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Objective:We aim to construct a RiskScore model to aid in the early prognosis of
breast cancer (BC).

Methods: BC mRNA expression profiles were obtained from TCGA and GEO
databases. Differential gene expression analysis identifies PDP1-ferroptosis-
related genes. LASSO Cox regression was utilized to screen genes to build a
RiskScore model, and survival analysis were performed to investigate the
reliability in BC prognosis. Immune cell infiltration proportions were calculated
using CIBERSORT and xCell algorithms. Single-cell data processing and analysis
were conducted using “Seurat”, “monocle”, and “iTALK” packages. PDP1 was
silenced to validate its influence on the target genes.

Results: Data from public databases revealed significant upregulation of PDP1 in
BC samples compared to normal tissues. A RiskScore model based on PDP1-
related differential ferroptosis-related genes (FRGs) ACSL1, BNIP3, and EMC2was
developed, which effectively predicted BC patient prognosis. High-risk BC
samples exhibited poorer overall survival and were associated with immune
microenvironment. The model remained significant in multivariate Cox
regression analysis, indicating that it could independently predict the survival
of BC patients. ACSL1, BNIP3, and EMC2 were downregulated after
knockdown of PDP1.

Conclusion: RiskScore model constructed by PDP1-ferroptosis-related genes
ACSL1, BNIP3, and EMC2 is able to help predict the prognosis of BC patients.
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1 Introduction

Breast cancer (BC) is a complex and heterogeneous disease with characteristic of the
uncontrolled growth of abnormal cells in breast tissues (Feng et al., 2018). It is the most
prevalent cancer among women all over the world and can affect men as well, albeit much
less frequently (2023). BC may present in diverse manifestations, including ductal
carcinoma in situ (DCIS) or invasive ductal carcinoma (IDC), each with distinct stages
and grades (Makki, 2015). Risk factors for breast cancer include age, gender, family history,
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genetic mutations (such as BRCA1 and BRCA2), hormonal factors,
and lifestyle choices (Sun et al., 2017). Early detection through
regular mammograms, clinical breast exams, and breast self-exams
is crucial for successful treatment (Kosters and Gotzsche, 2003).
Treatment modalities may involve surgery, chemotherapy, radiation
therapy, or targeted therapies, depending on the type and stage of
the cancer (Debela et al., 2021). Ongoing research continues to
advance our understanding of breast cancer biology, leading to
improved diagnostic tools and therapeutic options aimed at
enhancing patient outcomes and quality of life, where early
diagnosis and prognosis prediction is the key.

PDP1, or Pyruvate Dehydrogenase Phosphatase Catalytic
Subunit 1, is a gene that encodes the catalytic subunit of the
phosphatase associated with the pyruvate dehydrogenase complex
(PDC) (Alshamleh et al., 2023), which is a key enzyme involved in
cellular energy metabolism, particularly in the conversion of
pyruvate to acetyl-CoA, a crucial step in the tricarboxylic acid
(TCA) cycle (Martin et al., 2005). In our unpublished research,
PDP1 has been detected to express significantly higher in BC
compared to normal tissues (Wang et al., 2024), which is
consistent with other research and lower PDP1 expression in BC
indicates better prognosis (Chen et al., 2022). In addition, PDP1may
promote BC progression by regulating the STAT3 signaling pathway
(Wang et al., 2024).

Unlike classical apoptosis, autophagy, or necrosis, ferroptosis is
a form of programmed cell death (PCD) with iron-dependent lipid
peroxidation, resulting in the accumulation of toxic lipid
hydroperoxides and eventual cell membrane damage (Li and Li,
2020; Li et al., 2020). Whether ferroptosis causes an oncogenic and
tumor-suppressive event varies across different human cancers.
Ferroptosis often dysfunctions in cancers and the utilization of
ferroptosis inducers attracts much attention in cancer treatment
(Chen et al., 2023). Brucella abortus rough-type mutant can induce
ferroptosis in infected macrophages, and differentially expressed
genes (DEGs) between this type and another type which cannot
induce ferroptosis include PDP1 (downregulated in the mutant) (Hu
et al., 2023). Pyruvate metabolism and citric acid cycle patterns are
able to help predict response to ferroptosis in gastric cancer, and
PDP1 is one of the regulators (Wang X. et al., 2022). Subtle
relationships between PDP1 and ferroptosis have been revealed in
these researches. Here, we aim to utilize PDP1-related ferroptosis
genes to help predict prognosis for BC which is valuable for
intervention.

2 Materials and methods

2.1 Research object

In this study, mRNA expression profiles and corresponding
clinical information of 1217 BC patients were obtained from The
Cancer Genome Atlas (TCGA) database (https://tcga-data.nci.nih.
gov/tcga/). This dataset comprised 1,104 breast cancer samples and
113 normal samples. After excluding samples with incomplete
survival information, a total of 1,069 patients with
comprehensive survival data were retained. Additionally, datasets
from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/) were collected, including GSE42568

(104 breast cancer samples, 17 normal tissue samples), GSE45827
(130 breast cancer samples, 11 normal tissue samples), GSE61594
(153 breast cancer samples, 11 normal tissue samples), GSE20685
(327 breast cancer samples), GSE21653 (266 breast cancer samples),
GSE1456 (159 breast cancer samples), GSE173839 (breast cancer
immunotherapy cohort), and GSE168410 (single-cell data of
12 breast cancer samples). GSE65194 contained 130 breast cancer
samples, 11 normal breast tissue samples and 14 BRCA cell lines.

A set of 540 ferroptosis-related genes (FRGs), comprising
drivers, markers, and suppressors, was sourced from the FerrDb
database (http://www.zhounan.org/ferrdb) (Zhou and Bao, 2020)
(Supplementary Table S1).

2.2 Differential gene expression analysis

All statistical analyses were performed using R language (4.3.1).
Differential gene expression analysis was performed using the “limma”
package (version 3.52.4) (Ritchie et al., 2015). Genes with an absolute
log2 fold change (Log2 FC) greater than 0.5 and an adjusted p-value
(p.adjust) less than 0.05 were considered differentially expressed.

2.3 Functional enrichment analysis

Functional enrichment analysis, including Gene Ontology (GO)
categories (Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC)) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathways, was conducted using the
“clusterProfiler” package (version 4.7.1.2) (Yu et al., 2012).
Enriched GO terms and KEGG pathways with a p-value less
than 0.05 were considered statistically significant.

2.4 LASSO cox regression analysis

Univariate Cox regression analysis was applied to the FRGs, and
genes significantly associated with breast cancer prognosis (p < 0.05)
were selected as candidates. Subsequently, LASSO Cox regression
analysis was performed using the “glmnet” package (version 4.1.7)
(Friedman et al., 2010). The number of variables corresponding to
the minimum λ value of the average error was selected to further
screen the genes correlated with BC prognosis. The selected genes
were then used to calculate the Risk Score for each sample using the
formula provided:

RiskScore � ∑
n

i�1
Coef i*Xi

where Coefi represented the risk coefficient for each factor calculated
by the LASSO-Cox model, and Xi represented the gene
expression values.

2.5 Survival analysis

Survival analysis was conducted using the “survival” package
(version 3.5–5) and “survminer” package (version 0.4.9) based on
the Kaplan-Meier (KM) method to estimate overall survival rates for
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different groups. The log-rank test was employed to assess the
significance of differences in survival rates between different
groups. The “timeROC” package (version 0.4) was utilized to
generate ROC curves, and the area under the curve (AUC) values
were calculated. A multivariate Cox regression model was employed
to analyze whether the Risk Score could independently predict the
survival of breast cancer patients in relation to other factors.

2.6 Calculation of immune cell infiltration
proportions

The CIBERSORT software (Newman et al., 2015) was
employed to calculate the relative proportions of 22 immune
cell types within each sample. Using a gene expression matrix,
CIBERSORT utilized a deconvolution algorithm with a predefined
set of 547 barcode genes to characterize the composition of
immune infiltrating cells. The sum of the estimated proportions
of all immune cell types in each sample equaled 1. The single-
sample Gene Set Enrichment Analysis (ssGSEA) algorithm was
employed to calculate the abundance of 28 specific immune cell
types. The xCell algorithm, implemented using the package “xCell”
(https://github.com/dviraran/xCell), was used to compute the
proportions of 64 immune cells in each sample.

2.7 Single-cell analysis

Single-cell data processing was performed using the “Seurat”
package (version 4.3.0). Cells with less than 200 or greater than
2,500 features and greater than 5% mitochondrial counts were
removed. The “NormalizedData” function was used for the
standardization of single-cell RNA-sequencing (scRNA-seq)
data. The “RunPCA” function was employed for principal
component analysis (PCA). Unsupervised clustering of major
cell subtypes was performed using the “FindClusters” function in
“Seurat” package, followed by visualization using t-distributed
stochastic neighbor embedding (t-SNE). Manual annotation was
conducted using cell markers. Pseudotime analysis was carried
out using the “monocle” package (version 2.26.0) (Qiu et al.,
2017). The “iTALK” package (https://github.com/Coolgenome/
iTALK, version 0.1.0) was utilized to explore cell-cell
communication networks.

2.8 Cell culture

Two strains of BC cells, MCF-7 and MDA-MB-231, were
purchased from National Collection of Authenticated Cell
Cultures (Shanghai, China). The growth medium for MCF-7 and
MDA-MB-231 consisted of Dulbecco’s Modified Eagle Medium
(DMEM) (high glucose) (C0235, Grand Island Biological
Company (GIBCO), Waltham, US) supplemented with 10% fetal
bovine serum (FBS) (GIBCO, cat#C11995500BT) and 1% penicillin-
streptomycin mixture (P1400, Beijing Solarbio Science &
Technology Co., Ltd., Beijing, China). The cells were all cultured
in a CO2-saturated incubator at 37°C with 5% CO2 and
high humidity.

2.9 Transfection

Cells were observed under an inverted microscope to ensure
they were in good condition with an appropriate density. The cells
were processed in a super-clean hood using 0.25% trypsin-EDTA to
generate a single-cell suspension. After centrifugation at 1,000 rpm
for 5 min, the supernatant was removed, and the cells were
resuspended in culture medium for counting. A 2 mL cell
suspension was prepared in a 6-well plate. The culture plate was
placed in a CO2 incubator and incubated for 24 h at 37°C.
Subsequently, 1 μg of siRNAs was added, and cell transfection
was carried out using LipofectamineTM 2000 (11668019,
Invitrogen Corporation, Waltham, US). The sense and antisense
sequences of siPDP1 were 5′-CCUUGGAUUUGACAGCAAUTT-
3′ and 3′-AUUGCUGUCAAAUCCAAGGDADT-5′, The relevant
control siCtrl sense sequence was 5′-CAGUACUUUUGUGUA
GUACAAA-3′, and the antisense sequence was 3′-
ACGUGACACGUUCGGAGAADTDT-5’.

2.10 QRT-PCR experiment

After collecting the transfected cell samples, Trizol (15596–018,
Invitrogen) was used for lysis in RNA extraction. The samples were
centrifuged at 2,000 rpm for 5 min, and the supernatant was
removed. To the cell pellet, 1 mL of Trizol was added,
thoroughly mixed, and left at room temperature for 5 min. The
mixture was then transferred to new 1.5 mL centrifuge tubes. 200 μL
of chloroform was added to each tube, and the tubes were inverted
for 15 s. After standing at room temperature for 10 min, the tubes
were centrifuged at 4°C and 12,000 rpm for 15 min. The upper liquid
layer was moved into new 1.5 mL centrifuge tubes, an equal volume
of pre-chilled isopropanol was added, and after thorough mixing,
the mixture was allowed to stand at 4°C for 10 min. After
centrifugation at 4°C and 12,000 rpm for 12 min, the supernatant
was discarded. To the pellet, 1 mL of 75% ethanol (prepared freshly
with DEPC water) was added for washing. After centrifugation at
4°C and 12,000 rpm for 5min, most of the supernatant was removed.
The pellet was further washed by repeating the centrifugation at 4°C
and 12,000 rpm for 5 min, discarding the supernatant, and air-
drying at room temperature. When the RNA pellet became nearly
transparent, 50 μL of RNase-free water was added to completely
dissolve it. The concentration and quality of the extracted RNA were
determined using a spectrophotometer.

Following the instructions of the ReverTra Ace qPCR RT Kit
(FSQ-101, Toyobo Co., Ltd., Osaka, Japan), 4 μL of 4× DNAMaster
Mix with gDNA Remover was taken. RNA template (0.8 μg) was
added, and Nuclease-free Water was added to make up the volume
to 16 μL. After gently mixing the reaction solution, it was incubated
at 37°C for 5 min. Subsequently, 4 μL of 5× RTMasterMix II was
added and mixed. The reaction proceeded at 37°C for 15 min,
followed by 50°C for 5 min, and then 98°C for 5 min (20 μL reverse
transcription system +360 μL ddH2O). The completed reaction
mixture was stored at −20°C. Subsequently, a qRT-PCR
experiment was conducted with the following reaction setup:
TransStart Tip Green qPCR SuperMix (Transgen Biotech Co.,
LTD, Beijing, China) (10 μL), diluted cDNA (2 μL from a 20 μL
reverse transcription system +360 μL ddH2O), primer F + R
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(Table 1) (2.4 μL), and water added to make up the volume to 20 μL.
The PCR conditions were as follows: 95°C for 3 min, followed by
40 cycles of 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. The results
were analyzed using the 7,500 Fast DX Real-time PCR instrument
(Applied Biosystems, Waltham, US) and its associated software.

2.11 Western blot (WB)

Proteins were extracted using Radio-Immunoprecipitation
Assay (RIPA) buffer (P0013B, Beyotime Biotech Inc., Shanghai,
China), separated with Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis (SDS-PAGE), and then transferred onto
polyvinylidene fluoride (PVDF, ISEQ00010, Millipore
Corporation, Bedford, US) membranes which were subsequently
blocked with 5% non-fat milk to prevent non-specific binding.
Subsequently, the membranes were incubated at 4°C for 12 h
with primary antibodies: BNIP3 monoclonal antibody (68091-1-
Ig, 1:1,000, Proteintech Group, Inc., Rosemont, US), ACSL1
polyclonal antibody (13989-1-AP, 1:1,000, Proteintech), EMC2
polyclonal antibody (25443-1-AP, 1:1,000, Proteintech), GAPDH
antibody (sc-47724, 1:1,000, Santa Cruz Biotechnology, Inc., Santa
Cruz, US), and PDP1 antibody (21176-1-AP, 1:1,000, Proteintech).
Next, the membranes were incubated by secondary antibodies.
Secondary antibody for BNIP3 and GAPDH was Horseradish
Peroxidase (HRP)-labeled Goat Anti-Mouse IgG (Heavy and
Light chains (H + L)) (A0216, 1:5,000, Beyotime). Secondary
antibody for ACSL1, EMC2, PDP1 was HRP-conjugated Goat
Anti-Rabbit (A0208, 1:5,000, Beyotime). Fluorescence imaging
was performed using the ODYSSEY Clx imaging system (LI-
COR, Inc., Lincoln, US).

2.12 Statistical analyses

Wilcoxon rank-sum tests were employed to compare gene
expression differences and differences in immune cell infiltration
between different groups. The Shapiro-Wilk test in R was used to
test whether the sample conforms to a normal distribution. If the
sample is found to conform to a normal distribution, use the “cor”
function to conduct Pearson correlation analysis. Conversely, if the
sample does not conform to a normal distribution, perform

Spearman correlation analysis instead. In qRT-PCR experiment,
comparisons between the sample means of the two groups were
performed using the T-test. Differences were considered statistically
significant when p < 0.05.

3 Results

3.1 Expression pattern, prognostic value and
immune characteristics of PDP1 in BC

In our unpublished previous study, PDP1 has been found to be
upregulated in breast cancer compared to normal tissues. By
bioinformatics analysis, validation of PDP1 expression in breast
cancer samples versus normal samples was conducted using the
GSE42568, GSE45827, and GSE61594 datasets. The results revealed
a significant upregulation of PDP1 expression in breast cancer
samples across all three datasets (Figures 1A–C). Validation of
PDP1 expression using the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/) demonstrated lower PDP1 mRNA
expression levels in normal tissues (Figure 1D). Additionally, in
comparison to normal samples, breast cancer exhibited a relatively
higher expression of PDP1, as illustrated by representative
immunohistochemistry (IHC) images (Figure 1E).

Breast cancer samples from the TCGA (11.16113188) and
GSE20685 (8.09563334299417) datasets were stratified into high
(HPG) and low expression groups (LPG) based on the median
expression values of the PDP1. Survival analysis of these two cohorts
indicated that breast cancer samples with high expression of PDP1
had poorer overall survival compared to those with low expression
(Figures 1F, G). Furthermore, PDP1 showed correlations with
Antigen presentation, Immunoinhibitor, Immunostimulator,
Receptor, and Chemokine (Figure 1H). In the
GSE173839 dataset, PDP1 was identified as a predictive factor for
immunotherapy response in patients receiving immunotherapy
(Figure 1I). Finally, we analyzed the expression of PDP1 in
different BC subtypes and discovered that PDP1 was highly
expressed in Her2 subtype (Figure 1J).

3.2 PDP1-related differential FRGs and their
functional information in BC

To gain insights into the biological processes, molecular
functions, and potential pathways associated with PDP1 and its
related ferroptosis genes in BC, we performed functional enrichment
analysis. Breast cancer samples from the GSE21653 dataset were
divided into HPG and LPG based on the median expression values
of the PDP1 (6.49). Differential gene expression analysis was then
conducted between HPG and LPG. HPG exhibited a total of
302 DEGs, including 275 upregulated genes and
27 downregulated genes compared to LPG (Figures 2A, B).

Functional enrichment analysis, including GO and KEGG
pathways, was performed on the 302 DEGs. Among the
significantly enriched KEGG pathways (31 pathways with
p-value <0.05), ferroptosis pathway was included. Additionally,
there were 623 significantly enriched BP terms, 51 MF terms,
and 55 CC terms. The top 10 significantly enriched KEGG

TABLE 1 Prime sequences for qRT-PCR.

Target gene Primer sequence

ECM2-F CTGCTCCGCTACTGAACAAAGA

ECM2-R TTCGGTCCATTCCCACCTG

BNIP3-F GCCATCGGATTGGGGATCTA

BNIP3-R CCACCCCAGGATCTAACAGC

ACSL1-F GTGGAACTACAGGCAACCCC

ACSL1-R AGTATCATCTGGGCAAGGATTGA

GAPDH-F ACAACTTTGGTATCGTGGAAGG

GAPDH-R GCCATCACGCCACAGTTTC
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FIGURE 1
Expression pattern, prognostic value and immune signature results of PDP1 in BC. (A–C): Box plots of differential expression of PDP1 in tumor and
normal samples of GSE42568, GSE45827, and GSE61594 cohorts. (D): PDP1 expression levels in normal tissues of HPA database. (E): Representative IHC
of normal and tumor tissues in the HPA database. (F, G): KM survival curves in the TCGA cohort and the GSE20685 cohort. P values are based on the log-
rank test. (H): Heatmap of correlation between PDP1 and Antigen presentation, Immunoinhibitor, Immunostimulator, Receptor, and Chemokine. (I):
PDP1 is differentially expressed in different states of breast cancer immunotherapy cohort patients. (J): The expression of PDP1 in different BC subtypes
(*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 2
PDP1-related differential FRGs and functional enrichment analysis in BC. (A): Volcano plot of differential analysis of the GSE21653 cohort. (B):
Heatmap of DEGs in the GSE21653 cohort. (C): Dot plot of the top 10 most significantly enriched KEGG pathways. (D): Histogram of the top
10 significantly enriched BP, CC and MF. (E): Intersection venn Hdiagram of DEGs and FRGs. (F, G): Top 10 significantly enriched KEGG pathways and the
top 10 significantly enriched GO pathways.
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FIGURE 3
Construction of RiskScore model. (A): Forest plot of univariate Cox analysis of 15 PDP1-related differential FRGs genes. (B): Determining the optimal
lambda in the LASSO regression model. (C–E): KM survival curves in the TCGA and GEO cohorts. (F): Multivariate Cox regression analysis forest plot. (G,
H): KM survival curves of HER2-positive subtypes and TNBC subtypes. (I): Risk score in Lumb, Her2, Basal, and LumA subtypes. (****p < 0.0001, ns
represents non-significance).
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pathways and the top 10 enriched GO pathways were shown in
Figures 2C, D. Detailed results of the enrichment analysis could be
found in Supplementary Table S2.

The intersection of the 302 DEGs and the 540 FRGs resulted in
15 genes, which were considered as differentially expressed FRGs
(Figure 2E; Supplementary Table S3).

Further GO and KEGG enrichment analysis was conducted on
the 15 differentially expressed FRGs associated with PDP1. Thirteen
KEGG pathways, including the ferroptosis pathway, were
significantly enriched, along with 552 BP terms, 41 MF terms,
and 32 CC terms. The top 10 significantly enriched KEGG
pathways and the top 10 enriched GO pathways were presented
in Figures 2F, G. Detailed results of the enrichment analysis could be
found in Supplementary Table S4.

3.3 RiskScore model based on PDP1-related
differential FRGs could predict BC
patient prognosis

By harnessing the power of molecular data and bioinformatics,
we aim to provide clinicians with a robust and quantitative approach
to assess the prognosis of breast cancer patients, and the
construction of a RiskScore model will be helpful. In breast
cancer patients from the TCGA-BRCA dataset with complete
clinical survival information, a univariate Cox regression analysis
was conducted using the expression values of 15 PDP1-related
differentially expressed FRGs as continuous variables. Hazard
ratios (HR) were calculated for each gene, and three genes with a
significant p-value (<0.05) were identified (Figure 3A).

The three selected genes underwent LASSO Cox regression
analysis, and the optimal number of genes was determined to be
three based on the lambda values corresponding to different
numbers of genes in the LASSO Cox analysis (Figure 3B, where
the lambda value was minimized). The selected genes were EMC2
(Endoplasmic Reticulum Membrane Protein Complex Subunit 2),
BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3),
and ACSL1 (Acyl-CoA Synthetase Long-chain Family Member 1). It
has been showed that these three genes were closely associated with
ferroptosis (Zhou and Bao, 2020). Thus, EMC2, BNIP3, and ACSL1
were selected for further analysis.

Subsequently, a RiskScore model predicting patient survival was
established by weighting the gene expression levels with the coefficients
obtained from the LASSO Cox regression analysis. The formula was as
follows: RiskScore = 0.25093327 × EMC2 expression value
+0.08844663 × BNIP3 expression value +0.07694525 × ACSL1
expression value. RiskScores were calculated for each patient, and
based on the median RiskScore, breast cancer samples in the
training set of the TCGA cohort and the validation set of
GSE20685 were stratified into high (HRSG) and low-risk groups
(LRSG). Survival analysis revealed that HRSG samples had poorer
overall survival in both the training and validation sets (Figures 3C, D).
Additionally, samples in GSE1456 were divided into two groups based
on the optimal cutoff value for RiskScores, showing that high-risk breast
cancer samples had poorer overall survival compared to low-risk
samples (Figure 3E).

Furthermore, time-dependent ROC analysis demonstrated that
the AUC values for the 1-year, 3-year, and 5-year survival periods in

the training set (TCGA-BRCA) were 0.56, 0.58, and 0.56,
respectively (Supplementary Figure S1A). In the validation set
(GSE20685), the AUC values for the 1-year, 3-year, and 5-year
survival periods were 0.71, 0.69, and 0.65, respectively
(Supplementary Figure S1B). For GSE1456, the AUC values for
the 1-year, 3-year, and 5-year survival periods were 0.78, 0.59, and
0.60, respectively (Supplementary Figure S1C). These results
indicated that the model based on the TCGA-BRCA training set
was effective in predicting the prognosis of breast cancer patients.

In a multivariate Cox regression analysis with factors of age,
stage, and RiskScore, it was determined whether the RiskScore was
an independent prognostic indicator (Figure 3F). The results
indicated that both RiskScore and age remained significantly
associated with overall survival, with higher risk scores indicating
a greater risk of death and serving as adverse prognostic factors
(HR = 2.570, 95% CI: 1.449–4.556, P = 0.0012).

In the GSE61594 dataset, survival analysis of the risk score in
different breast cancer subtypes revealed that in Human Epidermal
Growth Factor Receptor 2 (HER2)-positive and Triple-Negative
Breast Cancer (TNBC) subtypes, high-risk breast cancer samples
had poorer overall survival compared to low-risk samples (Figures
3G, H). Moreover, we analyzed Risk score in different BC subtypes
and found that the Risk score was significantly higher in Lumb,
Her2, and Basal subtypes than LumA subtype (Figure 3I).

3.4 Differential immune characteristics in BC
patients with high and low risk scores

Immune characteristics can provide insights into the tumor
microenvironment and the interactions between cancer cells and
the immune system. Using the TCGA-BRCA dataset, the
correlation between RiskScore and the abundance of various
immune-infiltrating cells was analyzed using ssGSEA and the
xCell algorithm. In ssGSEA, the RiskScore demonstrated a
significant positive correlation with 16 immune cells,
including Gamma delta T cells, Activated CD4 T cells, and
Immature dendritic cells. Conversely, there was a significant
negative correlation between RiskScore and Eosinophils
(Figure 4A). The xCell analysis revealed a significant negative
correlation between RiskScore and 23 immune cells, such as
microvascular Endothelial cells (mv.Endothelial.cells), Natural
Killer T cells (NKT), and Fibroblasts. Additionally, RiskScore
exhibited a positive correlation with 15 immune cell types,
including Common Lymphoid Progenitors (CLP), T-helper
two cells (Th2. cells), and Smooth Muscle cells (Figure 4B).

Additionally, the CIBERSORT algorithm was used to calculate
the relative abundance of 22 immune-infiltrating cells in breast
cancer samples from the TCGA-BRCA cohort. Stratifying the
samples into HRSG and LRSG based on the median of
RiskScore, the analysis revealed significant differences in the
infiltration of 10 immune cells between HRSG and LRSG, among
them, naive B cells, resting dendritic cells, resting mast cells, plasma
cells, CD8 T cells were significantly higher in LRSG, and activated
dendritic cells, M0 Macrophages, M1 Macrophages, activated
memory CD4 T cells, and follicular helper T cells were
significantly higher in HRSG (Figure 4C). Further analysis of the
Pearson correlation between RiskScore and significantly different
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FIGURE 4
Immune infiltration analysis. (A, B): Correlation between RiskScore and infiltration proportion of immune infiltrating cells in ssGSEA and xCell
algorithm. (C): Box plot of the difference in immune cell infiltration between 22 types of immune infiltrating cells between samples in HRSG and LRSG.
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns represents non-significance). (D, E): Scatter plots of correlation between RiskScore and
significantly different immune infiltrating cells. (F): univariate Cox analysis. (G): Differences in adaptive immunity and innate immunity betweenHRSG
and LRSG. (H): Differences in T cell responses between HRSG and LRSG.
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immune-infiltrating cells showed a significant negative correlation
with CD8 T cells and naive B cells, and a significant positive
correlation with M1 Macrophages, activated CD4 Memory
T cells, and M0 Macrophages (Figures 4D, E). Furthermore,
univariate Cox analysis showed that CD8 T cells were correlated
with prognosis of patients with breast cancer (Figure 4F), indicating
that CD8 T cells might predict the prognosis of BC.

Furthermore, it was observed that adaptive immunity and innate
immunity showed relatively stronger in HRSG than LRSG
(Figure 4G). Tumors with high RiskScore were associated with a
relatively stronger T-cell response (Figure 4H).

3.5 RiskScore in BC samples at single-
cell level

Investigating breast cancer at the single-cell level is able to
provide an understanding of cellular heterogeneity. Using the
GSE168410 scRNA-seq dataset, a single-cell gene expression
profile was obtained, and the data were processed and filtered for
subsequent analysis. PCA analysis was performed to reduce
dimensionality using 5,000 variable genes, and 25 cell clusters
were identified using “Seurat” (Supplementary Figure S2). The
cell annotation results were depicted in Figure 5A. The levels of
RiskScore in the identified cells were shown in Figure 5B.
Pseudotime analysis was conducted on breast cancer cells,
defining 5 cell states (Figure 5C left). As pseudotime passed
(Figure 5C center), RiskScore of breast cancer cells tended to
increase (Figure 5C right).

The “iTALK” tool was utilized to analyze the cell-cell
communication network between RiskScore subgroups, including
cytokines and checkpoints. In the cytokine module, SDC4 and
ITGB1 were identified as more active signaling pathways in
breast cancer with high RiskScore (Figures 5D, E). In the
checkpoint module, CD24 and VTCN1 were recognized as more
active signaling pathways related to immune escape in breast cancer
with high RiskScore (Figures 5F, G).

3.6 Expression of key genes in the RiskScore
model in BC

Besides constructing the RiskScore model, we also explored the
expression of genes used in the model. The expression patterns of
the three genes (EMC2, BNIP3, and ACSL1) were analyzed in HPG
and LPG using the GSE21653 and TCGA datasets. The results
showed that, compared to LPG, EMC2, BNIP3, and ACSL1 were
all significantly upregulated in HPG samples in both datasets
(Figures 6A, B). Validation in the Cancer Cell Line Encyclopedia
(CCLE) database confirmed that the expression of EMC2 was
significantly higher in HPG cell lines compared to LPG cell lines
(Figure 6C). Furthermore, we validated PDP1’s influence on EMC2,
BNIP3, and ACSL1, showing that after silencing PDP1, all three
genes were downregulated (Figures 6D, E), and the influence was
also validated byWB (Figure 6F). The grouping of blots was cropped
from different gels, and the original images were attached in
Supplementary Figure S3.

Furthermore, the expression of these three genes in BC samples
versus normal samples was analyzed. In TCGA dataset, compared to
normal samples, ACSL1 and BNIP3 were significantly
downregulated, while EMC2 was significantly upregulated in BC
samples (Figure 6G). In the CCLE database, ACSL1 expression was
significantly higher in BC cell lines than in normal cell lines, and
BNIP3 expression was significantly lower in BC cell lines than in
normal cell lines (Figure 6H), consistent with the TCGA data.

FIGURE 5
Single-cell data analysis. (A): Cell clusters identified based on
single-cell data using the t-SNE algorithm, with a total of 25 clusters.
(B): Classification results of cell clusters based on t-SNE algorithm. (C):
Pseudotime analysis of breast cancer cells in different cell states
(left). Pseudotime pattern of pseudotime analysis of breast cancer cells
(middle). RiskScore of pseudotime analysis of breast cancer cells
(right). (D, E): Cytokine cell-cell communication network. (F, G):
Checkpoints cell-cell communication network.
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FIGURE 6
Validation of the expression of genes using in the RiskScoremodel. (A–C): Box plots of differential expression of ACSL1, BNIP3, and EMC2 in samples
fromHPG and LPG in GSE21653, TCGA cohort and CCLE database. (D, E): Expression levels detected by qRT-PCR of ACSL1, BNIP3, and EMC2 after PDP1
knockdown in MCF7 and MDA-MB-231 cell line, respectively. (F): Protein levels detected by WB of ACSL1, BNIP3, and EMC2 after PDP1 knockdown in
MCF7 and MDA-MB-231 cell line, respectively. (G–I): Differential expression of ACSL1, BNIP3, and EMC2 in BC and normal samples in TCGA cohort,
CCLE database, and GSE42568 dataset.
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Subsequently, further validation of gene expression was conducted
in GSE65194 to analyze the expression patterns of the three genes in
BC samples versus normal samples. The results showed that, relative
to normal samples, BNIP3, and EMC2were significantly upregulated
in BC samples (Figure 6I). Our data indicated that BNIP3
consistently displayed significantly lower expression levels in
breast cancer samples across various datasets, warranting further
investigation.

4 Discussion

In our research, functional enrichment analysis indicated the
relationship between PDP1 and ferroptosis in BC. Then we focused
on 15 PDP1-related differential FRGs and three genes ACSL1,
BNIP3, and EMC2 were selected to build an effective RiskScore
model to predict BC prognosis. The RiskScore was related to
immune microenvironment.

Cancer cells (including BC) exhibit enhanced glycolysis and
diminished mitochondrial oxidative phosphorylation, and this
metabolic shift may be partly attributed to the inhibition of PDC
activity. PDP1 primarily activates PDC by removing phosphate
groups from PDC, thereby influencing cellular metabolism
(Saunier et al., 2016). Alterations in cellular metabolism may
indirectly influence the sensitivity to ferroptosis. In acute myeloid
leukemia (AML), the increase d expression of PDP1 is associated
with metabolic reprogramming following FLT3 inhibition
(Alshamleh et al., 2023). PDP1 facilitates survival in the context
of FLT3 by promoting oxidative phosphorylation (OXPHOS)
metabolism (Alshamleh et al., 2023). This metabolic
reprogramming may indirectly influence the sensitivity of cells to
ferroptosis. Thus, PDP1 may affect the sensitivity of tumor cells to
iron deposition by changing cell metabolism. PDP1 is highly
expressed in a variety of cancers, usually related to bad
prognosis, such as colorectal cancer (Yuan et al., 2024) and BC
(Wang et al., 2024). By dividing BC samples into HPG and LPG, we
identified 15 PDP1-related differential FRGs, among which ACSL1,
BNIP3, and EMC2 were screened to construct the RiskScore model.
The three genes all expressed significantly higher in HPG.
Knockdown experiment validated that silence of PDP1 could
downregulate the expression levels of the three genes.
Interestingly, in BC samples and normal samples, the expression
patterns of these FRGs were not always the same in different datasets
possibly due to the double-edged effect of ferroptosis in BC (Dang
et al., 2022). The expression levels of ACSL vary in different cancer
and subtypes. ACSL1 exhibits elevated expression levels in
hepatocellular carcinoma, BC, ovarian cancer, and colorectal
cancer, while displays low expression in esophageal
adenocarcinoma and renal cell carcinoma (Zhang and Wang,
2023). ACSL1 is linked to poorer prognosis in BC but better
prognosis in lung cancer (Chen et al., 2016). ACSL1 can mediate
ferroptosis caused by conjugated linoleate α-eleostearic acid (αESA),
which is able to inhibit tumorigenesis and metastasis in murine BC
in vitro (Beatty et al., 2021). In our study, BNIP3 expressed
significantly lower in BC compared to normal tissues in three
datasets. BNIP3 protein has been reported to suppress
tumorigenesis in mouse model by overproduction of reactive
oxygen species (ROS) generated by dysfunctional mitochondria

(Chourasia et al., 2015). However, under hypoxic conditions,
BNIP3 expresses higher in BC and activate autophagy, further
activate malignant phenotypes of BC (Zhang et al., 2022). The
relationship of ferroptosis and BNIP3 is linked by hypoxia,
because ferroptosis is a kind of oxidative damage-related cell
death and BNIP3 is gene related to hypoxia (Zheng et al., 2023).
BNIP3 has also been applied in a RiskScore model of
cholangiocarcinoma, expressing significantly lower in
cholangiocarcinoma than normal tissues but higher expression is
related to poorer prognosis (Wang Z. et al., 2022), as in BC. The
collapse of EMC, namely, endoplasmic reticulummembrane protein
complex, has broad implications for various cellular processes, such
as organelle communication and lipid homeostasis which are related
to ferroptosis, and tumors. In BC, increased expression of EMC2
facilitated by non-coding RNAs (ncRNAs) is associated with an
unfavorable prognosis (Liu et al., 2021). EMC2 has been identified as
a predictive gene for esophageal cancer prognosis where higher
expression indicates poorer prognosis as well (Zhu et al., 2021).

RiskScore was found to be related to immune landscape in BC by
all algorithms of ssGSEA, xCell, and Cybersort. RiskScore had a
significant positive correlation with M1 Macrophages which was
probably caused by ACSL1. Exposure to palmitate led to the
development of a foamy and inflammatory phenotype in
macrophages, accompanied by an elevation in ACSL1 expression.
Inhibiting or knocking downACSL1mitigated macrophage foaming
and inflammation triggered by palmitate stimulation, achieved
through the downregulation of FABP4 expression. ACSL1 serves
as a pivotal regulator in the inflammatory response and macrophage
foaming induced by short-term palmitate exposure or acute high-fat
feeding (Al-Rashed et al., 2023). In cell renal cell carcinoma, the
subgroup characterized by elevated ACSL1 expression showed
enrichment in pathways associated with fatty acid metabolism
and demonstrated heightened expression of genes linked to
ferroptosis. Meanwhile, the subgroup with low ACSL1 expression
displayed elevated immune and microenvironment scores (Yang
et al., 2023). In BC, there was a positive correlation between the
expression of BNIP3 and the levels of immune and stromal cells (Yu
et al., 2023). By single-cell analysis of various epithelial cancers, the
predominant expression of BNIP3 occurs in epithelial cells within
the tumor microenvironment, rather than in immune cells (Zhu
et al., 2022). The influence of FRGs on tumor microenvironment is
complicated in various cancers even in the same cancer, and much
more research is required in this area.

Some limitations in this study should be equally noted. Firstly,
this study used retrospective data from public databases, therefore
the prediction model needs to be further verified in large
independent clinical cohort. Secondly, the specific contributions
of ACSL1, BNIP3 and EMC2 to the model need to be investigated
using ablation experiments. Finally, the regulatory mechanisms of
PDP1 on ACSL1, BNIP3 and EMC2 need to be further explored in
vivo and in vitro experiments.

5 Conclusion

To summarize, we validated the expression of PDP1 in BC at
first and found the relationship between ferroptosis and PDP1. Then
we identified 15 PDP1-related differential FRGs and selected three of
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them (ACSL1, BNIP3, and EMC2) by LASSO Cox regression
analysis. A RiskScore model was constructed by the three genes
and it was shown to be able to predict prognosis of BC patients. A
significant relation was detected between the RiskScore and immune
cells. Our risk scoring model can layered breast cancer patients to
help doctors identify patients with poor prognosis, thereby
formulating more active treatment plans for high -risk patients.
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