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Background: Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in
certain regions, with radiotherapy as the standard treatment. However,
resistance to radiotherapy remains a critical challenge, necessitating the
identification of novel biomarkers and therapeutic targets. The tumor-
associated microbiota and metabolites have emerged as potential modulators
of radiotherapy outcomes.

Methods: This study included 22 NPC patients stratified into radiotherapy-
responsive (R, n = 12) and radiotherapy-non-responsive (NR, n = 10) groups.
Tumor tissue and fecal samples were subjected to 16S rRNA sequencing to
profile microbiota composition and targeted metabolomics to quantify short-
chain fatty acids (SCFAs). The XGBoost algorithm was applied to identify microbial
taxa associatedwith radiotherapy response, and quantitative PCR (qPCR)was used to
validate key findings. Statistical analyses were conducted to assess differences in
microbial diversity, relative abundance, and metabolite levels between the groups.

Results: Significant differences in alpha diversity at the species level were
observed between the R and NR groups. Bacteroides acidifaciens was
enriched in the NR group, while Propionibacterium acnes and Clostridium
magna were more abundant in the R group. Machine learning identified
Acidosoma, Propionibacterium acnes, and Clostridium magna as key
predictors of radiotherapy response. Metabolomic profiling revealed elevated
acetate levels in the NR group, implicating its role in tumor growth and immune
evasion. Validation via qPCR confirmed the differential abundance of these
microbial taxa in both tumor tissue and fecal samples.

Discussion: Our findings highlight the interplay between microbiota and
metabolite profiles in influencing radiotherapy outcomes in NPC. These
results suggest that targeting the microbiota-metabolite axis may enhance
radiotherapy efficacy in NPC.
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Introduction

Nasopharyngeal carcinoma (NPC) is a malignancy originating
from the epithelial cells of the nasopharynx, distinguished by its
unique geographic and ethnic distribution, with particularly high
incidences in Southeast Asia and Southern China (Su et al., 2024;
Zhang et al., 2023). Globally, NPC accounts for more than
130,000 new cases and over 80,000 deaths annually, with most
cases occurring in endemic regions such as Guangdong Province in
China (Lei et al., 2024; Yue et al., 2021). Although radiotherapy,
often combined with chemotherapy, remains the cornerstone of
NPC treatment, a significant subset of patients (approximately 20%–
30%) exhibit radiotherapy resistance, resulting in poor clinical
outcomes and highlighting the urgent need for novel predictive
markers and therapeutic targets to enhance treatment efficacy (Liu
et al., 2024; Yip et al., 2024).

Recent evidence has underscored the importance of the tumor
microenvironment (TME) and host-associated microbial
communities in influencing cancer progression and response to
therapy (Kiousi et al., 2023; Saadh et al., 2024). The human
microbiota, notably the gut microbiota, exerts profound effects
on systemic immunity, modulating both innate and adaptive
immune responses and thereby shaping the efficacy of various
cancer treatments, including radiotherapy (Cullin et al., 2021;
Mattiola and Diefenbach, 2023). Dysbiosis—an imbalance in
microbial community composition—has been implicated in
tumorigenesis and therapy resistance, with certain microbial taxa
promoting a more robust antitumor immune response, while others
facilitate an immunosuppressive environment that undermines
therapeutic interventions (Li et al., 2022; Rajasekaran et al., 2024).

In parallel, metabolomics, the comprehensive profiling of small-
molecule metabolites within biological systems, has emerged as a
powerful platform for elucidating the biochemical underpinnings of
cancer progression and treatment response (Schmidt et al., 2021).
Perturbations in key metabolic pathways—encompassing short-
chain fatty acids (SCFAs), amino acid derivatives, and
polyamines—have been closely linked to NPC pathobiology and
radiotherapy outcomes (Lim et al., 2024). SCFAs, such as acetate,
propionate, and butyrate, have been demonstrated to modulate
immune responses and strengthen epithelial integrity, potentially
enhancing radiosensitivity within the tumor milieu (Thapa
et al., 2024).

Technological advances in microbial profiling (e.g., 16S rRNA
gene sequencing) and metabolomic analyses (e.g., targeted and
untargeted LC-MS/MS approaches) have begun to delineate the
complex interplay between microbial ecosystems, metabolic
networks, and the TME in NPC(Hazrati et al., 2022; Mishra
et al., 2021). However, the extraction of meaningful insights from
these large, multidimensional datasets remains challenging. To
address this, machine learning (ML) and other computational
approaches have been increasingly employed to identify
predictive microbial and metabolic signatures associated with
therapeutic response, offering the prospect of more precise
stratification and personalized interventions (Ghannam and
Techtmann, 2021).

In this study, we leveraged integrated microbiota and
metabolomic profiling of tumor tissue and fecal samples derived
from NPC patients stratified into radiotherapy-responsive (R) and

radiotherapy-resistant (NR) cohorts. By applying advanced ML-
based analytics to these complementary datasets, we aimed to
uncover novel biomarkers and metabolic pathways that predict
radiotherapy resistance and to identify putative drug targets for
improving clinical outcomes in NPC.

Methods

Patient recruitment and sample collection

This study aimed to investigate the microbial and metabolomic
characteristics associated with radiotherapy response in
nasopharyngeal carcinoma (NPC) patients. A total of 22 NPC
patients were recruited, including 14 males (63.6%) and
8 females (36.4%), with a median age of 45 years (range: 30–67).
The clinical staging according to the eighth edition of the UICC/
AJCC system included 2 patients (9.1%) with stage I, 5 (22.7%) with
stage II, 10 (45.5%) with stage III, and 5 (22.7%) with stage IV.
Tumor tissue and fecal samples were collected prior to the initiation
of radiotherapy. Based on treatment efficacy evaluated by
radiological and clinical assessments, patients were classified into
radiotherapy-responsive (R, n = 12) and radiotherapy-non-
responsive (NR, n = 10) groups (Supplementary Table S1). The
study was conducted in accordance with the Declaration of Helsinki
and approved by the Xi’an Jiaotong University Ethics Committee.
Written informed consent was obtained from all participants.
Tumor tissue biopsies were obtained during routine diagnostic
procedures, and fecal samples were collected using sterile fecal
collection kits (Thermo Fisher Scientific, Waltham, MA,
United States). All samples were immediately snap-frozen in
liquid nitrogen and stored at −80°C until analysis.

DNA extraction and 16S rRNA gene
sequencing

For DNA extraction, approximately 200 mg of tumor tissue or
fecal matter was processed using the QIAamp DNA Mini Kit
(Qiagen, Hilden, Germany) following the manufacturer’s
protocol. Lysis was enhanced with proteinase K (Qiagen) at 56°C
for 30 min, followed by spin-column purification. DNA purity and
concentration were measured using a NanoDrop spectrophotometer
(Thermo Fisher Scientific) and quantified with a Qubit
4 fluorometer (Thermo Fisher Scientific). Extracted DNA was
stored at −20°C until downstream analysis.

Microbial profiling was performed via 16S rRNA gene sequencing
targeting the V3-V4 hypervariable regions. Amplification was
conducted using primers 338F (5′-ACTCCTACGGGAGGCAGC
AG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′).
Polymerase chain reaction (PCR) was carried out in 25 μL reactions
containing 12.5 μL of 2× KAPAHiFi HotStart ReadyMix (Roche, Basel,
Switzerland), 0.2 μM of each primer, and 10 ng of template DNA.
Thermal cycling conditions were as follows: initial denaturation at 95°C
for 3 min, followed by 25 cycles of denaturation at 95°C for 30 s,
annealing at 55°C for 30 s, and extension at 72°C for 30 s, with a final
elongation at 72°C for 5 min. Amplicons were purified using AMPure
XP beads (Beckman Coulter, Brea, CA, United States) and sequenced
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on an Illumina MiSeq platform (Illumina, San Diego, CA, United
States) with 2 × 250 bp paired end reads. Sequencing data were
processed using QIIME2 (v2021.4), and operational taxonomic units
(OTUs) were clustered at 97% similarity against the SILVA database
(release 138).

Metabolomic profiling

Targeted metabolomic profiling of short-chain fatty acids
(SCFAs) was conducted using gas chromatography-mass
spectrometry (GC-MS). Tumor tissues and fecal samples
(~100 mg) were homogenized in 1 mL of ice-cold methanol
(HPLC-grade, Merck, Darmstadt, Germany) containing 10 μM of
internal standard (2-ethylbutyric acid, Sigma-Aldrich, St. Louis,
MO, United States). Samples were centrifuged at 14,000 × g for
10 min at 4°C, and the supernatants were derivatized with N,O-
bis(trimethylsilyl)trifluoroacetamide (BSTFA, Sigma-Aldrich).
Derivatized samples were injected into an Agilent 7890 GC
system coupled to a 5977B MS detector (Agilent Technologies,
Santa Clara, CA, United States) using an HP-5MS column
(30 m × 0.25 mm × 0.25 μm). Quantification was performed
based on calibration curves generated from SCFA standards
(Sigma-Aldrich), and results were normalized to sample weight.

Machine learning analysis

Machine learning analysis was employed to identify microbial
taxa associated with radiotherapy response. The XGBoost algorithm
was selected due to its ability to handle small to moderate-sized
datasets effectively, manage missing values, and provide
interpretable feature importance rankings, making it particularly
suitable for the objectives of this study. The implementation was
performed using the “xgboost” package in R (v4.1.0). Genus- and
species-level relative abundance data were input into the model. To
optimize the model’s performance, hyperparameters such as
learning rate (0.1), maximum tree depth (6), and the number of
trees (500) were fine-tuned using a grid search approach with five-
fold cross-validation. The feature importance scores, calculated
based on the contribution of each feature to reducing the model’s
error, were used to rank microbial taxa according to their predictive
power. The top three taxa at each taxonomic level were selected for
further validation. Additionally, model evaluation metrics, including
accuracy, precision, and area under the receiver operating
characteristic (ROC) curve, were reported to ensure the
robustness of the model.

Quantitative PCR validation

Quantitative PCR (qPCR) validation was performed for the top
microbial taxa identified by XGBoost. Primers were designed using
Primer-BLAST (NCBI) to target Bacteroides acidifaciens,
Propionibacterium acnes, and Clostridium magna (sequences and
primers listed in Supplementary Table S2). qPCR reactions were
conducted in 20 μL volumes containing 10 μL of SYBR Green PCR
Master Mix (Applied Biosystems, Foster City, CA, United States),

0.4 μM of each primer, and 20 ng of template DNA. Reactions were
run on a QuantStudio 5 Real-Time PCR System (Applied
Biosystems) under standard cycling conditions. Relative
abundance was determined using the ΔΔCt method and
normalized to the universal 16S rRNA gene.

Statistical analysis

Statistical analyses were performed using R software (v4.1.0).
Differences in microbial diversity indices, relative abundance, and
metabolite concentrations between the R and NR groups were
assessed using the Wilcoxon rank-sum test. Adjustments for
multiple comparisons were made using the Benjamini–Hochberg
procedure, with a significance threshold set at an adjusted
p-value of <0.05.

Results

Microbiota profiling of tumor tissues reveals
differences in alpha diversity and relative
abundance between radiotherapy
response groups

To investigate the role of tumor-associated microbiota in
radiotherapy outcomes, we performed 16S rRNA sequencing on
tumor tissues collected from 22 NPC patients prior to treatment.
Patients were stratified into radiotherapy-responsive (R) and
radiotherapy-non-responsive (NR) groups based on post-
treatment efficacy. Alpha diversity analysis at the phylum level
showed no significant differences between the two groups
(Figure 1A). Similarly, overall relative abundance at the
phylum level did not differ significantly between R and NR
patients (Figure 1B). However, a closer examination of specific
phyla revealed that Firmicutes and Bacteroidetes were the
dominant taxa in both groups, with slight variations in their
proportions (Figure 1C). At the genus level, relative abundance
analysis showed no significant differences in the microbial
composition between the R and NR groups (Figures 2A,B). At
the genus level, relative abundance analysis showed a consistent
microbial composition between the R and NR groups. Genera
such as Alloprevotella, Fusobacterium, and Prevotella were among
the most prominent taxa in both groups, with slight variations in
their relative proportions (Figure 2C). These genera were
dominant contributors to the overall microbiota composition,
but no significant differences in abundance were observed
between the two groups. At the species level, differences in
alpha diversity and relative abundance were observed between
the R and NR groups. Alpha diversity, measured by the Shannon
index, was significantly higher in the R group compared to the
NR group (Figure 3A). However, richness, as indicated by OTU
counts, did not differ significantly between the two groups
(Figure 3B). Relative abundance analysis revealed notable
differences in species composition, with taxa such as
Bacteroides acidifaciens and Anaerobius showing higher
abundance in the R group, while Clostridium magna was
enriched in the NR group (Figure 3C).
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Identification of key microbial taxa
associated with radiotherapy response
using XGBoost

To pinpoint microbial taxa with the highest discriminatory power
between the R and NR groups, we applied the XGBoost algorithm to

genus- and species-level data. At the genus level, Acidosoma,
Peptoniphilus, and Microbacterium were identified as the top three
contributors to the classification model, with significant feature
importance scores (Figure 4A). At the species level, Propionibacterium
acnes, Clostridium magna, and Bacteroides acidifaciens emerged as the
top three key discriminators between the two groups (Figure 4B).

FIGURE 1
Microbial diversity and relative abundance at the phylum level. (A) Alpha diversity (Shannon index) at the phylum level showed no significant
differences between the R and NR groups. (B) Relative abundance analysis at the phylum level revealed no significant differences between the two
groups. (C) Proportions of dominant phyla, including Firmicutes and Bacteroidetes, in the R and NR groups.
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Differential abundance of key microbial taxa
in tumor tissues and fecal samples

We further examined the relative abundance of the top three
microbial taxa identified by XGBoost in the R and NR groups. At the
genus level, Acidosoma, Peptoniphilus, and Microbacterium were
significantly more abundant in the R group compared to the NR
group, as shown in Figures 5A–C. At the species level, Bacteroides
acidifaciens, Propionibacterium acnes, and Clostridium magna
exhibited distinct abundance patterns between the two groups.
Specifically, Bacteroides acidifaciens was enriched in the NR
group (Figure 5D), while Propionibacterium acnes and
Clostridium magna were more abundant in the R group (Figures
5E,F). To validate these findings, we performed quantitative PCR

(qPCR) on fecal samples from the same patients, focusing on the
three species of interest. The results confirmed the differential
abundance of these taxa, with Bacteroides acidifaciens showing
higher levels in fecal samples from the NR group, whereas
Propionibacterium acnes and Clostridium magna exhibited
elevated levels in the R group (Figures 6A–C).

Short-chain fatty acid profiling highlights
acetate as a differential metabolite

Targeted metabolomic profiling was conducted to assess the
levels of common short-chain fatty acids (SCFAs) in tumor tissue
and fecal samples. Among the SCFAs analyzed, acetate levels

FIGURE 2
Microbial composition at the genus level. (A, B) Alpha diversity and richness at the genus level showed no significant differences between the R and
NR groups. (C) Relative abundance at the genus level showing consistent microbial composition between the two groups, with prominent genera
including Alloprevotella, Fusobacterium, and Prevotella.
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were significantly higher in the NR group compared to the R
group in both tissue (Figure 7A) and fecal samples (Figure 7B). In
contrast, propionate and butyrate levels did not show consistent
significant differences between the groups, with minor variations

observed in tissue (Figures 7C,E) and fecal samples (Figures
7D,F). These findings highlight acetate as a potential
metabolic marker linked to microbiota-mediated radiotherapy
resistance in NPC patients.

FIGURE 3
Microbial diversity and composition at the species level. (A) Alpha diversity (Shannon index) at the species level was significantly higher in the R group
compared to the NR group. (B) Richness (OTU counts) showed no significant differences between the groups. (C) Relative abundance at the species level
revealed taxa such as Bacteroides acidifaciens and Anaerobius were enriched in the R group, while Clostridium magna was more abundant in the
NR group.
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Discussion

This study provides a comprehensive analysis of the microbial
and metabolomic landscapes associated with radiotherapy response
in nasopharyngeal carcinoma (NPC) patients. By integrating 16S
rRNA sequencing, targeted metabolomics, and machine learning
approaches, we identified key microbial and metabolic markers
linked to radiotherapy outcomes, shedding light on potential
mechanisms underlying treatment resistance and responsiveness.
The integration of these methods underscores the importance of
interdisciplinary approaches in uncovering actionable biomarkers
and potential therapeutic targets for clinical application.

The significant differences in alpha diversity at the species level
between radiotherapy-responsive (R) and radiotherapy-non-
responsive (NR) groups underscore the importance of microbial
diversity in modulating radiotherapy efficacy. Previous studies have
highlighted the role of the microbiota in influencing tumor
microenvironment and systemic immune responses, which are
critical for the success of radiotherapy (Ge et al., 2021; Marcos-
Zambrano et al., 2021). Specifically, the enrichment of Bacteroides
acidifaciens in the NR group suggests its potential involvement in
creating an immunosuppressive environment (Ma et al., 2023). This
bacterium has been reported to produce metabolites that can
suppress T-cell activation and reduce pro-inflammatory cytokine
secretion, thereby diminishing the immune response necessary for
effective tumor control (Li et al., 2021). On the other hand, taxa such
as Propionibacterium acnes and Clostridiummagna, enriched in the
R group, may contribute to a more favorable tumor
microenvironment through mechanisms such as stimulation of
antigen-presenting cells and modulation of regulatory T-cell
populations (Legiawati et al., 2023). This highlights the dual role
of the microbiota in either promoting or impeding tumor control,
further emphasizing the need for targeted therapeutic strategies.

The application of the XGBoost machine learning algorithm
allowed us to pinpoint taxa with the greatest discriminatory power
between the R and NR groups (Wang et al., 2022). XGBoost was
chosen over other algorithms such as Random Forest or Neural

Networks due to its ability to handle small to moderate datasets
efficiently and provide interpretable feature importance rankings.
This rationale strengthens the methodological choices made in this
study. This approach not only validated previously reported
microbial associations but also uncovered novel taxa with
potential roles in radiotherapy response. Notably, the genus
Acidosoma and species such as Propionibacterium acnes emerged
as significant predictors, emphasizing the value of machine learning
in biomarker discovery (Lee et al., 2019). These findings highlight
the necessity of integrating traditional microbiological methods with
advanced computational tools to gain deeper insights into complex
host-microbe interactions in cancer.

Metabolomic profiling further supported the microbiota
findings by revealing differential levels of short-chain fatty acids
(SCFAs) between the R and NR groups. Acetate, significantly
enriched in the NR group across both tumor tissue and fecal
samples, is known to influence tumor biology. Acetate can act as
a key metabolic substrate for tumor cells, promoting histone
acetylation and enhancing tumor proliferation under hypoxic
conditions (Mashimo et al., 2014). Additionally, elevated acetate
levels have been linked to immune evasion by promoting an
immunosuppressive microenvironment via increased regulatory
T-cell activity (Miller et al., 2023). Conversely, the lack of
significant differences in propionate and butyrate levels suggests
a more targeted role for acetate in mediating radiotherapy resistance
in NPC. These findings raise important questions about the
therapeutic implications of targeting acetate directly versus
addressing its microbial producers, such as Bacteroides
acidifaciens. Future research could explore the feasibility and
effectiveness of these distinct strategies. These observations
highlight acetate as a promising metabolic biomarker and
potential therapeutic target in radiotherapy-resistant NPC.

The validation of key microbial taxa using qPCR confirmed the
robustness of our sequencing and machine learning results. The
consistent differential abundance of Bacteroides acidifaciens,
Propionibacterium acnes, and Clostridium magna across tumor
tissue and fecal samples highlights their potential as biomarkers

FIGURE 4
Key microbial taxa identified using XGBoost. (A) Top 20 important genus features with Acidosoma, Peptoniphilus, andMicrobacterium identified as
the top contributors. (B) Top 20 important species features with Propionibacterium acnes, Clostridium magna, and Bacteroides acidifaciens as the most
discriminative taxa.
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for predicting radiotherapy response. The dual presence of these
taxa in both tumor and fecal microbiota suggests a systemic
interplay between local and distal microbial communities, which
may influence radiotherapy outcomes. This interplay aligns with
emerging evidence suggesting that gut microbiota can modulate
systemic anti-tumor immunity, thereby impacting the efficacy of
radiotherapy.

Despite the strengths of this study, several limitations must be
acknowledged. First, the relatively small sample size may limit the
generalizability of our findings. Future studies with larger cohorts
are needed to validate these results and explore additional microbial
and metabolic markers. Second, the cross-sectional nature of the
study precludes causal inferences regarding the role of specific taxa
or metabolites in radiotherapy response. Longitudinal studies

tracking microbial and metabolic dynamics throughout
radiotherapy are necessary to establish causality. Moreover, while
the connection between Bacteroides acidifaciens and acetate is
compelling, further studies are required to dissect their specific
mechanistic roles and to evaluate their translational potential as
therapeutic targets. Lastly, the functional implications of the
identified microbial and metabolic markers remain speculative.
Integrative approaches combining metagenomics, transcriptomics,
and metabolomics will be crucial for elucidating the underlying
mechanisms.

In conclusion, our findings underscore the critical role of the
microbiota and its metabolites in shaping radiotherapy outcomes in
NPC. The identification of key microbial and metabolic markers not
only advances our understanding of radiotherapy resistance but also

FIGURE 5
Relative abundance of key microbial taxa in tumor tissues. (A–C) Genus-level analysis of Acidosoma, Peptoniphilus, and Microbacterium, showing
higher abundance in the R group. (D–F) Species-level analysis ofBacteroides acidifaciens, Propionibacterium acnes, andClostridiummagna, with distinct
abundance patterns between the R and NR groups.
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paves the way for the development of microbiota-targeted therapies
to enhance treatment efficacy. By integrating multi-omics
approaches and exploring both microbial and metabolic
interventions, these insights hold promise for translating
precision medicine into clinical practice.

Data availability statement

The original contributions presented in the study are
publicly available. This data can be found here: https://ngdc.
cncb.ac.cn/gsa-human/browse/HRA010448.

FIGURE 6
Validation of microbial taxa in fecal samples using qPCR. (A) Higher levels of Bacteroides acidifaciens in the NR group. (B, C) Elevated levels of
Propionibacterium acnes and Clostridium magna in the R group.

FIGURE 7
Short-chain fatty acid profiling in tumor tissue and fecal samples. (A, B) Acetate levels were significantly higher in the NR group in both tissue and
fecal samples. (C, D) Propionate levels showed no significant differences between the groups. (E, F) Butyrate levels displayed minor variations without
consistent differences between the R and NR groups.
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