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Background: Ancient classic and famous prescriptions (ACFPs), derived from
traditional Chinese medicine (TCM) classics, are widely utilized due to their
precise therapeutic effects and distinctive clinical advantages. Existing
research predominantly focuses on individual prescriptions, and there is lack
of systematic exploration ofmedication patterns within the official ACFPs catalog.
The property of Chinese materia medica (PCMM), a multidimensional
representation of medicinal properties, offers a novel perspective for
systematically analyzing TCM formulas.

Objective: In this study, we aim to investigate the implicit medication patterns of
ACFPs from the PCMMperspective, establish a feature extractionmodel based on
the property combination of Chinese materia medica (PCCMM), and evaluate its
effectiveness in representing and reconstructing ACFPs.

Methods: Based on the Chinese Pharmacopoeia (ChP), we constructed a
CMM–PCCMM network as the forward feature extraction process. We
formulated the backward process as a constrained combinatorial optimization
problem to rebuild ACFPs from their PCCMMs. We evaluated the performance of
PCCMM in reconstructing ACFPs using the Jaccard similarity coefficient.
Furthermore, we tested the capability of PCCMM to distinguish ACFPs from
random pseudo-formulas and classify ACFPs according to deficiency syndromes.
Finally, we conducted frequency analysis, association rule analysis, distance
analysis, and correlation analysis to explore the implicit medication patterns of
ACFPs based on PCCMM.

Results: Numerical experiments showed that PCCMM effectively represented
and reconstructed ACFPs, achieving an average Jaccard similarity coefficient
above 0.8. PCCMM outperformed the nomenclature of CMM in distinguishing
ACFPs from random pseudo-formulas and classifying deficiency syndromes.
Frequency analysis revealed that high-frequency CMMs were mainly tonic
medicines, whereas high-frequency PCCMMs predominantly mapped to the
even–sweet–spleen meridian. The association rule analysis based on PCCMM
yielded significantly more implicit compatibility rules than CMM alone. Distance
and correlation analyses identified synergistic CMM pairs and PCCMM pairs, such
as Jujubae Fructus (Dazao) and Zingiberis Rhizoma Recens (Shengjiang), which is
consistent with clinical experience.
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Conclusion: The PCCMM-based feature extraction model provides a quasi-
equivalent representation of TCM formulas, effectively capturing implicit
medication patterns within ACFPs. PCCMM outperforms traditional CMM
methods in formula reconstruction, classification, and medication pattern
mining. This study offers novel insights and methodologies for systematically
understanding TCM formulas, guiding clinical application, and facilitating the
design and optimization of new TCM formulas.
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1 Introduction

The ancient classic and famous prescriptions (ACFPs), derived
from the ancient traditional Chinese medicine (TCM) books, are
widely utilized TCM formulas known for their precise curative
effects, distinctive features, and notable advantages (Qian et al.,
2019). The research, development, and utilization of ACFPs are vital
sources for R&D of new drugs in TCM (Xue-Mei et al., 2019). As one
of the breakthroughs in the inheritance and development of TCM,
the research of ACFPs has been a hotspot in recent years (Su et al.,
2024) after the National Administration of Traditional Chinese
Medicine and the National Medical Products Administration
published the catalog of ACFPs in 2018 (first batch) and 2023
(second batch). Some scholars systematically explored the historical
evolution (Bing et al., 2019) of the formulas from the source,
composition, dosage, processing, clinical application, function
interpretation, and decocting method by comprehensive collation
of ancient and modern literature on ACFPs (Li S. et al., 2022). Some
scholars researched chemical profiling and quantification of the
ACFPs to provide a solid basis for quality control and mechanisms
(Zhou et al., 2023). Some studies examined the active components
(Wang S. et al., 2021), efficacy (Xiao et al., 2022), and
pharmaceutical mechanism (Xia et al., 2023) underlying the
effects of ACFPs on some particular diseases using network
pharmacology analysis and molecular docking in combination
with experimental validation. On this foundation, some studies
have found the unexplored therapeutic effects and mechanisms
of a particular ACFP (Hao et al., 2022). However, most current
studies on ACFPs focus on a specific prescription, and there is still a
gap in the systematic regularity study of the catalog of ACFPs issued
by the Chinese government.

It is conducive to providing references for evaluating TCM
formulas or designing new formulas through the systematic study
of the formation and medication patterns of the ACFPs to explore the
scientific connotations of the formulas implied by their broad
application, safety, and efficacy. To find the medication patterns in
the formulas, some studies tried to explore the scientific connotations
of the TCM formulas by data mining, such as frequency analysis
(Yang et al., 2021), cluster analysis (Guo et al., 2022), and association

rule analysis (Liu et al., 2023). Wu and Guo (2025) offered the
potential for uncovering commonalities through the analysis of
2,344 prescriptions for pox treatment, and Xue et al. (2024) have
employed data mining methods to analyze the medication patterns in
the treatment of vascular dementia. However, these studies often focus
on the medication patterns of a specific disease. Machine learning and
deep learning techniques, such as support vectormachines (SVM) (Jin
et al., 2020) and graph convolutional networks (GCN) (Zhao et al.,
2022), have been widely applied in the design of new TCM formulas,
without being restricted to specific diseases. However, these studies
often treat medication patterns as black boxes and rely on large-scale
datasets (Li D. et al., 2022). Due to the wide variety of names and types
of Chinese materia medica (CMMs), we often get a poor reproduction
rate of elements in data mining in a limited-scale and nonspecific
disease dataset. The sparsity of the signals makes it difficult to dig out
the medication patterns of TCM formulas or generate a new TCM
formula based on a small sample dataset of known TCM formulas.
Feature extraction can transform raw data into meaningful
information, facilitating enhanced data reuse through a
standardized process (Lamer et al., 2022). For example, Miao et al.
(2023) employed an improved ConvNeXt network to extract features
for constructing a TCM identification model. Gong et al. (2023)
integrated feature extraction with a multi-label deep forest model,
which achieves efficient processing of syndrome differentiation in
TCM. Therefore, a more efficient representation of TCM formulas
than CMMs is needed to enhance the mining of medication patterns,
subject to the low repetition rate of CMMs in small TCM
formula datasets.

According to the property theory of CMM (PTCMM), the
property of CMM (PCMM) is a multi-dimensional systematic
representation of the basic properties and characteristics of the
CMM’s efficacy (Qiao et al., 2022). Considering the
standardization and authority of the Chinese Pharmacopoeia
(ChP), the research studies about database construction and data
mining related to the PCMM are predominantly based on the data
extracted from the ChP, such as ETCM (Zhang et al., 2023a) and
FordNet (Zhou et al., 2021). The core components of the PCMM
include five herb properties (cold, warm, even, cool, and hot), seven
herb flavors (bitter, pungent, sweet, sour, astringent, salty, and
bland), and 12 herb meridian tropism (liver meridian, lung
meridian, spleen meridian, stomach meridian, kidney meridian,
heart meridian, large intestine meridian, small intestine meridian,
Sanjiao meridian, bladder meridian, pericardium meridian, and
gallbladder meridian) (Zhang et al., 2023b). Some research
workers have considered the PCMM as a multidimensional

Abbreviations: ACFP, ancient classic and famous prescription; ChP, Chinese
Pharmacopoeia; CMM, Chinese medicinal material; PCMM, property of CMM;
PCCMM, property combination of CMM; TCM, traditional Chinese medicine;
t-SNE, t-distributed stochastic neighbor embedding.
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systematic feature of the CMM (Qiao et al., 2022; Zhang et al.,
2023b), but the feature extraction process from ACFPs to PCMM
remains unclear. Based on these core components of PCMM, our lab
has proposed a systematic view of PCMMs called the property
combinations of CMM (PCCMM) (Hu et al., 2016) by coupling the
elements from these three sets, which provides new ideas for the
representation of CMMs in the TCM formulas.

In this study, we have introduced a novel, relatively low-
dimensional representation of TCM formulas by feature
extraction and employed this approach to analyze the implicit
medication patterns of ACFPs. Figure 1 shows the flow diagram
of the work. This study commences with the construction of a
CMM–PCCMM network and PCCMM matrix as the forward
feature extraction process. As for the backward process, utilizing
the framework of compressive sensing, we introduce the
combinatorial optimization problem and develop a combinatorial
formula model based on PCCMM.With the ACFPs serving as a test
set, we proceed to rebuild the ACFPs from the PCCMM. The
performance of PCCMM in measuring the composition of TCM
formulas is then evaluated based on its reconstruction capabilities.
To further investigate the quasi-linear measurement capabilities of
PCCMM for TCM formulas, we also test its proficiency in separating
ACFPs from random pseudo-formulas and its ability to distinguish
the deficiency syndromes associated with the ACFPs. Building upon
this foundation, we conducted frequency, association rule, distance,
and correlation analyses on ACFPs using PCCMM to uncover the
underlying medication patterns.

2 Materials and methods

2.1 Data sources and preprocessing

2.1.1 The CMM and PCCMM information
The CMM and PCMM information in this study was derived

from the current ChP 2020 edition (volume I) (Chinese
Pharmacopoeia Commission, 2020). As introduced in Section 1,
a PCCMM is a triplet following the “property–flavor–meridian
tropism” rule, where the three coupled labels are selected as
representatives of PCMMs. For simplicity, throughout the rest of
the paper, we will use the term “PCMM” to refer exclusively to these
three labels: property, flavor, and meridian tropism. To begin with,
we define the PCCMM set of a CMM as the collection of PCCMMs
that includes all possible “property–flavor–meridian tropism”

triplets subject to the PCMM of the CMM. For example, the
property of Ephedra sinica Stapf (Mahuang) (Zheng et al., 2023)
is warm, the flavor is bitter and pungent, and the meridian tropism is
the lung meridian and bladder meridian based on ChP. Thus, there
are four corresponding PCCMMs, namely, warm–bitter–lung
meridian, warm–bitter–bladder meridian, warm–pungent–lung
meridian, and warm–pungent–bladder meridian, which together
form the PCCMM set of the CMM, Ephedra sinica Stapf. In general,
if the PCMM of a CMM includes n1 properties, n2 flavors, and n3
meridian tropisms, the resulting PCCMM set consists of a total of
n1 p n2 p n3 triplets. We denote the space of CMMs and PCCMMs as
I � {a1, a2, . . . , aN} and J � {b1, b2, . . . , bm}, respectively. Here, each

FIGURE 1
Flow diagram illustrating the process: the left side depicts the preprocessing of CMM and PCCMM data and the construction of the PCCMMmatrix,
which defines the combinatorial formula model in the center. The right side shows a series of numerical experiments conducted on the ACFP dataset.
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ai corresponds to a CMM listed in ChP with complete
“property–flavor–meridian tropism” PCMM information. We
found a total of 604 CMMs that satisfy the condition, that is, N �
604 (Supplementary Table S1).

In practice, based on the dataset involved, one can specify the
scope of CMM and the size of N for efficient computation. We will
return to this issue in Section 2.2.4. Each bi is a triplet that resembles
a possible PCCMM. Theoretically, as there are five herb properties,
seven herb flavors, and 12 herb meridian tropisms, we can form
5 × 7 × 12 � 420 different triplets. However, only 254 PCCMMs are
observed from the CMM dataset based on ChP, and we fixed m �
254 throughout the paper (Supplementary Table S2).

We also conducted observational tests using data from the
2015 edition of the ChP. Compared to the 2020 edition, the
2015 edition includes three additional CMMs with complete
“property–flavor–meridian tropism,” that is, PCMM, information:
Aristolochiae Fructus (Madouling), Manis Squama (Chuanshanjia),
and Aristolochiae Herba (Tianxianteng). As a result, the total
number of CMMs with complete PCMM records in the
2015 edition amounts to 607 (see Supplementary Table S10),
covering a total of 254 PCCMMs, which is the same as the
2020 edition. Upon a detailed comparison, we observed that the
fields “property–flavor–meridian tropism” for the shared
604 CMMs recorded in the 2015 and 2020 editions are identical.
This consistency ensures that the core PCMM information remains
stable across the two editions, providing a reliable foundation for
further computational and experimental studies.

2.1.2 Incompatible CMM pairs
Revealing the connotation of the compatibility of CMM is a

requirement for the modernization of TCM (Gao et al., 2023), so we
need to avoid contraindications of the CMMs in the candidate
formula; for example, the “eighteen incompatible medicaments”
theory in TCM (Chen et al., 2019). In particular, according to the
“Zhong Yao Pei Wu Jin Ji” (Duan, 2019), we extracted
89 incompatible CMM pairs (Supplementary Table S3), which
will not appear simultaneously in the subsequent model calculations.

2.1.3 The ACFP dataset
We extracted 93 and 85 prescriptions from the two batches of

ACFP catalogs (Supplementary Tables S4, S5), respectively,
published by the National Administration of Traditional Chinese
Medicine and the National Medical Products Administration such
that the CMMs involved are within the CMM space. Table 1
provides detailed information about the selected prescriptions.

Notice that a TCM formula, qualitatively, is a collection of
CMMs. Thus, one can extend the concept of PCCMM sets to TCM

formulas and even general CMM combinations by combining all the
PCCMM sets of the involved CMMs. Thus, we obtain a map from
ACFPs to their PCCMM sets.

2.2 Feature extraction of the ACFPs based
on PCCMM

2.2.1 The framework of compressive sensing
In this section, we review some fundamental concepts of

compressive sensing to mathematically interpret the PCCMM
matrix and combinatorial formula model introduced in Section
2.2.2 and Section 2.2.3. Although the compressive sensing
framework offers mathematical foundations for the
CMM–PCCMM network and the combinatorial formula model
to be introduced in Section 2.2.2 and Section 2.2.3, these models
are primarily driven by the feature extraction process fromACFPs to
PCMM, with all variables holding clear pharmacological
significance.

The development of compressive sensing theory started from the
initial work by Emmanuel J. Candès, Justin Romberg, and Terence
Tao (Candes et al., 2006) along with David Donoho’s study
(Donoho, 2006). The success of compressive sensing depends on
the sparsity or compressibility of the signal, either in its natural state
or over a known basis. As a result, one can recover the essential
information within few measurements of the observation by solving
an underdetermined linear system of equations. For the
mathematical theory and applications of compressive sensing,
refer to the studies by Foucart and Rauhut (2013) and Rani et al.
(2018), respectively.

In the compressive problem, the observed data y ∈ Rm are
connected to the signal of interest x ∈ RN via

y � Ax, A ∈ Rm×N, (1)
where the matrix A models the linear measurement process. We
assume m<N; that is, the linear system in Equation 1 is
underdetermined, which means there is no unique solution of x
given a measurement y. In other words, it is impossible to recover x
from y without additional information. The key saver is the sparsity
assumption of x. In particular, the vector x is s-sparse if at most s of
its entries are nonzero, that is,

‖x‖0 ≔ card supp x( )( )≤ s,

where card denotes the cardinality and supp(x), called the support
of vector x, is the index set of all nonzero entries of x. The sparse
recovery problem corresponds to the following
ℓ0-optimization problem:

TABLE 1 Number of prescriptions, CMMs, and PCCMMs of the two ACFP datasets. Repeated occurrences of CMMs or PCCMMs are not counted in the
“unique” columns.

Total Selected CMMs involved PCCMMs involved

Catalog Prescriptions Prescriptions Unique Sum Unique Sum

First batch 103 93 155 655 156 2,985

Second batch 93 85 136 511 158 2,243

Summary 196 178 196 1,166 176 4,026
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min ‖z‖0, subject toAz � y. (2)
As solving Equation (2) is NP-hard in general, in practice, we

consider the convex relaxation of Equation 2 given by

min ‖z‖1, subject toAz � y, (3)
where ‖ · ‖1 is the sum of the entries’ absolute value. In Equation 3,
we treat the linear process in Equation 1 as hard constraints; this
differs from the regression problems such as LASSO. The conditions
on the matrix A that ensure the exact reconstruction of the original
sparse vector x from the solution of Equation 3 are known as the null
space property condition (Foucart and Rauhut, 2013).

2.2.2 Building the CMM–PCCMM network and the
PCCMM matrix

In this section, based on the compressive sensing framework
reviewed in Section 2.2.1, we will formulate the PCCMMmatrix and
the measurement process that maps formula vectors to PCCMM set
vectors, that is, the forward propagation in the
CMM–PCCMM network.

As subsets of I and J, the TCM formulas and PCCMM sets are
encoded as 0–1 vectors, which are denoted as x ∈ {0, 1}N (the
formula vector) and y ∈ {0, 1}m (the PCCMM set vector),
respectively. Notably, any CMM combination, as a subset of I,
can be encoded as 0–1 vectors in {0, 1}N, but, in general, it does not
necessarily form a TCM formula due to the lack of pharmacological
significance. We will return to this issue in Section 2.3.1. The sparse
feature of the formula vector is straightforward. In particular,
supp(x) provides the indices of all the CMMs in space I that
build the formula. For example, if a TCM formula has five
different CMMs in I, the corresponding formula vector x is 5-
sparse, that is, ‖x‖0 � ‖x‖1 � 5. To model the map from the formula
vectors to PCCMM set vectors, we define the following
PCCMM matrix.

Definition 1: (PCCMM matrix) Let I � {a1, a2, . . . , aN} and J �
{b1, b2, . . . , bm} be the space of CMMs and PCCMMs, respectively.
The PCCMM matrix P is a Boolean matrix of the form

P � p1, p2, . . . , pN[ ] ∈ 0, 1{ }m×N,

where pi ∈ {0, 1}m, as a column vector of the matrix P, is the
PCCMM set vector corresponding to the CMM ai in I, and i �
1, 2 . . . , N.

Notably, the order of CMMs and PCCMMs in the set I and J
does not affect the CMM–PCCMM networks. In terms of the
PCCMM matrix P, according to definition 1, rearranging the
elements in I or J leads to column or row permutations of the
PCCMMmatrix, respectively. In other words, the PCCMMmatrix P
is unique up to permutations.

With the PCCMM matrix P, we can model the map from the
formula vectors to PCCMM set vectors as a quasi-linear
measurement process,

y � min Px, 1{ }, x ∈ 0, 1{ }N, (4)
where min {·, 1} is defined based on the entries. Like the HPE-GCN
model (Liu et al., 2022), we measure the PCCMMs of a TCM
formula in Equation 4 as the union of the PCCMMs of all

CMMs within the formula. In other words, Equation 4 defines a
qualitative PCCMM measurement that ignores the complex
interactions between different CMMs. Such simplification
allows us to focus on the significance of PCCMM as a
representation of the TCM formula’s medication pattern from
the perspective of feature extraction. We will return to the issue
in Section 4.

Given a formula vector x, Px counts the number of times each
PCCMM appears among the CMMs in the formula, and the “min”
operation in Equation 4 disregards the possible multiple
appearances of PCCMMs. As a result, y in Equation 4 is less
informative than the linear measurement.

yw � Px, x ∈ 0, 1{ }N. (5)

As yw counts the multiplicities of PCCMM, we call yw the
weighted PCCMM set vector. By interpreting y and yw as observed
data associated with a TCM formula, we will consider the sparse
recovery problem introduced in Section 2.2.1. In Section 2.2.3, we
will formulate the sparse recovery problem into combinatorial
optimization problems and study the capabilities of the two
measurements in recovering formula vectors.

To facilitate understanding, we use Mahuang Decoction (ACFP-
1-4, see Supplementary Table S4 for the details) as an example. The
formula contains four CMMs: Ephedrae Herba (Mahuang, CMM-
307), Cinnamomi Ramulus (Guizhi, CMM-173), Glycyrrhizae Radix
et Rhizoma (Gancao, CMM-144), and Armeniacae Semen Amarum
(Kuxingren, CMM-269). Thus, the corresponding formula vector x
is a 0–1 vector that satisfies

supp x( ) � 144, 173, 269, 307{ }.
Following Equation 4 and Equation 5, we compute the PCCMM

set vectors, y, and weighted PCCMM set vectors, yw, of Mahuang
Decoction, respectively. According to their definitions, the two
vectors share the same support. In particular, we have

supp y( ) � supp yw( ) � 1, 51, 52, 62, 65, 74, 76, 86, 112, 113, 124, 139, 141{ },

which uniquely determines the 0–1 vector y. Whereas yw counts the
multiplicities of the PCCMM appearance, we have PCCMM-51
appearing twice (CMM-307 and CMM-269), PCCMM-52
appearing twice (CMM-307 and CMM-173), and PCCMM-74
appearing twice (CMM-307 and CMM-173). Thus, the 51st,
52nd, and 74th components of yw are 2, rather than 1 at the
corresponding position in y. The example illustrates that the
weighted PCCMM set vectors usually contain more information
than the unweighted ones. Table 2 summarizes the mathematical
notations introduced in this section, which we will consistently use
throughout the paper.

TABLE 2 List of frequently used mathematical notations introduced in
Section 2.2.2.

x Formula vector

y PCCMM set vector

yw Weighted PCCMM set vector

P PCCMM matrix
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2.2.3 Constructing the combinatorial formula
model based on PCCMM

In this section, we characterize the backward propagation of
the CMM–PCCMM network as a sparse recovery problem and
propose a constrained combinatorial optimization model to solve
it. The sparse recovery problem involves reconstructing a TCM
formula from its PCCMM set. Given a target PCCMM vector y†

corresponding to an unknown underlying formula vector x†, that
is, y† � min {Px†, 1}, our objective is to recover the underlying
formula vector x†. As our goal is similar to the spare recovery
problem in compressive sensing, inspired by equation (Equation
3), we will try to identify x† via a constrained
ℓ1-optimization problem.

Let z ∈ {0, 1}N denote the candidate formula vector. Then, z is
associated with y† in the sense that y† � min {Pz, 1}. In practice, we
consider its linear relaxation Pz ≥ y†. In addition, we denote the
incompatible CMM pairs (indices) as
Q � {(i1, i2), (i3, i4), . . . , (i2q−1, i2q)}, where each pair (i2k−1, i2k)
indicates that ai2k−1 and ai2k in the CMM space I cannot appear
simultaneously in a TCM formula.

To address the issue caused by relaxation, we added an
ℓ1-penalty term ‖min {Pz, 1} − y†‖1 to the lost function in
Equation 3 and reached the following combinatorial
optimization problem.

min
z∈ 0,1{ }N

ω1‖z‖1 + 1 − ω1( )‖min Pz, 1{ } − y†‖1. (6)

s.t. Pz ≥ y†, zi2k−1 + zi2k ≤ 1, k � 1, 2, . . . , q. (7)
In the lost function (Equation 6), the ℓ1-norm of z measures the
sparsity of the candidate formula vector, and the penalty term
‖min {Pz, 1} − y†‖1 quantifies the total amount of extra
PCCMMs introduced by the candidate formula. Intuitively, the
minimizing process aims to accomplish two goals: using the
fewest kinds of CMMs to build the formula and controlling the
amount of off-target PCCMMs. The hyperparameter ω1 ∈ (0, 1)
balances the two objectives. In Section 3.1.2, we will discuss how the
value of ω1 affects the performance in recovering x† together with
empirical guidance on the value selection. Unlike continuous
problems such as Equation 3, Equations 6, 7 belong to the
combinatorial optimization category as the decision variable z is
an integer vector due to its pharmacological significance. Here, the
combinatorial feature primarily influences the choice of the solver
rather than the problem formulation. The numerical details are
provided in Section 2.2.4.

Alternatively, we also consider the case where the available
measurement is the weighted PCCMM set vector, denoted by y†w,
satisfying y†w � Px†. The corresponding combinatorial optimization
problem is given as follows:

min
z∈ 0,1{ }N

ω1‖z‖1 + 1 − ω1( )‖Pz − y†w‖1. (8)

s.t. Pz ≥ y†w, zi2k−1 + zi2k ≤ 1, k � 1, 2, . . . , q. (9)

It is worth mentioning that we can extend the combinatorial
optimization model to quantitative cases by considering continuous
decision variables. However, at this point, we focus on
reconstructing ACFPs utilizing qualitative PCCMM data, and we
shall not extend our inquiry to encompass the quantitative
dimensions of the subject matter.

2.2.4 Rebuilding the ACFPs from PCCMM
Based on the inverse problem of rebuilding the TCM formula

from its PCCMM information and the corresponding constrained
combinatorial optimization problems (Equations 6, 7 and Equations
8, 9) in Sections 2.2.3, we will present the numerical experiments and
evaluation methods in this section.

The ACFP dataset consists of 178 sample test problems, and
each problem is identified by vectors, namely, x† (formula vector), y†

(PCCMM set vector), and y†w (weighted PCCMM set vector). Here,
the formula vector, x†, is encoded from CMMs in the prescriptions,
whereas y† and y†w are computed by measurement processes
(Equations 4, 5), respectively, based on the PCCMM matrix.

To evaluate the level of restoration of ACFPs, we used the
Jaccard similarity coefficient (Zeng et al., 2019) to measure the
similarity between the estimated formula and the underlying true
ACFPs. Recalling that, the Jaccard similarity coefficient of two non-
empty sets S1 and S2, denoted by Jaccard(S1, S2), is defined as

Jaccard S1, S2( ) � card S1 ∩ S2( )
card S1 ∪ S2( ). (10)

As the formulas are encoded as 0–1 vectors, let x̂ be an estimate
of the true formula vector x†, and we extend the definition of the
Jaccard similarity coefficient (Equation 10) to

Jaccard x†, x̂( ) � ‖min x†, x̂{ }‖1
‖max x†, x̂{ }‖1, (11)

where the “min” and “max” operations, similar to (4), are performed
based on the entry. For each sample problem, estimates x̂ are the
solutions of constrained combinatorial optimization problems
(Equations 6, 7 and Equations 8, 9) and are subject to the input
PCCMM set vector and the weighted PCCMMset vector, respectively.
We selected the Jaccard similarity coefficient (Equation 11) as the
metric to quantify the level of restoration of ACFPs as the formulas are
encoded as 0–1 vectors, focusing on the presence of CMMs.

Numerically, we implemented Gurobi Optimizer 10.0.2 (Gurobi
Optimization, LLC, 2023) with Python 3.8.4 on an Intel™ Core i5-
1135G7 2.40 GHz CPU. In our optimization process, we set
poolgap � 0 to prevent the accumulation of the solution pool
during the computation. We set poolsolutionnum � 15, 000 to
specify the maximum number of solutions stored in the solution
pool during the optimization process. As for the hyperparameter ω1

in the lost functions (Equations 6, 8), a common choice is ω1 � 0.5
(Pang et al., 2014). To further explore how the value of ω1 affects the
model performance, we incrementally set ω1 from 0.1 to 0.9 in steps
of 0.1. Detailed numerical results are reported in Section 3.1.2.

2.3 Differentiation of the ACFPs based
on PCCMM

In this section, we will return to the measurement process (5)
and aim to explore the potential of PCCMMs in classifying ACFPs.

2.3.1 Separating ACFPs from random
pseudo-formulas

In Section 2.2.4, we have introduced two ACFP datasets of
93 and 85 formulas (Table 1), respectively. As representatives of
TCM formulas, they should be distinguished from arbitrary CMM
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combinations. Therefore, in this section, we consider the clustering
problem between the ACFP datasets and random pseudo-formulas
based on their PCCMM set vectors. We want to explore whether the
PCCMMs can separate ACFPs from randomly generated formulas
of no pharmacological significance.

We use the Bernoulli’s trails to help generate the random
formula dataset of desirable sparsity. Recalling that a Bernoulli
random variable with parameter p, denoted as Bp, satisfies the
probability density,

P Bp � 1( ) � p, P Bp � 0( ) � 1 − p.

Let X � (X1, X2, . . . , XN) be an N-dimensional 0–1 random
variable where {Xi} are the i.i.d. copies of Bp. Then, we have

E ‖X‖1[ ] � ∑
N

i�1
E |Xi|[ ] � NE Bp[ ] � Np.

Thus, given a target sparsity s ∈ (0, N), by taking p � s/N, X is
an N-dimensional 0–1 random variable that satisfies E[‖X‖1] � s.
Moreover, as ‖X‖1 is the sum ofN i.i.d. Bernoulli random variables,
‖X‖1 follows the binomial distribution. In our clustering problem,
we sampled the vector x ∈ {0, 1}N from X with s � 6.55 (the average
number of CMMs per prescription over the two batches of ACFP
datasets in Table 1) to generate the pseudo-formula dataset.

We mixed the three formula vector datasets and the corresponding
weighted PCCMMset vector datasets computed by Equation 5. In other
words, we contaminated the ACFP dataset with irrelevant information
from the pseudo-formula. As high-dimensional vectors, it is difficult to
tell directly whether the point clouds formed by the two types of vectors
yield clusters or not under the unsupervised learning setup. As a
remedy, we employed t-distributed stochastic neighbor embedding
(t-SNE) (Pezzotti et al., 2017) as the dimensional reduction method,
which helped us picture the potential clusters. In manifold learning,
t-SNE aims to represent high-dimensional points in lower dimensions
while preserving their similarities. The t-SNE algorithm finds the
similarity measure between pairs of instances in higher and lower
dimensional spaces and tries to optimize two similarity measures in the
following three steps (Bo et al., 2021):

(i) t-SNE models a point selected as a neighbor of another point
in both higher and lower dimensions. It starts by calculating a
pairwise similarity between all data points in the high-
dimensional space using Gaussian kernels. The points that
are far apart have a lower probability of being picked than the
points that are close together.

(ii) Then, the algorithm tries to map higher dimensional data
points onto lower dimensional space while preserving the
pairwise similarities.

(iii) It is achieved by minimizing the divergence between the
probability distribution of the original high-dimensional and
lower dimensional space. The algorithm uses gradient
descent to minimize the divergence. The lower
dimensional embedding is optimized to a stable state.

We usedMATLAB 2021a simulation software for data preparation
and 2D t-SNE implementation. In the “tsne” input arguments, we
selected the hamming distance as the distance function in the t-SNE.
Recalling that the hamming distance between two vectors corresponds

to the number of inconsistent entries, we set LearnRate � 500 and
Perplexity � 30 to optimize the visualization.

2.3.2 Distinguishing the deficiency syndromes of
the ACFPs

Here, we merged the two batches of ACFPs into a single dataset
and considered the clustering problem based on the syndromes and
efficacy of the prescriptions.

The syndromes and efficacy of the prescriptions were retrieved
through the China National Knowledge Infrastructure (CNKI),
PubMed, Web of Science, and other databases. In this study, we
selected the prescriptions of deficiency syndromes and classified
them under the four labels of Yang deficiency pattern (23 cases), Yin
deficiency pattern (24 cases), Qi deficiency pattern (27 cases), and
blood deficiency pattern (21 cases) (World Health Organization,
2022), and introduced the supervised learning problem by splitting
data into the training and testing sets.

Due to the limited data available, we utilized the bootstrap method.
In statistics, the bootstrap method is a resampling technique that
involves repeatedly sampling with replacement from the original data
to estimate the distribution of parameters and calculate confidence
intervals (Efron, 1979). For the deficiency pattern clustering problem,
instead of fixing the training sets, we repeatedly resampled the
prescriptions to build the training data and solved the supervised
learning problem. We summarized the learning process as follows:

1) As for data preprocessing, we used the 2D t-SNE, subject to
hamming distance, LearnRate � 500 and Perplexity � 30. 2) For
each deficiency pattern, we uniformly selected 16 cases (with labels)
to build the training set. The rest of the cases (without labels) formed
the test set. 3) For each sample in the test set, we computed its
ℓ1-distance to the cases in the training set. Then, we assigned the
formula to the deficiency pattern of the shortest average distance as
the prediction. (iv) We compared the predicted labels with the true
deficiency pattern and collected the correctness.

We set the number of trials in the bootstrap method to 5,000 and
applied the above learning process to both formula vectors and
weighted PCCMM set vectors. The detailed numerical results are
reported in Section 3.2.2.

2.4 Medication pattern analysis of the ACFPs
based on PCCMM

Based on CMMand PCCMM, we explored themedication patterns
of ACFPs. The “itemFrequency” function of R 4.3.2 was used for
frequency analysis. On this basis, association rule analysis, correlation
analysis, and cluster analysis on high-frequency CMM and PCCMM
were performed, respectively, based on the “a priori” function, “corrplot”
function, and “hclust” function, and the above results were visualized.

3 Results

3.1 Evaluating the feature extraction of
the ACFPs

3.1.1 The evaluation of the PCCMM matrix
Based on the 604 CMMs and their corresponding PCCMMs

introduced in Section 2.1.1, we constructed the CMM–PCCMM
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network and visualized this binary network in Figure 2A using
Gephi version 0.9.2 (Bastian et al., 2009). The CMM–PCCMM
network encompasses 604 CMM nodes, 254 PCCMM nodes,
and 2,216 edges.

To evaluate the PCCMM matrix P defined by definition 1, we
transformed the CMM–PCCMM network into a PCCMMmatrix of
size 254 × 604, and there are a total of 2,216 nonzero elements in the
PCCMM matrix. We found that the PCCMM matrix is sparse (less
than 1.5% of nonzero elements). To visualize the sparsity pattern of
the PCCMMmatrix, we applied row and column permutations to P
and obtained its block triangularization form that is displayed
in Figure 2B.

3.1.2 The performance of rebuilding ACFPs from
the PCCMM

As reported in Table 1, we considered 178 prescriptions from the
first and second batches of theACFP catalogs (Supplementary Tables S4,
S5) to form the sample problem dataset. For each sample problem, we
inputted the PCCMMset vector y† and theweighted PCCMMset vector
y†w to the combinatorial optimization problems (Equations 6–9),
respectively. As, in general, the estimated solutions produced by the
solver are not unique, under each hyperparameter value, we collected the
multiple optimal solutions as the solution pool and calculated their
Jaccard similarity coefficient (Equation 11) with respect to the
underlying true formula vector x†. As we were interested in the
capability of PCCMM to recover the ACFPs, we reported the Jaccard
similarity among the estimates generated by the solver (Figure 3).

From Figure 3A, we can see that the weighted PCCMM set vector
y†w performs better. This is unsurprising, as it contains richer PCCMM
information by counting the multiplicities of the PCCMM occurrence
in the formula. As for the hyperparameter ω1, when ω1 ≥ 0.5, the
performance in reconstructing ACFPs gradually declines in the two
batches as ω1 increases. In the lost function (Equations 6, 8), as ω1

approaches 1, the ℓ1-penalty terms become less and less influential in

the optimization problem, which leads to an increasing amount of off-
target PCCMMs in the estimates and a drop of the recovering
performance. The curves support ω1 � 0.5 as the hyperparameter
value, which is consistent with the conventional choice used in the
study by Pang et al. (2014). Under ω1 � 0.5, all the averaged values of
the Jaccard similarity coefficients exceed 0.8. The positive
performance in rebuilding ACFPs from the PCCMM information
demonstrates the well-posedness of the backward propagation in the
CMM–PCCMM network introduced in Section 2.2.3. In other words,
the PCCMM measurement, especially the weighted PCCMM set
vectors, can be interpreted as quasi-equivalent representations of
the ACFPs, and analyzing the PCCMM information is an effective
tool for understanding the TCM formula.

The heatmap in Figure 3B reports the individual recovering
performance of each sample problem based on the weighted
PCCMM set vector as ω1 varied. Only the prescription of ACFP-
2–46 (LiuHe Decoction) was not reconstructed throughout the process.
For this sample problem, when ω1 � 0.1, the four estimated formula
vectors in the solution pool reached the maximum similarity of
0.615 listed in Table 3. After investigating the solution pool under
ω1 � 0.1, we found that all 128 solutionsmet the constraint in Equation
9, . Moreover, the estimates use fewer CMMs (10 CMMs) to achieve the
target PCCMM than the original prescription (11 CMMs).

To explain why there are four estimated formulas of the same
Jaccard similarity, we checked the PCCMMs of the CMM that
distinguish these estimates. We found that both CMM-32
(Pinelliae Rhizoma, Banxia) and CMM-169 (Pogostemonis
Herba, Guanghuoxiang) belong to the following PCCMMs:
warm–pungent–lung meridian, warm–pungent–spleen meridian,
and warm–pungent–stomach meridian. Furthermore, the two
CMMs have the ability to alleviate dampness and prevent
vomiting. In addition, CMM-114 (Caryophylli Flos, Dingxiang)
and CMM-329 (Caryophylli Fructus, Mudingxiang) also share
the same PCCMMs: warm–pungent–lung meridian,

FIGURE 2
Visualizing the CMM–PCCMMnetwork and the sparsity pattern of the PCCMMmatrix P. (A)CMM–PCCMMnetwork. CMMnodes are in red, whereas
PCCMM nodes are in blue. The size of the PCCMM nodes is directly proportional to its degrees, meaning the larger the blue circle, the more frequently
that particular PCCMM occurs. (B) Sparsity pattern of the PCCMM matrix P. The horizontal axis represents the column index of the matrix, ranging from
1 to 604; the vertical axis represents the row index of the matrix, ranging from 1 to 254. A 254 × 604 Boolean matrix of 2216 nonzero elements.
Nonzero values are in red, whereas zero values are in white. We used the MATLAB function “dmperm” to obtain the block triangular form.
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warm–pungent–spleen meridian, warm–pungent–kidney meridian,
and warm–pungent–stomach meridian, and they have the same
efficacy and indications in ChP. Therefore, the PCCMM
measurement cannot distinguish between CMM-32 and CMM-
169, as well as between CMM-114 and CMM-329, which
elucidates the four estimates presented in Table 3.

Furthermore, the numerical experiments indicate that the
results based on the ChP 2015 edition are consistent with those
derived from the 2020 edition, exhibiting the same maximal Jaccard
similarity values and underscoring the robustness of this approach
across different reference databases. To further validate the
adequacy of Jaccard similarity in our numerical experiment, we

reported the comparison between cosine and Jaccard similarities in
Supplementary Figure S1, which reveals a high consistency in trends
between two similarity curves.

3.2 Distinguishing the ACFPs from different
dimensions

3.2.1 The performance of separating ACFPs from
random pseudo-formulas

To form the CMM/PCCMM datasets used for the clustering
problem, following Section 2.3.1, we generated 150 random pseudo-

FIGURE 3
Jaccard similarity of rebuilding ACFPs from the PCCMM. (A) Curve of the average maximum Jaccard similarity as a function of the hyperparameters
ω1. We varied the value of ω1 from 0.1 to 0.9 with a step size 0.1. The solid and dashed lines correspond to the weighted and unweighted PCCMM set
vectors, respectively. The two batches have similar trends. After ω1 ≥0.5, the average maximum Jaccard similarities decay as ω1 increases. (B)Heatmap of
the maximum value among the Jaccard similarity coefficients between the estimated CMM combinations (based on weighted PCCMM set vector)
and ACFPs in the first batch (the left panel) and second batch (the right panel). The x-axis corresponds to the value of ω1. We used Hiplot (Li J. et al., 2022)
to prepare the heatmap.
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formula vectors and computed their weighted PCCMM set vectors
via Equation 5, . Mixing themwith the 178 ACFPs in the two batches
in Table 1, we formed the CMM/PCCMMdataset, each consisting of
328 vectors. In this section and also in Section 3.2.2, motivated by
the result in Section 3.1.2, we used the weighted PCCMM set vectors
to build the PCCMM dataset.

Then, we utilized the t-SNE algorithm to generate 2D
projections of the CMM and PCCMM datasets, respectively,
providing visual representations of the data distribution and

employing Euclidean distances to measure the proximity between
data points in the expression space (Bushati et al., 2011) and plotted
the scatterplot (Figure 4A). The scatterplots suggest that both the
CMM and PCCMM measurements can separate the ACFPs from
the random pseudo-formulas, but the weighted PCCMM set vector,
after being projected using t-SNE, generated an approximately linear
boundary between the clusters of ACFPs and random pseudo-
formulas. Thus, in contrast to CMMs, PCCMM measurements
offer a more intuitive separation between two clusters, which is

TABLE 3 Original prescription of ACFP-2–46 and the four estimated formulas of the largest Jaccard similarity and fewer CMMs.

TCM-formula CMM codea Jaccard

Original CMM-11, CMM-32, CMM-139, CMM-169, CMM-200, CMM-269, CMM-335, CMM-385, CMM-405, CMM-496, and CMM-558 –

Estimate 1 CMM-32, CMM-114, CMM-139, CMM-145, CMM-200, CMM-269, CMM-335, CMM-385, CMM-496, and CMM-558 0.615

Estimate 2 CMM-32, CMM-139, CMM-145, CMM-200, CMM-269, CMM-329, CMM-335, CMM-385, CMM-496, and CMM-558 0.615

Estimate 3 CMM-139, CMM-145, CMM-169, CMM-200, CMM-269, CMM-329, CMM-335, CMM-385, CMM-496, and CMM-558 0.615

Estimate 4 CMM-114, CMM-139, CMM-145, CMM-169, CMM-200, CMM-269, CMM-335, CMM-385, CMM-496, and CMM-558 0.615

aAll four estimated formulas comprise 10 CMMs, whereas the original prescription contains 11 CMMs. The estimates’ CMM codes that overlap with the CMM code of the original prescription

are displayed in bold font.

FIGURE 4
Differentiating the ACFPs based on PCCMM and CMM. (A) Scatterplots of the t-SNE maps of the formula vectors (the left panel) and weighted
PCCMM set vectors (the right panel). In the scatterplots, each data point was assigned with the original labels. “ACFPs I” and “ACFPs II” stand for the ACFPs
in the first and second batches, respectively. “Random” corresponds to the random pseudo-formulas. The cluster information (“ACFPs I,” “ACFPs II,” and
“Random”) of each vector is only used in the scatterplot plotting. In the right panel, there is an approximately linear boundary between the clusters of
ACFPs and random pseudo-formulas. Additionally, the distribution patterns of the weighted PCCMM vectors in the two batches of ACFPs are similar,
which is different from the patterns of the CMM vectors in the left panel. (B) Classification of the four deficiency syndromes in ACFPs based on CMM and
PCCMM. The left and right panels report the t-SNEmap of the four deficiency syndromes in ACFPs based on CMM and PCCMM, respectively. The middle
panel displays a violin plot of the bootstrap method’s correct rate distribution and quantiles, with the plot’s wiggles reflecting the discrete distribution of
the correct rate. The violin plot shows that PCCMM has a higher correct rate than CMM in the classification tasks.
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convenient for implementation purposes. Another interesting
observation is that the distribution patterns of the weighted
PCCMM vectors between the first and second batches of ACFPs
are similar. Unlike the CMMs, the PCCMM measurements, after
being projected using t-SNE, cannot distinguish the ACFPs from the
first and second batches. Notice that the involved CMMs of the two
batches are quite different (see Table 1 for details), which may
explain why the formula vector can separate ACFPs from different
batches. On the other hand, the PCCMMmeasurement is insensitive
to the scope of the CMMs, which makes it a more intrinsic indicator
in seeking common features among different ACFPs.

3.2.2 The classification of deficiency syndromes in
ACFPs by PCCMM

We retrieved 95 prescriptions relevant to deficiency syndromes
from the two batches of ACFPs (Supplementary Table S6). Among
them, there are 23 cases of Yang deficiency pattern, 24 cases of Yin
deficiency pattern, 27 cases of Qi deficiency pattern, and 21 cases of
blood deficiency pattern.

Initially, we utilized the t-SNE algorithm for data preprocessing
to obtain 2D projections. However, the distribution differences
among the labels of the four deficiency syndromes were not
clearly distinguishable in the resulting graph (Figure 4B), making
it difficult to differentiate between them visually. To address this
issue, we employed the bootstrap method for supervised learning
and further analyzed the distribution by resampling with
replacement from the original data. Our results showed that the
classification accuracy based on the PCCMM was 0.55, which
outperformed the classification accuracy of 0.42 obtained using
the nomenclature of CMM. The lack of training data might cause
the relatively poor performance for both the measurements.

3.3 Analyzing the medication patterns
of ACFPs

3.3.1 The frequency and association rules analysis
High-frequency CMMs are those with markedly increased usage

rates in clinical practice, classic prescription, or modern research,
demonstrating the integration of TCM theory with clinical

application, which can be identified by their high frequencies in
disease-specific formula databases, clinical guidelines, or
bibliometric analyses (Wang J. et al., 2021). A common approach
to identifying high-frequency CMMs is frequency analysis, which
involves directly counting the occurrences of CMMs. Currently,
there is no unified standard for defining high-frequency CMMs.
Some studies measure total occurrences, whereas others rely on
proportional frequency. For instance, Liu et al. (2024) classified
CMMs with a frequency greater than 3% as high frequency, whereas
Yang et al. (2024) considered those occurring more than eight times
as high frequency.

Among the 196 CMMs mentioned in Table 1, 34 CMMs had a
frequency of ≥ 10 and were classified as high frequency, accounting
for 63.38% of the cumulative frequency. Glycyrrhizae Radix et
Rhizoma (Gancao), Angelicae Sinensis Radix (Danggui), and
Paeoniae Radix Alba (Baishao) were the most frequently used
CMMs in ACFPs (Supplementary Table S7). In Table 4, we
divided the high-frequency CMMs based on their functions (Yang
et al., 2021). Tonic medicines were the most frequently used, followed
by interior heat-clearing medicines and exterior heat-releasing
medicines. For the 176 PCCMMs, 29 PCCMMs had a frequency
of ≥ 50 and were classified as high frequency, accounting for 57.33%
of the cumulative frequency. PCCMM-112 (sweet–even–spleen
meridian), PCCMM-1 (sweet–even–lung meridian), and PCCMM-
65 (sweet–even–heart meridian) were the most frequently used
PCCMMs in ACFPs (Supplementary Table S8).

3.3.2 The distance and correlation analysis
The “apriori” function was employed to perform association rule

analysis. The settings were support ≥ 0.1, confidence ≥ 0.8, and lift
> 1. Based on CMM, no frequent item-set was obtained. However,
based on PCCMM, 383,653 rules were derived (Supplementary
Table S9). The advantage of PCCMM in mining implicit
compatibility rules was manifested. The results with support
≥ 0.5 were visualized to obtain 28 frequent item-sets in Figure 5.

We calculated the pairwise distances between high-frequency
CMM and high-frequency PCCMM, based on the binary distance
method, and visualized them in Figure 6. The CMM pairs with the
smallest distances are as follows: Jujubae Fructus (Dazao) and
Zingiberis Rhizoma Recens (Shengjiang), Saposhnikoviae Radix

TABLE 4 Classification of high-frequency CMMs based on their functions.

Types of CMMs Frequency Proportion(%)
Tonic medicines 337 45.60

Interior heat-clearing medicines 106 14.34

Exterior heat-releasing medicines 99 13.40

Phlegm-transforming medicines 43 5.82

Urination-promoting and dampness-draining medicines 37 5.01

Qi-regulating medicines 33 4.47

Interior-warming medicines 27 3.65

Blood-circulating and blood stasis-resolving medicines 21 2.84

Dampness-transforming medicines 19 2.57

Purgative medicines 17 2.30
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(Fangfeng) and Chuanxiong Rhizoma (Chuanxiong), and Angelicae
Sinensis Radix (Danggui) and Rehmanniae Radix (Dihuang). The
PCCMM pairs with the smallest distances are as follows:
even–sweet–heart meridian and even–sweet–lung meridian,
even–sweet–heart meridian and even–sweet–spleen meridian, and
even–sweet–lung meridian and even–sweet–spleen meridian, which
indicate that they often co-occur in ACFPs, suggesting a significant
synergistic effect.

Correlation analysis was performed based on the Pearson
correlation coefficient (r), and the results are visualized in
Supplementary Figures S2, S3. In the figures, the CMM pair with
the strongest positive correlation is Jujubae Fructus (Dazao) and
Zingiberis Rhizoma Recens (Shengjiang) (r � 0.55), whereas the
CMM pair with the strongest negative correlation is Glycyrrhizae
Radix et Rhizoma (Gancao) and Glycyrrhizae Radix et Rhizoma
Praeparata Cum Melle (Zhigancao) (r � −0.36). The PCCMM pair
with the strongest positive correlation is even–sweet–lung meridian
and even–sweet–spleen meridian (r � 0.93), whereas the PCCMM
pair with the strongest negative correlation is warm–pungent–lung

meridian and cold–sweet–kidney meridian (r � −0.29). From this,
it can be seen that rPCCMM

max (0.93)> rCMM
max (0.55), indicating that

stronger correlation relationships can be obtained from the
PCCMM level compared to the CMM level.

4 Discussion

In contrast to the previous studies which primarily focused on
individual prescriptions, our research systematically investigated
the medication patterns of the catalog of ACFPs issued by the
Chinese government. We constructed the forward and backward
feature extraction processes from ACFPs to PCMM, and analyzed
the medication patterns within ACFPs from the PCMM.
Motivated by the sparsity feature of the TCM formulas, we
employed the compressive sensing framework to establish the
CMM–PCCMM network and introduced the combinatorial
optimization problem to rebuild the ACFPs from their
PCCMMs. The numerical results based on the ACFP datasets

FIGURE 5
Association rules of ACFPs based on PCCMM, with a minimum support threshold of 0.5. (A) Network graph depicting the association rules for
PCCMM-1, PCCMM-65, PCCMM-112, and PCCMM-113. (B) Parallel coordinate plot illustrating the 28 identified association rules. (C) Twenty-eight items
categorized under the left-hand side (LHS) groups. (D) Relationship among confidence, support, and lift for the 28 rules.
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demonstrated that the PCCMM set is a quasi-equivalent
representation of the TCM formulas and that PCCMMs
outperform the nomenclature of CMMs in ACFP classification.

Furthermore, PCCMM may facilitate the extraction of implicit
compatibility patterns within ACFPs more effectively than CMM
alone. The discussion is as follows.

FIGURE 6
Distance of CMM pairs and PCCMM pairs of ACFPs. (A)Heatmap of the distance between CMM pairs. (B)Heatmap of the distance between PCCMM
pairs. The colors of each cell represent the pairwise distance for CMM or PCCMM. Redder cells indicate larger distances, approaching 1, whereas bluer
cells indicate smaller distances, approaching 0.
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4.1 The simplification of the combinatorial
formula model

Using the compressive sensing framework, we showed the ability to
recover the TCM formula from its PCCMM information via numerical
experiments over the ACFP dataset and numerically demonstrated the
legitimacy of the CMM–PCCMM network. We must point out that the
quasi-linearmeasurement process in the combinatorial formulamodel is
a simplified and qualitative model similar to HP-GCN (Liu et al., 2022),
treating the CMMs and PCMMs as equal and independent contributors
to the formula’s PCCMMs. However, the proportion of each CMM in
TCM formulas varies, and previous studies have indicated significant
internal correlation among the constituent CMMs in the TCM formulas
(Zhang et al., 2024), suggesting important intrinsic links between
PCMMs and the physicochemical properties and pharmacological
actions of individual metabolites, as shown in the distribution pattern
of PCMMs (Ung et al., 2007). Furthermore, among CMMs that share an
identical PCMM, the potency of their PCMM is not uniform (Wei et al.,
2022). As an essential basis for the composition of TCM formulas, we
considered PCCMMs the minimum unit of efficacy characterization. In
this study, we focus on the significance of PCCMMas a representation of
the TCM formulas’ medication pattern from the perspective of feature
extraction. For the sake of computational simplicity and tractability, we
have adopted a simplified model that temporarily disregards the
complex interactions between multiple efficacies and the variations in
their effects, as well as other potential biological factors.

4.2 The generalizability and complexity of
the sample problem set

First, the sample problem set covers more than 90% of the
prescriptions in the original ACFP catalogs. Thus, our
CMM–PCCMM network proposed in Section 2.2.2 is general
enough for analyzing ACFPs. From Table 1, we know the
average number of CMMs per prescription is 7.04 and 6.01 in
the first and second batches, respectively. In other words, the average
percentage of nonzero elements in the formula vector x† is
approximately 1%. The sparsity feature of the ACFPs in the
catalogs is consistent with the assumptions of the compressive
sensing framework reviewed in Section 2.2.1. Notice that the
number of unique CMMs involved is much less than the size of
the CMM space I (N � 604) used for the problem. In practice, to
improve the performance and computational efficiency, one can
narrow down the scope of the CMM space. Taking the first batch as
an example, we can restrict the CMM space I to its subset consisting
of the 155 unique CMMs. As a result, we reduce the dimension of the
formula vector from 604 to 155, which significantly diminishes the
difficulty of the rebuilding problem. However, we do not assume any
a priori condition about the CMM domain and stick to the entire
CMM space I in testing the generalizability of our problem.

4.3 The influence across ethnic groups on
the research framework

According to PTCMM, the herb properties of TCM include cold,
hot, warm, cool, and even. In Tibetan medicine (Dangzhi et al., 2019),

the properties are cold, hot, heavy, light, dull, sharp, moist, and
rough. In Ayurveda medicine (Rastogi and Singh, 2021), the
properties include heavy, greasy, cold, dull, light, rough, hot, and
sharp. Similarly, in Mongolian medicine (Siqi et al., 2024), the
properties include hot, cold, non-oily, heavy, light, sharp, viscous,
and non-viscous. Despite subtle differences, all these medical
traditions recognize cold and hot as fundamental properties of
botanical drugs. The herb flavors in TCM encompass sour, bitter,
sweet, pungent, salty, astringent, and bland. In contrast, Tibetan,
Ayurveda, and Mongolian medicine do not include bland among
their recognized flavors. Furthermore, multiple medical systems,
extending beyond PCMM, consistently assert that the medicinal
properties of botanical drugs are inextricably linked to their
therapeutic efficacy. We must point out that although the
medicinal properties of botanical drugs vary across different
ethnic groups, their data structures are highly similar. These
properties can be uniformly represented in a multi-tuple format,
which is analogous to the PCCMM framework. This consistency
allows for the construction of bipartite networks, making it feasible
to apply the theoretical framework developed in this study for
further analysis.

4.4 The universality of the constructed
mathematical framework

The mathematical framework of the CMM–PCCMM network
presented in our paper is general, allowing for the substitution of
PCCMM with other linear or quasi-linear TCM measurement
formulas. It is noteworthy that in another manuscript currently
under review, we have applied the feature extraction-based
framework developed in this study to identify core CMM pairs
for alcoholic liver disease (ALD) and to analyze key active
metabolites as well as their biological mechanisms in treating
ALD. In that study, we constructed a CMM–target network
based on HERB (Fang et al., 2020) and HIT2.0 (Yan et al., 2021).
Through bioinformatics analysis, we established a protein–protein
interaction network and identified hub genes associated with ALD.
Based on clinically validated TCM formulas for ALD, the data
mining approach combined with combinatorial optimization
modeling identified the core CMM pair of Gardeniae Fructus
(Zhizi) and Artemisiae Scopariae Herba (Yinchen). Previous
experimental research (Tan et al., 2023) has confirmed the
hepatoprotective properties of these botanical drugs.
Furthermore, the model predicted that the biological
mechanism of the core CMM pair may primarily involve the
antioxidant and anti-inflammatory properties of quercetin,
mediated by its inhibition of COL1A1 and COL3A1 expression.
Molecular docking and molecular dynamics simulations
demonstrated stable binding between quercetin and both
COL1A1 and COL3A1, with strong binding energy and affinity.
In this study, we further validate the versatility of the framework
developed in the current research and provide novel insights to
advance modern TCM research and development. In addition, one
could examine other pharmacopoeias, such as the United States
Pharmacopeia and National Formulary, to analyze the
corresponding medication patterns using the mathematical
framework outlined in the paper.
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4.5 Advantages and prospects

Our work has the following significance:

(i) Providing a basis for the exploration of implicit compatibility
patterns in TCM formulas based on PCCMM: unlike
traditional methods that rely on CMMs, our approach
introduces PCCMM as a novel approach for mining
medication patterns of ACFPs. Our work enhances the
capability of PCCMM for serving as a quasi-equivalent
representation of TCM formulas. The classification and
identification of ACFPs using PCCMM information yield
superior results compared to using CMM information alone,
providing a basis for the exploration of implicit compatibility
patterns in TCM formulas based on PCCMM. Moreover,
compared with CMMs, the PCCMM measurement is more
applicable for research related to TCM formula datasets
(rather than an individual prescription), for example,
clustering TCM formulas and identifying shared features
between different TCM formulas.

(ii) Exploring the implicit compatibility patterns of ACFPs using
PCCMM: we found that the PCCMMs of ACFPs
predominantly map to the even–sweet–spleen meridian.
The number of associate rules derived from PCCMM
significantly exceeded that derived from CMM,
highlighting PCCMM’s advantage in mining hidden
compatibility patterns. Data mining revealed positively
and negatively correlated PCCMM pairs, potentially
guiding the discovery of synergistic and contraindicated
CMM combinations in TCM. For instance, The CMM
pair with the strongest positive correlation is Jujubae
Fructus (Dazao) and Zingiberis Rhizoma Recens
(Shengjiang) (r � 0.55), suggesting that this combination
may exhibit synergistic effects. Through literature review, we
found that both of these CMMs are simultaneously present in
several TCM formulas, including Chaihu Guizhi Decoction
(Zhao et al., 2024), Da-Chai-Hu-Tang Formula (Duan et al.,
2024), and Zhi-Gan-Cao-Tang (Hu et al., 2023). This
combination has the effects of harmonizing the defensive
and nutritive qi, regulating the spleen and stomach, warming
the meridians, and promoting circulation (Liao et al., 2023).
Similarly, the PCCMM pair with the strongest positive
correlation is even–sweet–lung meridian and
even–sweet–spleen meridian (r � 0.93). For example, both
Codonopsis Radix (Dangshen) and Poria (Fuling) contain
this PCCMM pair. Existing pharmacological studies have
demonstrated that they may exert synergistic effects in
treating ALD by modulating the expression of AKT, TNF,
and MAPK, thereby reducing inflammatory cell infiltration.
This indicates that CMMs containing these PCCMMs may
have significant synergistic effects when used in
combination, and the PCCMM-based approach could
facilitate the discovery of novel herb pairs with potential
synergistic properties.

(iii) Providing a new perspective for designing new TCM
formulas and optimizing existing TCM formulas: in this
study, during the rebuilding of the ACFPs based on the
combinatorial formula model, a new set of estimated values

for CMMs was obtained under constrained conditions. For
instance, the estimated values for CMMs derived from our
model align more closely with the constraints than the
original prescription (ACFP-2-46, LiuHe Decoction) and
exhibit a reduced number of CMMs. A prescription with
fewer CMMs yet unchanged or improved efficacy is one of
the approaches to optimizing TCM formulas. Taking
estimate 1 in Table 3 as an example, compared to the
original ACFP, it excludes CMM-11, CMM-169, and
CMM-405 while incorporating CMM-114 and CMM-145.
Through a comprehensive review of Clinical Chinese
Pharmacy (Zhang et al., 2020), we identified that the three
excluded CMMs are commonly used in modern clinical
practice for treating acute and chronic gastroenteritis, as
well as gastrointestinal dysfunction. Notably, the two newly
added CMMs exhibit similar therapeutic efficacy,
particularly in managing chronic gastritis and
gastrointestinal disorders. We hypothesize that this might
represent an optimized version of LiuHe Decoction with a
streamlined list of CMMs, potentially offering a new
perspective for TCM formula optimization. Of course,
further investigation in subsequent studies is necessary,
where such sets of solutions should be further observed in
conjunction with experts’ experience or clinical practice.

(iv) Facilitating Western medicine’s acceptance of TCM drug
development: in this study, we selected ACPFs as
representative samples of TCM formulas and developed a
feature extraction model based on PCCMM to reveal their
compatibility patterns. We utilized the Jaccard index to
quantitatively assess the model’s ability to rebuild ACFPs;
however, our CMM–PCCMM network does not depend on
Jaccard similarity or any specific similarity measurement.We
believe that incorporating quantifiable metrics like Jaccard
similarity can enhance Western medical practitioners’
understanding of PTCMM and provide a clearer
interpretation of CMM compatibility principles. This
approach offers an objective perspective on TCM
formulas’ principles based on PCMM.

4.6 Future works

The limited dataset used in the numerical experiments is the
main drawback of our study. Both the CMM and PCCMM
information are encoded as integer vectors in this study, which
did not account for the impact of formula proportions on the
properties of ACFPs. The impact of formula proportions on the
properties of ACFPs has not been considered. Looking ahead, upon
completion of the dosage verification for certain ACFPs, we will
attempt to incorporate the dosage of CMMs in TCM formulas and
combine it with the PCCMM measurements to refine the weighted
PCCMM set vector and introduce the quantitative CMM–PCCMM
network. Our long-term goal includes PCCMM-guided methods for
TCM formula construction or optimization. Our study emphasizes
the role of PCCMM in revealing the medication patterns of ACFPs
from the perspective of systematic science. In general, the PCCMM
characteristics can be determined by the substances beyond the
scope of the CMM–PCCMM network, such as food, nutritional
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components, and chemical compositions, that is, the PCCMM
information does not correspond to an underlying TCM formula.
Building meaningful TCM formulas from these types of PCCMM
information remains an open problem.

5 Conclusion

In this study, we constructed the forward and backward feature
extraction processes from ACFPs to PCCMM, aiming to identify the
implicit medication patterns of the ACFPs published by the Chinese
government. We constructed the network from CMM to PCCMM
based on ChP as the forward feature extraction process. As the
backward process, we introduced constrained combinatorial
optimization problems to rebuild the ACFPs from their PCCMMs.
The two batches of ACFPs could essentially be rebuilt based on the
PCCMM; however, the hyperparameter has a significant impact on
the results. We also tested the capability of PCCMM in distinguishing
ACFPs from random pseudo-formulas and classifying ACFPs of
different deficiency syndromes. In both cases, PCCMM
outperformed the nomenclature of CMM as the measurement. The
numerical results demonstrated the well-posedness of the
CMM–PCCMM network. The PCCMMs facilitate the analysis of
TCM formulas, especially ACFPs, from the perspectives of systems
science and compressive sensing. High-frequency CMMsweremainly
tonic medicines, whereas PCCMMs predominantly mapped to the
even–sweet–spleen meridian. The number of associate rules derived
from PCCMM significantly surpassed that of those derived from
CMM, demonstrating PCCMM’s superiority in uncovering hidden
compatibility patterns. Notably, data mining revealed synergistic
CMM pairs with low distances and correlations, such as Jujubae
Fructus (Dazao) and Zingiberis Rhizoma Recens (Shengjiang), which
aligns with clinical experience and provides data support for the
synergistic use of CMMs. Furthermore, we identified negatively
correlated CMM pairs and PCCMM pairs, which may guide the
discovery of new potential contraindications in CMM combinations.
Our study offers a novel method and insights into the mining of
ACPFs’medication patterns and provides clinicians with guidance on
TCM formula use and design based on PCCMM.
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