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Ischemic stroke is caused by artery stenosis or occlusion, which reduces blood
flow and may cause brain damage. Treatment includes restoring blood supply;
however, ischemia-reperfusion can still aggravate tissue injury. Reperfusion injury
can increase levels of reactive oxygen species, exacerbate mitochondrial
dysfunction, create excessive autophagy and ferroptosis, and cause
inflammation during microglial infiltration. Cerebral ischemia-reperfusion
injury (CIRI) is a key challenge in the treatment of ischemic stroke. Currently,
thrombolysis (e.g., rt-PA therapy) and mechanical thrombectomy are the primary
treatments, but their application is restricted by narrow therapeutic windows
(<4.5 h) and risks of hemorrhagic complications. Exosomes reduce CIRI by
regulating oxidative stress, mitochondrial autophagy, inflammatory responses,
and glial cell polarization. In addition, their noncellular characteristics provide a
safer alternative to stem cell therapy. This article reviews the research progress of
exosomes in CIRI in recent years.
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1 Introduction

1.1 Cerebral ischemia-reperfusion injury

Stroke is an abrupt cerebrovascular incident resulting from interruptions in the local
blood circulation to the brain, and it stands as the second most prevalent cause of mortality
worldwide (Li et al., 2024). According to a 2017 World Health Organization report,
approximately 6.24 million individuals die from stroke annually. In China, it is projected
that there exists around 2.4 million newly diagnosed stroke cases and approximately
1.1 million fatalities associated with strokes each year, with 75%–85% attributed to ischemic
strokes (Wang et al., 2022). Ischemic stroke arises from the narrowing or the blockage of
cerebral vascular supply arteries, causing insufficient blood supply to the brain, leading to
local brain tissue disintegration and damage (Feigin et al., 2025). It is a prevalent acute
cerebrovascular condition and the principal reason for death among middle-aged and
elderly populations (Ly and Maquet, 2014). Cerebral ischemia refers to a disruption in the
circulation of blood to the brain, triggering intricate metabolic and cellular pathologies that
lead to neuronal cell death and cerebral infarction (Shin et al., 2020). The intensity of
localized brain injury resulting from cerebral ischemia is contingent upon the length of the
ischemic episode. Although transient symptoms of cerebral ischemia may suggest reversible
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impairment, prolonged ischemic and hypoxic conditions may result
in the development of cerebral edema and subsequent neuronal cell
death (HU et al., 2016). Standard therapeutic approaches for
ischemic cerebrovascular disorders encompass mechanical
thrombectomy along with the intravenous delivery of tissue
plasminogen activator. These interventions aim to swiftly restore
blood circulation to the affected ischemic brain regions (Stegner
et al., 2019; Wu et al., 2020). Nevertheless, reinstating blood
circulation to the ischemic area, referred to as ischemia-
reperfusion injury (IRI), may also result in damage to brain
tissue. Reperfusion injury is cellular harm occurring upon the
restoration of blood supply following ischemia or hypoxia,
potentially causing swelling and oxidative injury rather than a
return to normal function (Li et al., 2017). Clinical investigations
have associated the advancement of CIRI with free radicals,
intracellular calcium excess, leukocyte attachment and clustering,
and inadequate production of high-energy phosphate molecules
(Liu R. et al., 2017). Therefore, developing effective treatments to
mitigate brain damage resulting from CIRI is urgently required.

1.2 Introduction to exosomes

Exosomes are extracellular vesicles measuring 30–150 nm in
diameter, secreted by different cell types and commonly present
in biological fluids (Van Niel et al., 2018). They contain various
biologically active substances, such as proteins, lipids, DNA, and
RNA (Pefanis et al., 2015; Van Niel et al., 2018). Exosomes can
permeate to adjacent cells or be conveyed to remote anatomical
sites, where they transmit signals or information to particular
recipient cells (Li L. et al., 2016; Hsu et al., 2017). Exosomes,
derived from late endosomal compartments, are nanoscale, disc-
shaped structures with low immunogenicity and high
compatibility (Guo et al., 2021). They correspond to vesicles
within the lumen of multivesicular bodies, which are discharged
into the environment as exosomes when multivesicular bodies
merge with the plasma membrane. Extracellular vesicles, rich in
exosomes, contain coding and non-coding RNA, lipids, and
proteins and play an essential role in intercellular
communication (Witwer et al., 2013; Théry et al., 2006; Valadi
et al., 2007; Ludwig and Giebel, 2012). Exosomes and other
extracellular vesicles have several common characteristics,
such as their remarkable stability in circulation, detectability
in intricate biological fluids, and molecular composition
functioning as a “liquid biopsy.” These qualities make them
excellent biomarkers for diseases (Bautista-López et al., 2017;
Nedaeinia et al., 2017; Théry, 2015). As cell-released carriers,
exosomes play a crucial role in communication between various
cell types (Yang et al., 2019). The surface of extracellular vesicles
is rich in specific protein markers (such as CD9, CD63, CD81,
and TSG101), which participate in exosome biogenesis and
secretion regulation. For example, CD47 evades immune
clearance through a “don’t eat me” signal, which enhances the
stability of extracellular vesicles in vivo; HSP70 and HSP90 help
exosomes adapt to the extracellular environment; and MHC
molecules mediate antigen information transmission between
immune cells. In addition, exosomes carry donor cell-specific
proteins (such as synaptophysin, which is expressed in neuronal

derived exosomes), and thus provide a molecular basis for
targeted therapy (Kalluri and LeBleu, 2020; Welsh et al., 2024;
Luan et al., 2025) (Figure 1).

1.3 Therapeutic prospects of exosomes

Currently, efficient therapeutic alternatives for ischemic stroke
are limited and are exclusively appropriate for a limited number of
stroke patients. Urokinases and streptokinases are potential
neuroprotective agents that have been clinically utilized for the
management of ischemic stroke. While these medications can
activate plasminogen to generate plasmin, they also have the
capacity to degrade coagulation factors and fibrinogen,
heightening the risk of hemorrhage when administered as
thrombolytic therapy (Hacke et al., 2008). The U.S. Food and
Drug Administration (FDA) has demonstrated that a genetically
engineered tissue plasminogen activator can eliminate obstructed
blood vessels to address ischemic stroke; nevertheless, due to the
limited treatment window (<4.5 h), its therapeutic effect is limited,
and this treatment option increases the risk of intracranial
hemorrhage (Broeg-Morvay et al., 2016). Treatment strategies
targeting inflammation from CIRI have been successful in animal
models but have not yet applied in clinical practice (Liu et al., 2019;
Howell et al., 2023). The exceedingly stringent blood-brain barrier
(BBB) and the “no-reflow” phenomenon following CIRI complicate
the entry of pharmaceuticals into the brain parenchyma. Among
them, the no-reflow phenomenon refers to the obstruction of
microcirculation perfusion after vascular recanalization. To tackle
this challenge, nanotechnology-driven drug delivery systems have
been engineered and have demonstrated encouraging outcomes
(Gabathuler, 2010; Chen et al., 2020). Nevertheless, administering
adequate therapeutic agents to the brain continues to pose a

FIGURE 1
Composition of exosomes. 1) Lipids: lipid bilayer that forms
exosomal membrane; 2) Nucleic acids: DNA and RNA; 3) Immune
regulatory molecules: major histocompatibility complex; 4) Proteins:
transmembrane proteins (CD9, CD63, CD81), intercellular
adhesion molecules, integrins, and transferrin receptors; 5)
Metabolites.
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considerable challenge for nanomaterials. Kozlovskaya et al.
illustrated that the majority of nanocarrier systems can transport
fewer than 1% (median) of the injected dosage to the brain
(Kozlovskaya and Stepensky, 2013). Additionally, achieving brain
penetration and prolonging retention time often require costly and
labor-intensive modifications with peptides or antibodies for clinical
applications. Therefore, developing alternative therapies for acute
ischemic stroke patients is urgently needed (Li et al., 2020).

CIRI injury is a complex pathophysiological mechanism
characterized by energy disruption, cellular acidosis, increased
excitatory amino acid release, disturbed intracellular calcium
equilibrium, reactive oxygen species generation, and initiation of
apoptotic gene expression. These factors are interconnected,
establishing a detrimental cycle that ultimately results in cellular
apoptosis or necrosis (Hankey, 2019). Prior research has
demonstrated that human mesenchymal stem cells (MSCs),
human bone marrow-derived MSCs, human umbilical cord
blood-derived MSCs, human adipose tissue-derived MSCs, and
human neural stem cells possess significant therapeutic potential
in the treatment of stroke (Chen et al., 2001; Nomura et al., 2005;
Song et al., 2017; Wang et al., 2017; Boese et al., 2018). Stem cell
therapy for the management of ischemic stroke can enhance
endogenous neural regeneration and brain tissue self-repair.
However, the therapeutic efficacy of stem cells is affected by their
heterogeneity. Additionally, certain stem cell therapies present safety
hazards, chiefly encompassing tumorigenicity, atypical immune
reactions, and unintended differentiation (Zheng et al., 2018).
Exosomes are increasingly recognized for their role as
transporters of functional proteins, lipids, and nucleic acids (Li
et al., 2023). Numerous studies have confirmed that exosomes can
alleviate CIRI in various ways, suggesting broad application
prospects. This review discusses recent advancements in exosome
research related to CIRI.

2 Mechanism of cerebral ischemia-
reperfusion injury

2.1 Cerebral ischemia-reperfusion injury and
reactive oxygen species

Reactive oxygen species (ROS) are connected to brain injury
post-ischemic stroke (Jiang et al., 2020). Marked oxidative stress and
inflammation occur after the onset of I/R, producing excessive ROS
in brain tissue. This surge in ROS causes oxidative damage to
neurons, worsening brain injury, and cerebral infarction (Prakash
and Carmichael, 2015; Yang Y. et al., 2015). Evidence also suggests
that ROS production in mitochondria rapidly increases post-acute
ischemic stroke, leading to impaired mitochondrial function
through the decrease of membrane potential and the disruption
of mitochondrial membrane integrity (Wang et al., 2019).
Subsequently, apoptosis that is dependent on caspase and
mediated by mitochondria is initiated in neuronal cells (George
and Steinberg, 2015). The continuous accumulation of ROS
damages the BBB integrity by promoting the degradation of tight
junction proteins, further exacerbating brain injury (Prakash and
Carmichael, 2015; Yang Y. et al., 2015). Therefore, research on
antioxidant strategies that help reduce oxidative damage is crucial.

2.2 Cerebral ischemia-reperfusion injury and
mitochondrial dysfunction

Mitochondria play a vital role in preserving cellular dynamic
equilibrium by engaging in ongoing processes such as fission, fusion,
autophagy, and biogenesis, all of which are essential for the proper
functioning of mitochondria (Song et al., 2021). In recent times, the
mechanisms of mitochondrial quality control, specifically the
processes of fission, fusion, and autophagy, have garnered
significant interest in the context of addressing diseases
associated with acute ischemic-hypoxic injuries (Ni et al., 2015).
Under normal physiological circumstances, the equilibrium between
mitochondrial fission and fusion is essential for preserving the
typical structure of mitochondria. An overabundance of fission
coupled with a decline in fusion processes can result in
mitochondrial fragmentation, which in turn may disrupt vital
biological functions, including the stability of mitochondrial
DNA, energy production, cellular senescence, and apoptosis.
Mitochondria function as the central energy hub for the electron
transport chain, consuming oxygen to generate ATP, which
provides essential energy for cellular and tissue life activities
(Raefsky and Mattson, 2017). Mitochondria are essential
contributors to the pathophysiological mechanisms underlying
acute ischemic stroke. During ischemic injury, mitochondria
serve an essential function in regulating cellular apoptosis
through the modulation of reactive oxygen species (ROS)
production and calcium levels, as well as by overseeing
inflammatory responses and the activation of the inflammasome
(Lin and Beal, 2006; Nunnari and Suomalainen, 2012). Excessive
mitochondrial damage during acute ischemic stroke can lead to
insufficient ATP supply, release of pro-apoptotic factors, and
excessive calcium, ultimately causing neuronal death and
impacting neuronal function (Andrabi et al., 2020). Haileselassie
et al. demonstrated that excessive mitochondrial fission may
increase vascular permeability, disrupt the BBB, and induce
infectious encephalopathy (Haileselassie et al., 2020). Studies have
shown that mitophagy and excessive mitochondrial fission can lead
to mitochondrial dysfunction, reducing ATP synthesis, increasing
ROS levels, and decreasing mitochondrial membrane potential,
ultimately causing cardiovascular and intestinal barrier
dysfunction (Duan et al., 2019; 2020b; 2020a). Acute ischemic
injury affects mitochondrial quality balance, resulting in excessive
mitochondrial fission and abnormal mitophagy (Anzell et al., 2018).
Mitochondrial dysfunction is closely associated with CIRI and serves
as a significant objective for neuronal cell death following ischemia.
Currently, the mechanisms that initiate the harmful cycle of CIRI are
still under investigation (Nakamura et al., 2020). Investigating the
mechanisms by which mitochondrial damage triggers CIRI injury is
crucial for interrupting this cycle and developing effective
interventions.

2.3 Cerebral ischemia-reperfusion injury
and autophagy

Autophagy is a conserved intracellular catabolic route that
delivers substantial quantities of cytoplasm, impaired organelles,
enduring proteins, and pathogens to lysosomes. It is a system
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accountable for perpetually eliminating misfolded proteins or
organelles in lysosomes while sustaining differentiation,
restructuring, and cellular equilibrium (Dohi et al., 2012). While
beneficial in most cases, excessive autophagy may lead to “type 2”or
“autophagic” cell death.Most brain ischemiamodels have confirmed
that increased autophagy protects neurons from apoptosis (Yu et al.,
2017; Wang et al., 2024). Increasing evidence suggests that
autophagy regulates neuronal survival and death, both of which
are related to ischemic stroke and I/R injury (Ghavami et al., 2014;
Liu K.-Y. et al., 2020). Studies have confirmed that autophagy serves
a vital function in safeguarding neurons against apoptosis (Zhang
et al., 2019; Sun X. et al., 2020). Many neurons die after CIRI.
Nevertheless, in contrast to the ischemic core, neuronal demise in
the ischemic penumbra is reversible, rendering it a potential
therapeutic target for CIRI (Ferrer and Planas, 2003). The
buildup of impaired mitochondria and improperly folded
proteins during trauma is a significant factor that leads to
neuronal death. The autophagy-lysosome pathway maintains
cellular homeostasis, which is crucial for normal cellular
functions (Glick et al., 2010). Impairment of this pathway leads
to abnormal protein aggregation and mitochondrial impairment,
promoting oxidative strain and apoptosis. Earlier research has
established that exosomes secreted by bone marrow stem cells
enhance neuroprotection through the modulation of autophagy
(Zeng et al., 2020). Employing a model of persistent cerebral
ischemia, we found that the autophagy-lysosome pathway was
impaired 24 h after ischemia (Liu Y. et al., 2017). Research has
indicated that lysosomal impairment following ischemic damage
interferes with the autophagy-lysosome pathway, resulting in the
atypical buildup of autophagosomes (Carloni et al., 2008; Wang
et al., 2011; Viscomi et al., 2012). Additionally, research has
demonstrated that lysosomal dysfunction is a consequence of
ischemic injury, which may manifest as cytoplasmic acidification
and/or the rupture or permeabilization of lysosomes (Yamashima,
2000; Yamashima et al., 2003; Li et al., 2014; Zhou et al., 2017).
Enhancing the autophagy-lysosome pathway by alleviating
lysosomal dysfunction could serve as a potentially effective
treatment approach for CIRI. Although autophagy activation may
have neuroprotective effects, studies have shown that autophagy
inhibitors (such as 3 MA) can prevent programmed necrosis
induced by severe global cerebral ischemia (Wang et al., 2011).
Therefore, it may be advantageous to regulate autophagy activation
and inhibition based on the specific pathological stage.

2.4 Cerebral ischemia-reperfusion injury and
ferroptosis

Ferroptosis represents a recently discovered mechanism of cellular
demise characterized by lipid hydroperoxide accumulation, dependent
on iron reaching lethal levels (Dixon et al., 2012; Stockwell et al., 2017).
Numerous neurological disorders have been identified, encompassing
conditions such as degenerative diseases, traumatic brain injuries,
hemorrhagic strokes, and ischemic strokes (Stockwell et al., 2017;
Wu et al., 2018). Ischemic stroke induces ferroptosis, evidenced by
increased concentrations of lipid peroxidation byproducts are observed
alongside reduced levels of antioxidants; however, the application of
ferroptosis inhibitors has the potential to ameliorate I/R injury (Alim

et al., 2019). Biochemically, brain tissue is abundant in phospholipids,
and a notable characteristic of brain injury is lipid peroxidation.
Overproduction and harmful buildup of lipid ROS in biological
membranes during ischemic stroke lead to glutathione depletion and
GPX4 inactivation (Yang and Stockwell, 2016). The overproduction of
glutamate by neurons affected by ischemia leads to the inhibition of
cystine/glutamate reverse transporters, resulting in glutamate-induced
neurotoxicity (Jin et al., 2021). During the pathological advancement of
ischemic stroke, the accumulation of iron ions and iron-dependent lipid
peroxidation reactions increase (Hanson et al., 2009). Damage to the
structure and function of the BBB also promotes the transport of iron
ions from the bloodstream into the brain tissue, thereby initiating
neuronal ferroptosis (Dixon et al., 2012; Yu and Chang, 2019). Prior
research has demonstrated that inhibitors of ferroptosis markedly
decrease the volume of infarcts and the extent of neurological
impairments, thereby mitigating the effects of CIRI (Ahmad et al.,
2014; Tuo et al., 2017). The results of this study reinforce the significant
association between ferroptosis and ischemic stroke. Additionally,
ferroptosis exhibits a strong connection with various other
pathological mechanisms, including inflammatory responses and
oxidative stressors (Liu J. et al., 2020; Sun Y. et al., 2020). Thus,
dialectically integrating and analyzing ferroptosis with other related
pathological processes may aid in identifying effective therapeutic
targets for ischemic stroke.

2.5 Cerebral ischemia-reperfusion injury and
glial cells

Microglia are inhabitant immune cells in the central nervous system
that regulate brain microenvironment homeostasis and contribute
significantly to immune responses (Rivest, 2009; Hu et al., 2015; Xu
et al., 2020). Activated microglia rapidly migrate to injury sites and
participate in the inflammatory process during CIRI injury. Microglia
play a crucial role in stroke, characterized by their dual polarization into
pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes (Qin
et al., 2019; Leng and Edison, 2021). When CIRI occurs, most microglia
are of the M2 type, which helps clear cellular debris. As the condition
progresses, microglia polarize to the M1 subtype, exacerbating
inflammation in the brain tissue, intensifying the degree of injury,
and prolonging the duration of damage (Yenari et al., 2006; Hu et al.,
2012; Yang Z. et al., 2015). Increasing evidence suggests that converting
M1 microglia to the M2 subtype to suppress inflammation triggered by
microglia may be a successful approach to alleviate CIRI (Tikka and
Koistinaho, 2001; Jiang et al., 2018; Liu Z. et al., 2017;Wang et al., 2018).
Astrocytes serve as supportive matrix cells within the central nervous
system, undertaking a multitude of regulatory roles. These include the
buffering of extracellular ions, the clearance of amino acid
neurotransmitters, the mitigation of excitotoxicity, and the facilitation
of synaptic development (Freeman, 2010; Sofroniew, 2020). Studies have
confirmed that astrocytes transmit extensive and intricate information
with one another and with neurons directly and interactively (Hu et al.,
2015). Astrocytes are essential for numerous facets of the development
of the nervous system, including synaptic transmission, the modulation
of information processing and signaling, maintenance of ion
homeostasis, regulation of biochemical pathways, and facilitation of
synaptic plasticity. Furthermore, they have the capacity to supply
functional mitochondria to neurons, thereby offering protection
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against ischemic damage. This suggests that the active movement of
mitochondria extends beyond intracellular locations, encompassing
interactions between different cells as well. The relationship between
astrocytes and neurons has been extensively studied (Russo et al., 2021).
Consequently, enhancing the performance of astrocytic mitochondria
and promoting the transfer of healthy astrocytic mitochondria to
neurons could represent effective therapeutic approaches for reducing
neuronal injury caused by ischemic stroke (Figure 2).

3 Various sources of stem cell-derived
exosomes and cerebral ischemia-
reperfusion injury

3.1 Exosomes from bone marrow
mesenchymal stem cells and cerebral
ischemia-reperfusion injury

Bone marrow MSCs are non-hematopoietic progenitor cells of
the skeletal system that significantly play a role in the hematopoietic
microenvironment (Li H. et al., 2016). The process of transplanting

of bone marrowMSCs could facilitate the restoration of neurological
function following cerebral ischemia (Yu et al., 2021). Recent
research has shown that bone marrow MSCs can mitigate CIRI
by modulating the PI3K/Akt/mTOR signaling pathway (He et al.,
2019). Li et al. demonstrated that exosomes exert anti-apoptotic
effects through the Wnt-3a/β-catenin pathway, enhancing the
proliferation of microvascular endothelial cells and facilitating
angiogenesis may serve as a therapeutic strategy to mitigate the
effects of CIRI (Liu et al., 2021). Yang et al. found that exosomes
from bone marrow MSCs alleviate CIRI by targeting DAPK2/Akt
signaling through miR-133a-3p (Yang et al., 2023). Xie et al.
discovered that lncRNA KLF3-AS1, delivered by exosomes from
bone marrow MSCs, promotes Sirt1 deubiquitination through the
KLF3-AS1/miR-206/USP22 network, reducing inflammation
induced by CIRI and providing neuroprotection (Xie et al.,
2023). Zhou et al. confirmed that exosomes derived from bone
marrowMSCs exhibit a protective effect against CIRI by modulating
the expression of FOXO1 via the action of miR-145 (Zhou et al.,
2022). Li et al. found that exosomes originating from bone marrow
MSCs exhibit a protective effect against CIRI by suppressing
TLR5 via the action of miR-150-5p (Li et al., 2022). Additional

FIGURE 2
Reparative effect of mesenchymal stem cell-derived exomes on ischemic brain after cerebral ischemia-reperfusion injury. Mesenchymal stem cell-
derived exosomes release miRNAs such as LncRNA OIP5-AS1, miR-760-3p, miR-145, miR-150-5p, miR-223-3p, miR-193b-5p, andmiR-133a-3p, which
exert anti-programmed cell death (anti-PCD) following cerebral ischemia reperfusion injury. Mesenchymal stem cell exosomes exert neuroprotective
effects by releasing miR-133a-3p, miR-223-3p, miR-503-3p, miR-760-3p, miR-150-5P, and LncRNA OIP5-AS1. Mesenchymal stem cell exosomes
can facilitate the production of brain microvascular endothelial cells via β-catenin, Wnt-3, Lin28a, andmiR-320. Mesenchymal stem cell exosomes exert
immunomodulatory effects by releasing miR-150-5p, miR-223-3p, miR-133a-3p, and miR-193b-5p.
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studies confirmed that exosomes derived from bone marrow MSCs
demonstrate a protective effect against cerebral ischemia injury and
CIRI through the transfer of miR-193b-5p, thereby inhibiting
AIM2 pathway-mediated pyroptosis (Wang et al., 2023a).
Exosomes derived from bone marrow MSCs act as crucial
mediators of the biological functions of these cells (Li et al.,
2020; Zeng et al., 2020), modulating the biological attributes of
target cells via intercellular receptor transfer, targeted ligand
receptors, RNA molecules, and proteins (Zeng et al., 2020). Prior
research suggests that exosomes derived from bone marrow MSCs
can alleviate CIRI by modulating autophagy, highlighting their
potential role in CIRI.

3.2 Exosomes from neural stem cells and
cerebral ischemia-reperfusion injury

Neural stem cells can differentiate into neurons and glial cells
and be integrated into the synaptic network (Zeng et al., 2021).
Owing to their low immunogenicity and widespread availability,
stem cells have attracted increasing attention, offering new avenues
for future clinical disease treatments (Fu et al., 2017). Recent
research has validated that the therapeutic efficacy of neural stem
cells is contingent upon paracrine signaling mechanisms, with
exosomes serving as vital paracrine mediators (Hwang and Hong,
2017). Exosomes promote communication between cells by
delivering proteins, RNA, and microRNAs to neighboring cells
(Rong et al., 2019; Zhong et al., 2020). Recent research indicates
that exosomes from neural stem cells exhibit neuroprotective effects
against CIRI. These effects are primarily manifested as a reduction in
infarct area, brain edema, and neuroinflammation, along with an
improvement in neurological function. Additionally, exosomes
derived from neural stem cells can also regulate the release of
inflammatory factors associated with microglia, thereby
mitigating inflammation (Zhao et al., 2023). Consequently,
exosomes from neural stem cells could exhibit potential
therapeutic targets for CIRI.

3.3 Exosomes from human umbilical cord
blood mesenchymal stem cells and cerebral
ischemia-reperfusion injury

Research has confirmed that human umbilical cord blood MSCs
are crucial in cell therapy for ischemic stroke (Li et al., 2015). These
cells enhance disease progression by either directly differentiating
into endothelial cells or via paracrine signaling mechanisms (Xie
et al., 2020). Exosomes from human umbilical cord blood MSCs are
crucial mediators of paracrinemechanisms, modulating intercellular
communication through the transfer of signaling molecules,
including circular RNA, long non-coding RNA, and microRNA
(Yin et al., 2020). Human umbilical cord blood MSCs exhibit strong
secretory functions, releasing therapeutic biomolecules that promote
cell repair and growth (Yaghoubi et al., 2019). Recent studies on
stroke have demonstrated that stem cell-derived exosomes mediate
therapeutic effects (Kim et al., 2020). Feng et al. demonstrated that
exosomes originating from mesenchymal stem cells of the human
umbilical cord, which contain circDLGAP4, can mitigate

cerebrovascular damage by regulating the miR-320/
KLF5 signaling pathway, thereby alleviating brain microvascular
damage in CIRI (Feng et al., 2023). Therefore, these exosomes can
traverse the BBB and mitigate brain damage after ischemic stroke.

3.4 Exosomes from adipose-derived
mesenchymal stem cells and cerebral
ischemia-reperfusion injury

Numerous preclinical and clinical studies have validated the
efficacy of MSCs in mitigating neurological impairments post-
ischemic stroke (Stonesifer et al., 2017; Chung et al., 2021). A
significant portion of this research was focused on adipose-
derived MSCs owing to their abundance and accessibility
(Bacakova et al., 2018). Numerous researches have shown that
adipose-derived MSCs can mitigate ischemic stroke damage
through enhancing angiogenesis and synaptic restructuring,
diminishing apoptosis, lowering inflammatory elements, and
lessening glial scarring (Ishizaka et al., 2013; Jiang et al., 2014;
Oh et al., 2015; Chi et al., 2018). Wang et al. demonstrated that miR-
760-3p in exosomes prevents ferroptosis by focusing on
CHAC1 within neuronal cells. Anti-ferroptosis strategies are
considered effective measures to improve CIRI (Wang et al.,
2023b). However, the survival of adipose-derived MSCs post-
transplantation is significantly challenging. Research has verified
that these cells mainly achieve their healing impacts via paracrine
routes, with exosomes from adipose-derived MSCs being considered
as potential alternatives (Oh et al., 2015). The therapeutic benefits of
exosomes derived from adipose-derived MSCs have been
investigated and confirmed in hemorrhagic stroke, and their
inhibitory effects on ferroptosis have also been identified (Yi and
Tang, 2021; Lin et al., 2022). Therefore, we hypothesize that adipose-
derived MSCs may exert their therapeutic impacts on CIRI through
ferroptosis inhibition.

3.5 Plasma exosomes and cerebral
ischemia-reperfusion injury

Among these various sources of exosomes, plasma contains
exosomes from all cell sources, which are believed to play
pathological roles in various diseases (Bei et al., 2017; Kang
et al., 2019). Compared to the small number of exosomes
secreted by cells, a large quantity of plasma exosomes can be
easily obtained through the release of reticulocytes.
Additionally, plasma exosomes’ safety is greatly improved by
their absence of immunostimulatory and cancer-inducing
properties (Blanc et al., 2005). Research has verified the
presence of HSP70 in human plasma exosomes, which is
exported to the extracellular space and plays a role in
regulating ROS(Calabrese et al., 2004; Cheng et al., 2014). A
multitude of research has shown that plasma exosomes can
ameliorate cerebral ischemia-reperfusion injury by markedly
decreasing the size of brain infarcts, enhancing neurological
performance, diminishing apoptosis, and mitigating oxidative
stress (Luo et al., 2019). Plasma exosomes have been thoroughly
studied as potential therapeutic agents and biomarkers for
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ischemic stroke (Zhou et al., 2018; Otero-Ortega et al., 2019).
These include a range of operational proteins produced by cells
that donate. Recent research indicates that circulating exosomal
proteins might influence target receptor cells’ functionality and
contribute to neuroprotection in I/R injury. However, the
makeup of these proteins is still not well understood, and the
specific signaling routes they stimulate are yet to be thoroughly
investigated (Shi et al., 2019) (Figure 3).

4 Summary and outlook

The development of CIRI involves various complex
pathophysiological processes. Stem cell transplantation for
ischemic stroke treatment can enhance endogenous neural
regeneration and brain tissue self-repair. However,
therapeutic efficacy is directly affected by the heterogeneity of

stem cells. Exosome-based acellular therapies have gained
attention owing to their ability to mitigate risks associated
with direct stem cell therapies, such as low survival rates,
strong immune rejection, and high mutagenic tumorigenicity.
The role of exosomes in transporting functional proteins, lipids,
and nucleic acids has garnered increasing attention. Numerous
studies have confirmed that exosomes alleviate CIRI through
various mechanisms, suggesting broad application prospects.
The molecular mechanisms by which extracellular vesicles
regulate CIRI include: inhibition of programmed cell
apoptosis (by proteins such as HSP70 and Wnt-3) to promote
angiogenesis and neural repair, regulation of M1/
M2 polarization of microglia to alleviate inflammation, and
maintenance of blood-brain barrier integrity through
circRNAs (such as circDLGAP4). However, the precise
mechanisms through which exosomes affect CIRI are not yet
fully understood. Therefore, further in-depth studies are needed

FIGURE 3
Exosomes from different mesenchymal stem cells mediate apoptosis in brain cells after cerebral ischemia-reperfusion injury. Bone marrow
mesenchymal stem cell exosomes inhibit neuronal apoptosis by targeting the DAPK2/Akt signaling pathway through miR-133a-3p. They also promote
Sirt1 deubiquitination, which alleviates inflammation damage induced by cerebral ischemia-reperfusion injury through the lncRNA KLF3-AS1/KLF3-AS1/
miR-206/USP22 pathway. They downregulate FOXO1 through miR-145 to inhibit neuronal apoptosis and reduce neuroinflammatory damage via
the miR-223-3P/CysLT2R pathway. Mesenchymal stem cells also inhibit neuronal apoptosis through the miR-150-5p/TLR5 signaling pathway and
suppress neuronal pyroptosis via themiR-193b-5p/AIM2 pathway. Exosomes that originate frommesenchymal stem cells in human umbilical cord blood
mitigate cerebrovascular damage through the modulation of the miR-320/KLF5 signaling pathway. Adipose-derived mesenchymal stem cell exosomes
exert neuroprotective effects by inhibiting ferroptosis through the miR-760-3p/CHAC1 pathway.
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to clarify this relationship. Standardized preparation of
extracellular vesicles, targeted delivery strategies, and clinical
translation pathways should also be explored.
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