP and ABVD (Ng et al., 2004). The role of CSs in
multiple myeloma (MM) can also be questioned. An analysis of

18 clinical trials found no significant difference in overall efficacy
between melphalan + prednisone (M + P) and combination
chemotherapy (CCT) (Gregory et al., 1992) M + P was more
effective in patients with good prognosis (P = .02), while CCT
tended to be better for those with poor prognosis (P = .07) (Gregory,
Richards et al. 1992). More recent studies suggest that adding CSs to
lenalidomide maintenance may not provide significant survival
benefits (Bringhen et al., 2017; Bonello et al., 2019). Collectively,
these findings suggest that while CSs have historically played a key
role in lymphoid malignancies, they are not always indispensable.
Their use should be carefully reassessed on a case-by-case basis,
weighing potential benefits against toxicity risks. The only cancer
type where their necessity could remain unquestioned is leukemia,
particularly acute lymphoblastic leukemia (ALL) (Pourhassan et al.,
2024). Even in leukemia, certain clinical situations could justify
exploring alternative therapeutic approaches. Glucocorticoid
resistance in ALL is a major challenge that compromises
treatment efficacy (Olivas-Aguirre et al., 2021). Additionally,
recent research on CAR T-cell therapy reported that 30 patients
received CAR-T anti-CD19. Among them, nine received
tocilizumab to manage cytokine release syndrome (CRS), and six
required additional CSs. Most patients were successfully treated
without the need for CSs (Maude et al., 2014). This further suggests
that even in ALL, alternative strategies could be viable. This
assumption needs further validation, as the widespread
standardization of CSs in this setting has limited the availability
of comparative data. More studies are required to evaluate their true
indispensability.

2.2 Effect on survival in solid tumors

In the case of solid tumors, their use is more uncertain and may
be either beneficial or detrimental. The administration of
dexamethasone in glioblastoma, at the start of radiotherapy is
associated with reduced median survival and poorer clinical
outcomes. Patients on steroids had significantly lower OS (12 vs.
17 months) and PFS (5.3 vs. 6.4 months) (Pitter et al., 2016). The
negative effects of steroids were especially pronounced in patients
who received radiotherapy alone. These effects were less
pronounced, or even non-significant, in those treated with
combined chemotherapy and radiotherapy (Pitter et al., 2016).
This is confirmed in a meta-analysis of 22 studies including
8,752 patients, which showed that the use of CSs in patients with
glioblastoma is associated with a significant reduction in OS (HR =
1.54; 95% CI: 1.37-1.75; p < 0.01) and PFS (HR = 1.28; 95% CI: 1.1-
1.49; p < 0.01) (Petrelli et al., 2021). A recent meta-analysis, which
included 76 studies and a total of 83,614 patients, revealed that CSs
use in advanced solid cancers is associated with decreased OS
(hazard ratio [HR] = 1.18, 95% confidence interval [CI]:
1.10–1.26; P < .01, based on 69 studies). PFS was also negatively
impacted in steroid users compared to non-users (HR = 1.13, 95%
CI: 1.01–1.26; P = .03, based on 40 studies). The study analyzed the
effects of steroids across various solid tumors, including non-small
cell lung cancer (NSCLC), prostate cancer, breast cancer,
gastrointestinal cancers, melanoma, pancreatic cancer, ovarian
cancer, and Kaposi’s sarcoma. Steroid use was evaluated in
different settings, such as palliative care, in combination with
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immunotherapies, chemotherapies, and hormonal treatments, as
well as post-surgical management (Petrelli et al., 2020). Similarly, a
recent systematic review and meta-analysis of 4,045 patients found
that steroid use in individuals undergoing immune checkpoint
inhibitor (ICI) therapy increased the risk of disease progression
and death by 34% and 54% respectively, compared to non-steroid
users (Petrelli et al., 2020). Additionally, another meta-analysis
demonstrated that CSs administration for cancer-related
indications was significantly associated with worse PFS (HR =
1.735, 95% CI: 1.381–2.180) and OS (HR = 1.936, 95% CI:
1.587–2.361) in ICI-treated patients (Wang et al., 2021).

2.3 Adverse effects of corticosteroids

Their use is associated with numerous side effects affecting
various systems. Metabolically, they can lead to hyperglycemia,
hypertension and weight gain (Kulkarni et al., 2022).
Endocrinologically, they increase the risk of Cushing’s syndrome
(Oray et al., 2016) andmay cause adrenal insufficiency (Caplan et al.,
2017). Gastrointestinally, CSs promote the development of gastritis,
peptic ulcers, and increase the risk of gastrointestinal bleeding,
particularly when combined with nonsteroidal anti-inflammatory
drugs (NSAIDs) (Caplan et al., 2017). Cardiovascularly, they raise
blood pressure and the risk of heart disease (Pimenta et al., 2012).
The risk of hypertension is increased by ~2-fold in patients treated
with CSs regardless of treatment duration (Wei et al., 2004).
Furthermore, it has been reported that the use of CSs increases
the risk of coronary heart disease, ischemic heart disease, heart
failure and even sudden death (Wei et al., 2004). The ALL AIEOP/
BFM 2000 study demonstrated a significant increase in deaths
during induction therapy with dexamethasone (10 mg/m2),
mainly due to severe bacterial and fungal infections, particularly
in patients aged ≥10 years (4.5% vs. 2.4% with prednisone)
(Schrappe et al., 2008).

Although CSs are effective in symptommanagement, their long-
term survival benefits remain questionable. Given their potential
long-term adverse effects, they are not recommended as a prolonged
treatment for survival improvement. However, their short-term use
can be beneficial in urgent oncological situations such as spinal cord
compression, and superior vena cava syndrome, where they play a
crucial role in reducing inflammation and temporarily alleviating
symptoms (Faggiano et al., 2022).

3 Impact of corticosteroids on cancer
cells: unraveling tumor progression and
systemic risks

CSs influence various metabolic processes, including glucose
and glutamine metabolism, the renin-angiotensin system,
vitamin D metabolism, and the microbiome. While these
drugs are often considered from the perspective of their
beneficial effects, their impact on cancer progression and the
systemic balance of patients must be better understood to
optimize their use and limit their harmful effects. This section
explores these mechanisms to highlight the associated risks and
the need for alternative approaches.

3.1 Cancer cell metabolism: a therapeutic
contradiction

The metabolism of cancer cells relies heavily on glucose and
glutamine as their primary energy sources, and an increase in
glucose and glutamine levels may enhance malignancy (Seyfried
et al., 2020). The “Warburg effect,” described the last century
(Warburg, 1956), highlights the critical role of glucose, while the
recent recognition of glutamine’s role has reinforced the idea that
both substrates are crucial for tumor growth (Seyfried et al., 2020;
Lee et al., 2024). However, CSs use leads to a marked increase in
blood glucose levels. A study by Limbachia et al. (2024)
demonstrated that all CSs increase glucose concentrations, but
dexamethasone and methylprednisolone induce more significant
spikes compared to prednisolone or hydrocortisone. Consequently,
10%–30% of cancer patients experience acute hyperglycemia
episodes (Hwangbo and Lee, 2017), and some develop
corticosteroid-induced diabetes (Suh and Park, 2017). Notably,
one study found that 20% of non-diabetic patients treated with
dexamethasone for gastrointestinal cancer developed steroid-
induced diabetes (Jeong et al., 2016). These metabolic effects
have direct clinical consequences: a meta-analysis of
2,168 patients revealed that hyperglycemia, whether pre-existing
or corticosteroid-induced, is associated with a significant reduction
in overall survival in brain cancers (Liu et al., 2016). Similarly,
increased glutamine levels under CSs treatment (Thibault et al.,
2008), due to the activation of glutamine synthetase (Kazazoglou
et al., 2021) and glutaminase (Sarantos et al., 1992), may promote
tumor proliferation.

These findings raise a critical question: is the routine use of CSs,
particularly in palliative care patients, truly justified when fatigue
remains one of the most prevalent symptoms? While CSs are known
to modulate inflammation and improve certain aspects of quality of
life, their metabolic effects could paradoxically exacerbate fatigue
rather than alleviate. Moreover, their impact on glucose and
glutamine metabolism presents a therapeutic contradiction. By
increasing circulating glucose and glutamine levels—key fuels for
tumor growth—CSs might unintentionally accelerate disease
progression. This duality underscores the complexity of their use
in oncology, highlighting the need for a more nuanced approach that
weighs their symptomatic benefits against potential long-term
oncologic risks.

3.2 Renin-angiotensin system: an
amplifying mechanism

The RAS plays a key role in maintaining systemic adaptation in
cancer (Martinez and Sabatier, 2025). The renin-angiotensin system
(RAS) is initiated when the liver releases angiotensinogen, a
precursor protein that is cleaved by renin to generate angiotensin
I, an inactive form. Angiotensin I is subsequently converted into
angiotensin II (Ang II) by the angiotensin-converting enzyme
(ACE), which is primarily produced in the liver and functions
mainly in the lungs. Ang II exerts its physiological effects
through two main receptor types: angiotensin type 1 receptor
(AT1R) and type 2 receptor (AT2R) (Catarata et al., 2020).
AT1R is frequently overexpressed on the cell surface in many
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types of cancer (Roth et al., 2019), where it promotes proangiogenic
and proinflammatory processes. The use of CSs has been linked to
an increase in ACE levels (Fishel et al., 1995), which leads to elevated
Ang II concentrations and enhanced expression of AT1R (Shelat
et al., 1999). A study highlights that the overexpression of the AT1R
receptor is associated with poor overall survival in patients with
ESCC and that the angiotensin II/AT1R signaling pathway promotes
tumor growth, partly through mTOR activation (Li et al., 2016). The
impact of CSs on the renin-angiotensin system, by increasing the
expression of angiotensin II and its AT1R receptor, could enhance
pro-angiogenic and pro-inflammatory processes, thereby promoting
tumor progression and metastasis.

3.3 Vitamin D metabolism: an
underestimated impact?

CSs also alter vitamin D metabolism, a hormone with well-
recognized anticancer properties (Bikle, 2016). Chronic use of
CSs significantly reduces vitamin D levels (Skversky et al., 2011),
possibly due to the increase in fat mass they induce (Oray et al.,
2016) and the subsequent sequestration of vitamin D in adipose
tissues following weight gain (Wortsman et al., 2000). A recent
meta-analysis indicates that sufficient vitamin D levels are
associated with a reduced risk of cancer-related mortality
(Keum et al., 2022).

3.4 Microbiome: an aggravating factor?

Many cancers are generally associated with dysbiosis of the
microbiome (an imbalance in gut flora biodiversity), including
those affecting the airways and lungs, esophagus, gastric, small
intestine, large intestine, liver, pancreas, and kidneys (see
Table 2 in Martinez and Sabatier, 2025). Dysbiosis can
promote tumor progression and metastases (Sevcikova et al.,
2023). A recent study showed that chronic CS use significantly
alters gut microbial diversity and composition (Couch et al.,
2023), potentially reducing their efficacy and increasing the risk
of infection (Chan et al., 2024). Beyond these disruptions, CSs
have been linked to specific microbiome alterations in patients
with inflammatory bowel disease (IBD) and irritable bowel
syndrome (IBS) (Vich Vila et al., 2020). In IBD patients using
oral CSs, an increased abundance of Methanobrevibacter
smithii—a microorganism associated with enhanced caloric
harvest and weight gain (Mathur et al., 2013)—was observed,
which is a well-known side effect of corticosteroids (Kulkarni
et al., 2022). Meanwhile, IBS patients using inhaled CSs showed
an increased abundance of Streptococcus mutans and
Bifidobacterium dentium (Vich Vila et al., 2020). A recent
study showed that prenatal exposure to dexamethasone alters
the composition of the gut microbiota by reducing alpha
microbial diversity as well as its function (Lu et al., 2024),
which may lead to long-term health consequences, such as
diabetes (Greene et al., 2013). CSs, administered at the start
of ICI treatment, are associated with reduced overall survival in
several cancers, such as non-small cell lung cancer and
melanoma. This decrease in survival appears to be linked to

the impact of corticosteroids on T-cell mediated inflammation
and their influence on the microbiome, thereby altering the
response to ICIs (Spakowicz et al., 2020).

The microbiome disruptions induced by these treatments (CSs)
raise concerns about their long-term impact on immunity and
response to anticancer therapies.

The complex interplay of CSs with glucose and glutamine
metabolism, the renin-angiotensin system, vitamin D, and the
microbiome underscores the need for a balanced approach in
oncology. These effects are summarized in Figure 1.

Given their complex effects on tumor progression, it is becoming
essential to explore alternative strategies, such as combining them
with metabolic modulators, RAS blockers, or microbiome-targeted
interventions, which we will discuss in the next section.

4 Opportunities, challenges, and future
directions

While CSs can be beneficial in certain cases, the potential
risks highlighted in this article underscore the urgent need to
explore alternative therapeutic strategies. For instance,
dexamethasone, widely used to manage vasogenic edema
associated with tumors or brain metastases, negatively
interacts with the metabolic and molecular mechanisms
previously described. In murine models, dexamethasone has
been shown to reduce the effectiveness of radiotherapy by
inducing p21 expression, a cell cycle inhibitor that causes cell
accumulation in the G1 phase—a phase resistant to irradiation
(Pitter et al., 2016). Despite its effectiveness in managing edema,
dexamethasone provides no survival benefit, raising questions
about its systematic use in oncology (Pitter et al., 2016).
Exploring safer alternatives to CSs is essential to optimizing
cancer treatment strategies. Several promising alternatives have
been identified, including dietary interventions, renin-
angiotensin system (RAS) blockers (sartans), and vitamin D
optimization. These approaches not only address inflammation,
edema, and pain—key targets of CSs—but also counteract the
deleterious metabolic and molecular mechanisms associated
with their use. Table 1 below summarizes the potential
benefits, additional advantages, and limitations of these
alternative strategies.

4.1 Dietary strategies

Targeting both glucose and glutamine metabolism through
dietary interventions and pharmacological agents while
maintaining therapeutic ketosis represents a promising avenue.
Various dietary strategies, such as the strict ketogenic diet
(caloric restriction), the Paleolithic diet (Cruwys et al., 2020;
Duraj et al., 2024), prolonged water fasting (3–7 days) (Phillips
et al., 2022), and the fast-mimicking diet (Nencioni et al., 2018), have
demonstrated benefits in reducing glycolysis pathway activity in
cancer. For patients who cannot fast due to a BMI <18, modified
fasting approaches provide viable alternatives. A 5-day cyclic
fasting-mimicking diet, when combined with standard cancer
therapies, has been demonstrated to enhance systemic
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metabolism and bolster antitumor immunity (Vernieri et al., 2022).
Fasting also stimulates autophagy, which may protect normal cells
while rendering cancer cells more vulnerable to treatment by
modulating stress-related gene expression (p21, p16, and p53)
(Erlangga et al., 2023). A meta-analysis in mice suggest that

ketogenic diets alone can prolong survival and slow tumor
progression compared to carbohydrate-rich diets (Klement et al.,
2016). In clinical settings, a small observational study on
glioblastoma patients found that adherence to a ketogenic diet
for more than 6 months was associated with a significantly

FIGURE 1
Summary of benefits and risk of corticosteroids use in cancer progression. a-KG: Alpha-ketoglutarate (cycle de Krebs), ACE: Angiotensin-converting
enzyme, AT1R: Angiotensin II type 1 receptor, PEP: Phosphoenolpyruvate (glycolyse), PKM1: Pyruvate kinase M1, PKM2: Pyruvate kinase M2, RAS: Renin-
angiotensin system.
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higher 3-year survival rate (66.7% vs. 8.3%, p = 0.0114), suggesting a
potential impact on patient outcomes (Kiryttopoulos et al., 2025).
These metabolic interventions exert anti-angiogenic, anti-
edematous, anti-inflammatory, and pro-apoptotic effects (Jiang
and Wang, 2013). Additionally, fasting, the Mediterranean diet,
the ketogenic diet, and the Paleolithic diet contribute to restoring
microbiota eubiosis (a balanced and healthy state of the
microbiome), enhancing microbial diversity, and strengthening
gut barrier function (Klement and Pazienza, 2019; Merra et al.,
2020). Eubiosis contributes to reducing inflammation by promoting
gut barrier homeostasis, decreasing angiogenesis, regulating
epigenetic processes, and reducing metastasis (Devoy et al.,
2022). In colorectal cancer models, the ketogenic diet induces
shifts in the gut microbiota, increasing microbial production of
stearic acid. This metabolite, along with others, exhibits pro-
apoptotic effects, reducing tumor growth by inducing apoptosis
in cancer cells. These benefits persist even after microbiome
transplantation into germ-free mice, suggesting a causal role of
the microbiota in mediating the diet’s anticancer effects (Tsenkova
et al., 2025). Weight loss is also associated with the regulation of the
microbiome (Koutoukidis et al., 2022). For these dietary approaches
to be effective, achieving therapeutic levels of ketosis is critical.
This can be monitored using the glucose/ketone index (GKI),
with optimal therapeutic levels characterized by glycemia below
5 mM and ketonemia above 1–2 mM, maintaining GKI values
below 2.0, ideally near 1.0 (Meidenbauer et al., 2015; Duraj et al.,
2024). A combination diet-drug called Ketogenic Metabolic
Therapy, may further enhance these effects. Mebendazole, for
instance, inhibits glycolysis and glutaminolysis (specifically
Glutaminase C for glutaminolysis) (Mukherjee et al., 2023),

while 6-diazo-5-oxo-L-norleucine (DON), a pan-glutaminase
inhibitor, exhibits potent antitumor activity (Olsen et al.,
2015) by simultaneously inhibits glycolysis and glutaminolysis
pathways (Leone et al., 2019). While acute lymphoblastic
leukemia (ALL) remains one of the few cancers where CSs
provide substantial therapeutic benefit, resistance mechanisms
involving increased glycolytic activity (Olivas-Aguirre et al.,
2021) further support the need for metabolic-targeting
strategies in cancer therapy.

4.2 Sartans: RAS inhibitors

Another promising option involves the use of sartans, inhibitors of
the RAS. Sartans can inhibit tumor growth and progression, invasion,
and metastasis in many cell lines and animal model systems (see
Table 2 of (Roth et al., 2019)). A recent study showed that the use
of sartans improves 5-year overall survival in Nasopharyngeal
carcinoma (Lin et al., 2021). A case report also demonstrated that
irbesartan, led to a nearly complete radiological improvement and a
significant reduction in Carcinoembryonic Antigen levels in a patient
with colorectal cancer (Jones et al., 2016). Indeed, sartans can
reduce vasogenic edema (Kourilsky et al., 2016), decrease blood
glucose levels (Kitamura et al., 2007), and counteract pro-tumor
effects linked to ACE, Ang II, and the overexpression of AT1R
(Almutlaq et al., 2021). Sartans reduce inflammation by blocking
the AT1R receptor, which decreases the production of pro-
inflammatory cytokines such as IL-6, TNF-α, and IL-1β,
(Hashemzehi et al., 2021), which are often involved in chronic
inflammatory processes and the tumor microenvironment.

TABLE 1 Comparison of the positive effects, additional effects, and limitations of therapies compared to corticosteroid use.

Therapy Similar effects to
corticosteroids

Additionnal effects
compared to
corticosteroids

Limitations Ref

Diets Ketogenic
diets

- Reduces inflammation via
NF-κB inhibition and
decreases cytokines (IL-1β, IL-
6, TNF-α)
- Anti-edematous
- Alleviate pain
- Reduce fatigue
- Anti-tumor immunity

↓Glucose; ↑ Ketone; ↑anti-
angiogenic, autophagy; pro-
apoptotic effects and ↑eubiosis

- Slow effects
- Compliance

Jiang and Wang (2013), Klement and
Pazienza (2019), Merra et al. (2020), Duraj

et al. (2024)

Fasting - Anti-inflammatory
- Reduce fatigue
- Anti-edematous

↓↓↓Glucose; ↑↑↑ Ketone; ↑
OxPhos, anti-angiogenic,
autophagy, pro-apoptotic
effects and eubiosis

- Requires strict
monitoring
- Compliance
- Contraindicated in
BMI <18

Jiang and Wang (2013), Klement and
Pazienza (2019), Merra et al. (2020), Tiwari

et al. (2022)

Pharmacological Sartans - Anti-inflammatory via NF-
κB inhibition
- Anti-edematous

↓Ang II = ↓AT1R => anti-
angiogenic; ↓Glucose, IL-6,
TNF-α, et IL-1β

- Slow effects
- Limited efficiency in
patients without
associated RAS
dysfunction
- Drug interactions

Kitamura et al. (2007), Kourilsky et al.
(2016), Hashemzehi et al. (2021)

Supplement Vitamin D - Anti-inflammatory (↓ROS,
IL-1β, IL-6, TNF-α, NF-κB)
- Decrease vasogenic edema
- Reduce pain
- Reduce fatigue

Partial regulation of cancer
cell metabolism; ↓Renin =>
↓AT1R; ↑eubiosis

- Requires prolonged
supplementation
- Lower efficiency in
obeses

Koren et al. (2001), Dougherty et al. (2014),
Liu et al. (2018),

Hajimohammadebrahim-Ketabforoush
et al. (2021), Helde Frankling et al. (2021),

Muñoz and Grant (2022)

Ang II: Angiotensin II, AT1R: Angiotensin II, type 1 receptor, BMI: body mass index, IL-1β: Interleukin-1, beta, IL-6: Interleukin-6, NF-κB: Nuclear factor kappa-light-chain-enhancer of
activated B cells, OxPhos: Oxidative Phosphorylation, RAS: Renin-angiotensin system, ROS: reactive oxygen species, TNF-α: Tumor necrosis factor-alpha.
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4.3 Vitamin D

Vitamin D emerges as another viable alternative. It inhibits
renin, thereby lowering ACE levels, Ang II, and AT1R expression
(Dougherty et al., 2014). Vitamin D also partially helps to restore
normal cellular metabolism (Sheeley et al., 2022; Farahmand et al.,
2023) and has been shown to reduce brain edema following brain
tumor surgery (Hajimohammadebrahim-Ketabforoush et al., 2021).
Vitamin D has powerful effects: it decreases ROS (reactive oxygen
species), IL-1β (interleukin-1 beta), IL-6, IL-8, IL-17A, TNF-α
(tumor necrosis factor-alpha), and NF-κB (nuclear factor kappa-
light-chain-enhancer of activated B cells), while increasing MKPs
(mitogen-activated protein kinase phosphatases), IL-4, and IL-10
(interleukin-4 and interleukin-10) (Koren et al., 2001; Liu et al.,
2018; Muñoz and Grant, 2022). Vitamin D supplementation appears
to primarily reduce cancer mortality, rather than significantly
impacting overall cancer incidence (Keum et al., 2022). However,
it is important to consider the limitations of vitamin D, especially in
obesity-related cancers, as excess fat tissue can sequester it within the
body’s fat stores (Wortsman et al., 2000).

Historically, CSs have played a central role in oncology,
particularly in managing symptoms and complications associated
with cancer treatments. However, an increasing number of studies
highlight their potential deleterious effects on survival and tumor
progression. Underlying mechanisms such as increased glucose and
glutamine metabolism, disruption of the renin-angiotensin system,
alterations in gut microbiota, and vitamin D underscore the complex
and sometimes detrimental impacts of CS use in oncology. Several
studies illustrate the need to limit the use of CSs. The study by
Petrelli et al. (2020) recommends avoiding or restricting their use,
particularly in patients with advanced solid tumors. In standard care
for glioblastoma multiforme, it is recommended to minimize steroid
use, as well as their dose and duration (Petrelli et al., 2021).
Moreover, prolonged CS use in oncology, especially in cancer
survivors, is not recommended in the absence of a clear clinical
benefit, particularly for chronic pain relief (Paice et al., 2016).
Clinical trials have also shown that prolonged CS use may be
unnecessary or even harmful. In a randomized study on patients
with brain metastases, Vecht et al. (1994) demonstrated that a
reduced dose of dexamethasone (4 mg) was as effective as a
higher dose (16 mg) while limiting side effects such as muscle
weakness and Cushing’s syndrome. Furthermore, a shorter
duration of CSs treatment does not increase the risk of
recurrence or mortality (Gupta et al., 2022), while high-dose or
prolonged use is associated with a significant reduction in PFS and
OS (Terao et al., 2023). Additionally, CSs do not appear to provide a
significant clinical benefit in managing cancer-related fatigue, as
demonstrated in a systematic review (Sandford et al., 2023). Given
these findings, CSs should be used in oncology only when
unavoidable (e.g., emergencies or certain lymphoproliferative

cancers), at the minimum effective dose, with regular
reassessment and gradual tapering whenever possible (Ryken
et al., 2010).

In light of these observations, further research is imperative to
explore alternatives to CSs and optimize therapeutic strategies.
Promising approaches include vitamin D optimization, the use of
sartans, and dietary strategies—such as Ketogenic Diets—which
could, in some cases, replace CSs in combination with other
treatments. The future of cancer treatment relies on a balanced,
evidence-based approach to maximize therapeutic benefits while
minimizing the risks associated with CS use.
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