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Ischemic stroke is a leading cause of death and disability worldwide. Therefore,
there is a critical need to explore the underlying mechanisms and develop
effective treatment strategies for ischemic stroke. As small and non-
immunogenic nucleic acid molecules, aptamers can be easily chemically
modified, break through the blood-brain barrier, and be screened using the
classic Systematic Evolution of Ligands by Exponential Enrichment. With the
advancements in emerging technologies, aptamer-based strategies have
provided diagnostic and therapeutic potential for applications in central
nervous system diseases. Aptamers have become a useful tool for targeted
therapy and biomarker discovery in ischemic stroke. This review presents
recent advances and perspectives on aptamer applications in stroke
prevention, treatment, and diagnosis, focusing on targeting pathological blood
clotting or thrombosis, inflammatory responses, and specific biomarkers in key
cells.
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1 Introduction

Aptamers are a class of single-stranded DNA or RNA that can bind to various target
molecules with high affinity and specificity, such as proteins, peptides, cells, pathogens, and
viruses (Jayasena, 1999; Zhang et al., 2019). Aptamers can be screened directly from in vitro
libraries using the classic Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) method (Tuerk and Gold, 1990). As an emerging recognition element in the
construction of biosensors, aptamers have more advantages than traditional antibodies
because they are smaller, have lower toxicity and immunogenicity, and are easier to
synthesize (Toh et al., 2015; Zhuo et al., 2017). Thus, aptamers have attracted
increasing attention for their clinical applications, especially in peripheral system
diseases, such as cancer, and inflammatory diseases (Zhuo et al., 2017; Zhou et al.,
2018). Aptamers can easily penetrate the blood-brain barrier (BBB), revealing their
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potential value in neurological diseases. Aptamer-based tests or
biosensors targeting specific biomarkers may contribute to the
diagnosis, therapy, and imaging of central nervous system (CNS)
diseases (Ozturk et al., 2021; Qu et al., 2017).

Stroke is a leading cause of morbidity and disability worldwide.
Ischemic stroke accounts for approximately 85% of all stroke cases
and leads to the development of cerebral ischemia and ischemia-
reperfusion injury (Katan and Luft, 2018). Rapid reperfusion via
intravenous thrombolysis or endovascular thrombectomy is a
common treatment for ischemic stroke. However, considering the
narrow therapeutic window and safety concerns, current treatments
do not provide maximal benefit and functional recovery in stroke
patients (Mao et al., 2022). Brain ischemia can cause a complex
series of pathophysiological events, including oxidative stress,
inflammation, apoptosis, ionic imbalance, and excitotoxicity
(Kuriakose and Xiao, 2020). The exploration of the underlying
mechanisms and effective treatment strategies via potential
targets in ischemic stroke should be a good approach. Because
aptamers have the ability to bind specifically to proteins or cells,
scientists are trying to use aptamers to treat brain ischemia or detect
biomarkers that reflect pathological processes. This review mainly
focuses on recent advances in aptamer-based applications in clinical
medicine, with an emphasis on their applications in the treatment
and molecular detection of ischemic stroke, and their
future prospects.

2 How to screen specific aptamers

SELEX is a combinatorial chemical technique used to screen
specific aptamers from a large nucleic acid library containing various
candidates. The main procedure of classical SELEX includes
repeated rounds of partitioning, amplification, and selection with
high affinity for targets (Tuerk and Gold, 1990). Since its generation
in 1990, the SELEX technology has been continuously developed. To
recognize different targets with their respective characteristics, a
series of novel SELEX methods have been generated (Huang et al.,
2021). Recently, minimum aptamer publication standards for de
novo aptamer selection have been proposed, emphasizing
standardization of the specificity and repeatability of the SELEX
process (McKeague et al., 2022). The following checkpoints should
be considered when screening and obtaining specific aptamers,
including pre-SELEX preparation, SELEX standardization, and
post-SELEX validation (Figure 1).

2.1 Pre-SELEX preparation

A full understanding of the characteristics of the target material
is the first critical step in determining which SELEX method should
be used, as the nature of different types of targets-ranging from small
molecules to proteins and even whole cells-dictates the specific
challenges and requirements for aptamer selection.

(i) Small molecular targets. Small molecules (with a relative
molecular mass less than 1,000, such as toxins, antibiotics,
and hormones) have simple structures that typically feature
with few binding sites and weak affinities for nucleic acids.

This makes it challenging to separate small molecule-nucleic
acid complexes (Ruscito and DeRosa, 2016). However, with
the rapid advancement of SELEX technology, several
innovative methods have been developed to optimized the
recognition, fixation, and separation processes, including
capture-SELEX, graphene oxide-SELEX, GOLD-SELEX,
capillary electrophoresis-SELEX, and affinity
chromatography-SELEX (Zhang et al., 2019). Among
these methods, capture-SELEX using magnetic beads has
been specifically developed to immobilize oligonucleotides
rather than the small molecule targets themselves. This
approach offers several advantages, such as rapid
separation, ease of modification, and the ability to work
with low target amounts (Lauridsen et al., 2018).
Additionally, graphene oxide-SELEX allows for the
screening of small molecules in their natural state, and it
can even be used to identify multi-target aptamers (Nguyen
et al., 2014).

(ii) Protein targets. Most protein targets have large molecular
weights and complex structures and properties; therefore, it
may be difficult to plan the SELEX procedure with the
purified soluble protein target directly (Bayat et al., 2018).
For the target protein requiring the presence of co-receptor
or location in cell membrane, the novel complex target
SELEX can realize selective isolation of aptamers from
various cell surface proteins (Shamah et al., 2008).
Capillary electrophoresis-SELEX can be used for non-
immobilized protein targets without steric hindrance (Yan
et al., 2019). Atomic force microscopy-SELEX can isolate
aptamers with high affinity by detecting the force between
the proteins on the sample surface and oligonucleotide
probes (Miyachi et al., 2010).

(iii) Cell targets. Cell-SELEX was recently developed to select
target molecules or proteins in their native state, instead of
tedious extraction and purification of targets. It is generally
divided into two types: directly targeting cells and expressing
targets in cells using gene editing (Duan et al., 2022). To
exclude non-specific selection, suitable materials must be
prepared for negative or counter selection. For the cell-based
assay, normal or untreated cells are used as controls.
Moreover, the in vivo distribution, concentration and
analogs of target materials should be considered.

2.2 SELEX standardization

In traditional SELEX or its variants, multiple parameters may
affect the discovery and function of high affinity aptamers. Thus,
establishing a standard operating procedure (SOP) for SELEX is the
basis for successful aptamer screening. The following elements
should be included in the standard operating procedure. i)
Materials and reagents. First, information on positive and
negative/counter targets should be provided, because the
screening result depends on the chosen target. The most
common protein targets and their expression ranges, tags,
expression systems, and amino acid sequences should be listed.
Then, a detailed immobilization strategy for the target should be
considered, including the conditions and type of immobilization,
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related agent sources and concentrations, constituents of the
binding/selection/blocking buffer, and pH. ii) Random library
and primers. The length of the random region and primer
binding sites in the library are the key parameters for the SELEX
procedure; therefore, the sequences of the library and primers
should be listed. The following information is also useful: the size
and concentration of the library and the synthesis and purification of
the library. iii) SELEX conditions. Based on the library/target
information and target immobilization, the subsequent SELEX
process should be performed step-by-step, and a clear schematic
illustration is recommended. Several key points need to be
addressed, including partitioning conditions, selection conditions
for each round, preparation of pools for each round, PCR
conditions, and negative/counter selection. iv) SELEX repetition
and optimization. Given that the published selection criteria will be
adopted by other individual laboratories, all experiments should be
repeated at least three times under similar conditions to ensure
feasibility, and then optimized to the publishable standard. v)
Sequence analysis. After the SELEX process is completed, the
selected aptamer pool should be determined using high-
throughput sequencing. The sequencing results were compared,
homology of the aptamer sequences was analyzed, and aptamers
with high proportions were selected for further experiments.

2.3 Post-SELEX validation

To obtain an excellent aptamer, further post-SELEX validation is
necessary, including structural validation and performance
assessment of affinity, sensitivity, specificity, and practicability.
First, the selected candidates are used to predict the minimum
free energy of the aptamer sequences and evaluate the stability of
the secondary structure. The predicted stem-loop structure is one of
the most commonly used constituents in target recognition. A lower
minimum free energy and higher percentage of G/C may increase

the stability of the aptamer-target complex. The equilibrium
dissociation constant (Kd) of the candidate aptamers is
determined to evaluate the affinity for the target using several
methods such as surface plasmon resonance analysis. The lowest
Kd value indicates the highest affinity, which is used as a key
evidence for the superiority of the aptamer. Subsequently,
molecular docking is applied to predict the binding sites and key
interactions between the target and selected aptamer. The aptamer is
optimized by further truncation to obtain the shortest possible
length and an acceptable affinity. A specific aptasensor may be
then designed to evaluate the sensitivity and specificity of the
screened aptamer to achieve practicability.

3 Recent advances in aptamer
applications for ischemic stroke

Owing to the aforementioned advantages and widely applicable
targets, aptamers, also called chemical antibodies, show great
potential in the diagnosis, therapy, and imaging of diseases in
clinical settings. Aptamers can cross the BBB to recognize and
conjugate to specific targets in the CNS, providing an
opportunity for their application in neurological disorders such
as ischemic stroke (Monaco et al., 2017). Aptamers have gradually
become a useful tool for targeted therapy and biomarker discovery in
ischemic stroke research.

3.1 Target to pathological blood clotting or
thrombosis

Pathological blood clotting or thrombosis can limit vital blood
flow to organs, leading to catastrophic events, including ischemic
stroke. Recent studies have reported that aptamer systems can
increase the efficacy and safety of antithrombotic and anti-

FIGURE 1
The proposed SELEX checkpoints for de novo aptamer selection, including pre-SELEX preparation, SELEX standardization, and post-SELEX
validation.
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platelet treatments, which may be the mainstay of stroke therapy or
prevention (Henninger and Mayasi, 2019). Aptamers that target the
von Willebrand Factor (vWF) against platelet function are of
continuous interest. Under pathological conditions, the vWF is
activated through physical deformation that exposes its
A1 domain and enables its binding to the platelet receptor
glycoprotein 1b, resulting in thrombosis. Attacking the
interaction between the vWF and glycoprotein 1b on the outer
shell of thrombus may facilitate recanalization of platelet-rich
thrombotic occlusions (De Meyer et al., 2012). From the first
aptamer ARC1172 against the vWF to the newest generation of
BB-031/DTRI-031 aptamers, several vWF-related aptamers have
been reported, some of which are in the clinical trial stage
(Table 1) (Huang et al., 2009; Ismail et al., 2024; Gilbert et al.,
2007; Markus et al., 2011; Siller-Matula et al., 2012; Zhu et al., 2020a;
Zhu et al., 2020b; Kovacevic et al., 2021; Sakai et al., 2020; Nimjee
et al., 2019; Shea et al., 2022; Carfora et al., 2024). As not systemic
induction of fibrinolysis as does recombinant tissue plasminogen
activator, anti-vWF aptamers would be a highly desirable alternative
to current therapeutic approaches without the hemorrhage risk.
However, increased peri-operative bleeding and anemia associated
with ARC1779 have been reported in a previous randomized trial
(Markus et al., 2011). One approach to mitigate the risk of
hemorrhage is to use an aptamer inhibitor. As oligonucleotide
sequences, aptamers provide a code for complementary
sequences that can be used to inhibit their functions (Henninger
and Mayasi, 2019). For example, the complementary antidote RNA
aptamer Ch-9.14-T10 can reverse the vWF aptamer
ARC1779 activity in vitro and in vivo, resulting in substantial
attenuation of bleeding in surgically challenged mice (Nimjee
et al., 2012). Similarly, a complementary aptamer, BT101, was
developed to specifically reverse BT100- or BT200-induced effects
on vWF activity and platelet function without any adverse effects
(Zhu et al., 2020b). The aptamer-antidote system may realize the
safety and efficacy of aptamers used for ischemic stroke prevention
and therapy, in addition to targeting the vWF. One such system is
REG1, which blocks the conversion of factor IX to IXa. In a phase
I/II trial, controllable anticoagulation therapy was reported in
healthy volunteers, without obvious bleeding or side effects.
Nevertheless, in another phase III trial, REG1 was suggested to
be associated with severe allergic reactions, and there was a lack of
evidence that it reduced ischemic events or bleeding compared with
bivalirudin (Zhu et al., 2020; Chan et al., 2008). Therefore, the
positive and negative effects of REG1 require further investigation.

As early as 2004, single-stranded DNA aptamers that bind to
human pro-urokinase were screened; however, further application
research is required (Lincoff et al., 2016). With the emergence of
tissue plasminogen activator (tPA) thrombolysis for ischemic stroke,
minimization of tPA-mediated toxicity to optimize the thrombolytic
effect has attracted increasing attention (Henninger and Mayasi,
2019). For example, tPA has several adverse effects mediated by its
interaction with low-density lipoprotein receptor-related protein-1
(LRP-1) (Skrypina et al., 2004). Therefore, tPA-binding RNA
aptamers have been developed to inhibit tPA/LRP-1 complex
formation. Two aptamers (K18/K32) were found to efficiently
inhibit tPA-LRP-1 association and LRP-mediated endocytosis in
human astrocytes and vascular endothelial cells, providing a viable
strategy to improve the safety of thrombolytic treatment in stroke

through co-administration with tPA (Yepes, 2024). Additionally, a
factor IXa aptamer, Ch-9.3t, administered intravenously in murine
models of stroke can attenuate neurological function, reduce
thrombin generation, and decrease inflammation (Bjerregaard
et al., 2015). The two most potent aptamers, AYA1809002 and
AYA1809004, which bind to the active site of thrombin, were
recently suggested as potent anti-thrombin candidates (Blake
et al., 2011). Further studies are necessary to validate the safety
and efficacy of these aptamers in clinical settings.

3.2 Target to inflammatory responses

The onset of stroke can initiate an inflammatory cascade in both
the CNS and systemic immune system, which plays a crucial role in
the progression of ischemic pathology (Ayass et al., 2023).
Therefore, aptamers targeting inflammatory responses may be
helpful tools for stroke treatment and molecular diagnosis
(Table 2). The detection of C-reactive protein (CRP) could
significantly predict a population with high risk of stroke.
Patented CRP aptamers have been developed as biomolecules for
detection and experimental assays of CRP inhibition (Guo et al.,
2023). These aptamers may contribute to the design of aptamer-
dependent drugs and delivery strategies for future applications
(Miramontes-Espino and Romero-Prado, 2013). Anaphylatoxin
complement component 5a (C5a) is a potent inflammatory
mediator generated during complement activation and is
implicated in inflammatory and neuronal damage. NOX-D20, an
active L-oligonucleotide aptamer that can bind to the physiological
sites in C5a to block its binding to CD88, was screened in vitro (Wu
et al., 2016). Furthermore, a framework nucleic acidconjugated with
anti-C5a aptamers was used for stroke treatment in a rat model and
showed rapid penetration into different brain regions and effective
alleviation of neurotoxicity and inflammation in the brain (Yatime
et al., 2015). Here, the development of toll-like receptor 4 (TLR4)-
binding aptamers for the treatment of ischemic stroke needs to be
mentioned. TLR4 plays a fundamental role in the activation of
innate immunity and inflammatory response elicited by ischemic
insults (Li et al., 2019). Since TLR4 mediates brain damage,
screening for TLR4-blocking aptamers may be a useful strategy
for the treatment of stroke. In two recent studies, a truncated form of
ApTLR#4FT, ApTOLL, showed long-lasting protective effects
against brain damage induced by middle cerebral artery occlusion
in rats, supporting its promising application in patients undergoing
arterial recanalization (Oo, 2024; Fernandez et al., 2018).
Subsequently, the first-in-human phase I clinical trial of ApTOLL
was performed in healthy volunteers and showed good
pharmacokinetic and safety profiles (Aliena-Valero et al., 2024).
Another Phase Ib/IIa clinical study (APRIL) is in progress to
evaluate the administration of ApTOLL together with
endovascular treatment (in acute ischemic stroke (AIS) patients,
promoting its future clinical positioning for stroke therapy
(Hernandez-Jimenez et al., 2022). In fact, a highly specific
aptamer, L1, for the human soluble growth-stimulating gene
protein (sST2) was in vitro developed in our latest study
(Hernandez-Jimenez et al., 2023). The IL-33/ST2 pathway plays a
critical role in neuroinflammation-related CNS diseases, including
ischemic stroke. As a decoy receptor of IL-33, specific targeting of
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sST2 may be a rational choice to attenuate neuroinflammation and
promote CNS repair (Ayass et al., 2023). Aptamers against sST2may
be an available approach for detecting sST2 concentrations and
restoring the protective effects of IL-33/ST2 against ischemic stroke.

3.3 Target to specific biomarkers in key cells

Cell-specific targeted therapies for ischemic stroke are currently
under development. Superior to cell-SELEX, brain slice-based
SELEX allows for the evolution of aptamers for more target

molecules in various cells. Vigilin exhibits enhanced release from
cultured hippocampal neurons after in vitro oxygen glucose
deprivation. Using frozen brain slices from a mouse model of
ischemia, a specific aptamer LCW17 targeting vigilin was selected
to be potentially applied to define the molecular mechanism and
diagnosis underlying ischemic stroke (Zeng et al., 2024). Regulator
of calcineurin 1 isoform 1 (RCAN1.1) is highly expressed in the
brain (Liu et al., 2019). Overexpression of RCAN1.1 significantly
increased cell apoptosis in a mouse middle cerebral artery occlusion
model and in cultured neurons under oxygen glucose deprivation
conditions. The RNA aptamer of RCAN1.1, R1SR13, was recently

TABLE 1 Summary of aptamers targeting pathological blood clotting or thrombosis for stroke treatment.

Aptamer Mode of action Application Developmental
stage

ARC1172 Binds the A1 domain of vWF Inhibits vWF-dependent platelet aggregation to prevent or treat
thrombosis (Huang et al., 2009)

ARC1172-based biotherapeutic conjugate for shear responsive
release of vWF A1 domain (Ismail et al., 2024)

Preclinical (in vitro)

ARC1779 Blocks the interaction of vWF with
GP1b on platelets

Inhibits platelet aggregation with less increase in bleeding than
conventional antiplatelet agents (Gilbert et al., 2007)

Reduces cerebral embolism after CEA in stroke patients (Markus
et al., 2011)

Phase I/II

ARC15105 Fully 2′OME modified ARC1779 A potent antagonist of vWF-mediated platelet activation,
aggregation and adhension (Siller-Matula et al., 2012)

Preclinical (in vitro and in
vivo)

BT100 Four more extra base-pairs added to
ARC15105 (Zhu et al., 2020a)

/ /

BT200 A pegylated form of the aptamer BT100 Promising inhibition of human vWF and prevention of arterial
occlusion in cynomolgus monkeys (Zhu et al., 2020b)

Blocks vWF and platelet function in blood of patients with LAA
stroke (Kovacevic et al., 2021)

Preclinical (in vitro and in
vivo)

Phase I

TAGX-0004 To the vWF A1 domain Shows total inhibition of thrombus formation superior to
ARC1179 (Sakai et al., 2020)

Preclinical (in vitro)

DTRI-031 A vWF aptamer-antidote pair A novel, rapidly reversible antiplatelet agent that may prove
valuable for the treatment of acute thrombotic events in the heart,

brain, and peripheral vasculature (Nimjee et al., 2019)

Preclinical (in vitro and in
vivo)

BB-031 (also called DTRI-031) Targets vWF A1 domain-platelet GP1b
interactions

Dose-dependent vWF inhibition by BB-031 correlates with
thrombolysis in a microfluidic model of arterial occlusion (Shea

et al., 2022)
Targeted inhibition of vWF by BB-031 increases recanalization
and reperfusion, and reduced infarct volume in a canine model of

BAO stroke (Carfora et al., 2024)

Preclinical (in vitro and in
vivo)

REG1 (pegnivacogin, RB006 &
anivamersen, RB007)

Blocks conversion of factor IX to IXa Controllable anticoagulation in healthy volunteers without
bleeding events or side effects (Chan et al., 2008)

REG1 is associated with severe allergic reactions without reduction
of ischemic events or bleeding compared with bivalirudin (Lincoff

et al., 2016)

Phase I/IIb/III

ssDNA aptamer for uPA Binds human pro-urokinase (Skrypina
et al., 2004)

/ /

K18/K32 tPA-binding RNA aptamers inhibiting
the tPA/LRP-1 complex formation

Inhibits tPA-LRP-1 association and LRP-mediated endocytosis in
human astrocytes and vascular endothelial cells (Bjerregaard et al.,

2015)

Preclinical (in vitro)

Ch-9.3t Binds to factor IXa Attenuate neurological function, reduce thrombin generation, and
decrease inflammation in murine models of stroke (Blake et al.,

2011)

Preclinical (in vivo)

AYA1809002/AYA1809004 Binds to the active site of thrombin Suggests to be the potent anti-thrombin candidates (Ayass et al.,
2023)

Preclinical (in vitro)

Note: vWF, von Willebrand factor; GP1b, glycoprotein 1b; CEA, cartoid endarterectomy; LAA, large artery atherosclerosis; BAO, basilar artery occlusion; uPA, urokinase-type plasminogen

activator; tPA, tissue plasminogen activator; LRP, low density lipoprotein receptor related protein.
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shown to attenuate RCAN1.1-induced neuronal apoptosis, both in
vivo and in vitro, providing a potential approach for AIS prevention
(Peiris and Keating, 2018). Cerebrovascular endothelial cells (CECs)
are integral components of the BBB and are the first-line brain cells
affected by cerebral ischemia. Vascular cell adhesion molecule-1
(VCAM-1) expressed on endothelial cells can regulate vascular
adhesion, leukocyte migration, and inflammatory infiltration
(Yun et al., 2022; Supanc et al., 2011). Since the expression of
VCAM-1 was increased in CECs after stroke, a VCAM-1-based
RNA aptamer was recently obtained, and an effective aptamer-based
delivery platform to target CECs was constructed to treat cerebral
ischemia (Franx et al., 2021; Chauveau et al., 2007). Several cell types
such as astrocytes, microglia, neutrophils, and macrophages also
play critical roles in tissue damage and repair, meriting further
investigation based on aptamer technology.

3.4 Other aptamer applications in
ischemic stroke

Other aptamer-based applications have also been reported to be
promising in stroke research. High levels of homocysteine (Hcy) are
associated with an increased risk of many diseases, including stroke
(Hu et al., 2023). In a recent study, a DNA aptamer (apt8) that binds
to the alkane thiol chain of Hcy with exceptional specificity against
cysteine was successfully isolated; this specific aptamer combined
with a reusable fluorescent optical fiber biosensor greatly expanded
the practical utility of aptasensors in the molecular diagnosis of
ischemic stroke (Pinzon et al., 2023). Similarly, a one-step
aptasensor based on multifunctional carbon nanotubes using
square-wave voltammetry, and a label-free aptasensor based on
gold nanoparticles were also developed to realize the
ultrasensitive detection of Hcy (Zhou et al., 2023; Chen et al.,
2023). In addition to molecular diagnosis, aptamers can serve as
molecular imaging probes for the rapid detection of thrombi. The
aptamer Tog25t targeting thrombin can rapidly localize to visualize
pre-existing clots in vivo, which may be applied in acute care and

perioperative settings for stroke (Beitollahi et al., 2020). Likewise, an
aptamer-based expansion microscopy platform was recently
developed for the super-resolution imaging of neuronal dendritic
spines. Among these, the aptamer yly12 could specifically bind to the
L1 cell adhesion molecule, a transmembrane protein expressed on
neurites. A methacryloyl moiety was conjugated to the 5ʹ end of
yly12 to achieve physical magnification of dendritic spine
morphology, which contributed to its application in elucidating
pathological mechanism of early stroke (Gray et al., 2023).
Moreover, a novel aptamer-based proteomic assay (SOMAscan)
has facilitated the unbiased screening of outstanding proteins in the
cerebrospinal fluid and plasma samples from ischemic animals or
AIS patients, providing an extended strategy to support future
studies in this field (Zhuo et al., 2023; Simats et al., 2018).

4 Conclusion and future perspective

It is possible that SOMAscan can be an effective tool for
screening promising candidates in the cerebrospinal fluid,
peripheral circulation, and even brain tissue, which contributes to
the further elucidation of the molecular mechanism of cerebral
ischemia. Subsequently, a novel diagnostic and treatment strategy
can be developed, in which the screening of specific aptamers is also
viable. According to the reported SOMAscan results, several
candidate proteins have been identified, including creatine kinase
B-type, amphiregulin, pyridoxal phosphate phosphatase, cytidine
monophosphate kinase, and calcium/calmodulin-dependent protein
kinase II (CaMK2) members, and the role of these and related
pathways should be further explored to identify possible therapeutic
targets (Zhuo et al., 2023; Simats et al., 2018). In addition to
pathological blood clotting and thrombosis, neuroinflammation,
and apoptosis, the pathological mechanisms underlying stroke
involve other complex processes, such as oxidative stress,
excitotoxicity, and autophagy (Mao et al., 2022). Capture or
functional blocking via small molecule-binding aptamers
targeting these mechanisms may have tremendous potential in

TABLE 2 Summary of aptamers targeting inflammatory responses for stroke treatment and molecular detection.

Aptamer Mode of action Application Developmental
stage

CRP-apt Binds to CRP Patented CRP aptamers have been developed as biomolecules used for detection or
experimental assays with the purpose of CRP inhibition (Miramontes-Espino and

Romero-Prado, 2013)

Preclinical (in vitro & in
vivo)

NOX-D20 Binds to mouse C5a and C5a-desArg Blocks the binding of C5a to CD88 (Yatime et al., 2015) Preclinical (in vitro)

aC5a-FNA A platform for delivering aC5a Selectively reduces C5a-mediated neurotoxicity and effectively alleviates
inflammation and oxidative stress in the ischemic brain (Li et al., 2019)

Preclinical (in vitro & in
vivo)

ApTOLL A truncated form TLR4-blocking DNA
aptamer ApTLR#4FT

Shows a long-lasting protective effect against brain injury induced by MCAO in rat
(Fernandez et al., 2018; Aliena-Valero et al., 2024)

A very good pharmacokinetic and safety profile in healthy volunteers
(Hernandez-Jimenez et al., 2022)

In progress to evaluate the administration of ApTOLL together with EVT in
patients with AIS (Hernandez-Jimenez et al., 2023)

Preclinical (in vitro & in
vivo)

Phase I
Phase Ib/IIa

Apt-L1 Specific target to human sST2 (Zeng
et al., 2024)

/ /

Note: CRP, C-reactive protein; C5a, complement component 5a; aC5a, anti-C5a aptamers; FNA, framework nucleic acid; TLR4, Toll-like receptor 4; MCAO, middle cerebral artery occlusion;

EVT, endovascular treatment; AIS, acute ischemic stroke; sST2, soluble growth stimulating gene protein.
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the field of stroke (Figure 2). i) The formation and accumulation of
advanced glycation end products (AGEs) can evoke oxidative stress
and inflammatory responses by interacting with a receptor for AGEs
(RAGE), contributing to the development of various diabetes- or
aging-associated disorders (Pala et al., 2024). Therefore, the
therapeutic potential of DNA aptamers against the AGE-RAGE
axis in diabetes-related complications is promising, particularly
when applied to stroke (Mao et al., 2022; Rao et al., 2022). ii) In
several neurological disorders, excessive activation of glutamate ion
channels, including N-methyl-d-aspartate (NMDA), α-amino-3-
hydroxy-5-methyl-4-isoxazole, and kainate receptors, is involved
in excitotoxicity. 2′F-modified RNA aptamers against GluN2A-
containing N-methyl-d-aspartate, 2ʹ-fluoro-modified kinate
receptor-selective RNA aptamers, and chemically modified α-
amino-3-hydroxy-5-methyl-4-isoxazole receptor RNA aptamers
have been designed, which may be used in targeted drug
delivery, imaging, or therapeutic intervention for stroke
(Yamagishi et al., 2016; Yamagishi and Matsui, 2018; Lee et al.,
2014). Additionally, a peptide aptamer against L-glutamate-based

electrochemical amperometric sensors has been developed as a novel
detection tool (Huang et al., 2017). iii) ST2-104, a non-arginine
(R9)-fused Ca2+ channel-binding domain 3 peptide aptamer,
attenuates neuronal apoptosis by inhibiting CaMK kinase β-
mediated autophagy, providing novel insights into the potential
neuroprotective effects of ST2-104 in cerebral ischemia (Jaremko
et al., 2020). Moreover, cognitive impairment and dementia are
major sources of morbidity and mortality after stroke; therefore, the
development of precise sensing tools for early prevention and
diagnosis of related complications is essential (Wang et al., 2022).
Recently, aptamer-based biosensors and novel test kits have been
designed to quantitatively monitor cognitive impairment-associated
biomarkers, such as classical amyloid−β peptides and tau proteins,
offering a promising means for application in cerebral ischemia (Yao
et al., 2021).

Aptamer-based diagnostic strategies targeting specific
biomarkers have gradually been applied to ischemic stroke.
Generally, biosensors comprise three key components: molecular
recognition, signal conversion, and signal output. When developing

FIGURE 2
Current advances and future perspective of aptamer applications in ischemic stroke. Aptamers have gradually become a useful tool for targeted
therapy and biomarker discovery in the field of ischemic stroke, via targeting to pathological blood clotting or thrombosis, inflammatory responses, and
specific biomarkers in the key cells. Capture or function blocking via small molecule-binding aptamers targeting the important pathological mechanisms
would have tremendous potential in the future research and applications, such as oxidative stress, excitotoxicity, autophagy, and cognitive
impairment.
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an aptamer-based biosensor, the molecular elements of the aptamer
are vital to determine its ability to achieve sensitive and rapid
detection. Combined with novel biomaterials, the common
diagnostic platforms based on aptasensors and their principles
are presented in Supplementary Figure S1 and are expected to
replace enzyme-linked immunoreactions and detect specific
biomarkers for stroke prevention and diagnosis (Rost et al., 2022;
Zamanian et al., 2022; Verma et al., 2023; Feagin et al., 2018;
Nooranian et al., 2022; Ueno, 2021; Scognamiglio et al., 2015;
Dong et al., 2020). Considering the advantages and disadvantages
of aptamers, antibody-aptamer hybrid biosensors and multi-target
aptasensors were recently designed to optimize the detection
capacity for disease diagnosis (Buranachai et al., 2012; Xu and
Lu, 2010). Furthermore, diverse modifications of aptamers would
offer a greater chance of success for therapeutic and diagnostic
applications in ischemic stroke, including aptamer-drug conjugates,
targeted delivery materials, therapeutic agents, and molecular
imaging (Jarczewska and Malinowska, 2020). For example,
aptamer-siRNA chimeras for nerve cell-targeted delivery of
therapeutic oligonucleotides may be further highlighted for
clinical development in the field of stroke (Nguyen et al., 2016;
Ni et al., 2021; Kruspe and Giangrande, 2017). Overall, along with
the advancements in nanotechnology, microfluidics, and
microarrays, aptamers may play an important role in clinical
applications.
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