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Background: Predicting drug-target interaction (DTI) is a crucial phase in drug
discovery. The core of DTI prediction lies in appropriate representations learning
of drug and target. Previous studies have confirmed the effectiveness of graph
neural networks (GNNs) in drug compound feature encoding. However, these
GNN-based methods do not effectively balance the local substructural features
with the overall structural properties of the drug molecular graph.

Methods: In this study, we proposed a novel model named GNNBlockDTI to
address the current challenges. We combined multiple layers of GNN as a
GNNBlock unit to capture the hidden structural patterns from drug graph
within local ranges. Based on the proposed GNNBlock, we introduced a
feature enhancement strategy to re-encode the obtained structural features,
and utilized gating units for redundant information filtering. To simulate the
essence of DTI that only protein fragments in the binding pocket interact with
drugs, we provided a local encoding strategy for target protein using variant
convolutional networks.

Results: Experimental results on three benchmark datasets demonstrated that
GNNBlockDTI is highly competitive compared to the state-of-the-art models.
Moreover, the case study of drug candidates ranking against different targets
affirms the practical effectiveness of GNNBlockDTI. The source code for this
study is available at https://github.com/Ptexys/GNNBlockDTI.
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1 Introduction

Rapid identification of the interaction between drug compound
and biological target is one of the crucial phases in drug discovery
lim2021review. Traditional wet-lab drug-target interaction (DTI)
screening is both expensive and time-consuming, with no assurance
of success (Waring et al., 2015). Introducing computational methods
to DTI identification for virtual screening can mitigate the issues
associated with traditional approaches (Zhu, 2020). Specifically,
machine learning, and more recently, deep learning, have
significantly accelerated the validation cycle of new drug
discovery while reducing costs and providing guidance for
subsequent wet-lab experiments (Mak et al., 2024). In machine
learning, the DTI prediction framework is defined as a dual-branch
paradigm consisting of feature engineering for drugs and targets,
respectively. Prediction models measure the possibility of
interaction between a pair of drug targets by considering their
feature representations (Zhang et al., 2017).

Drug compounds and target proteins were initially represented
as a series of feature vectors and then calculated by a classifier to
generate interaction scores (Cao et al., 2014). Compared to manual
processing, automatic encoding of feature vectors using deep neural
networks is a more efficient way (Hu et al., 2016; Wen et al., 2017).
DeepDTA systematically demonstrated the superiority of drug/
target embeddings learned by convolutional neural networks
(CNNs) by comparison with the preprocessed feature matrices,
even when extracted from the simple sequence inputs, drug
SMILES strings, and protein amino acid sequences (Öztürk et al.,
2018). Building on DeepDTA, GraphDTA employed molecular
graphs instead of SMILES string for drug representation learning
using graph neural networks (GNNs). The enhanced performance
underscores the effectiveness of drug graph representations in the
field of DTI predictions (Nguyen et al., 2021). Meanwhile,
GraphDTA demonstrated that the 3-layer GNN used in their
work could automatically recognize key substructures (functional
groups) in drug graphs, even when no prior knowledge was given.
Based on GNNs, DeepMGT-DTI extracted latent vectors from each
of GNN layers and fused multi-scale latent vectors using the
Transformer encoder for high-dimensional graph embeddings
(Zhang et al., 2022). However, the shallow GNN-based
framework is unable to adequately handle all of potential
structural patterns that exist in molecular graphs, especially in
complex molecules (Wieder et al., 2020). To capture high-
dimensional topological features, DeepGLSTM input multi-hop
adjacency matrices into GNNs, including the basic connectivity
of chemical bonds and extended connections (Mukherjee et al.,
2022). Despite its effectiveness, this method’s intricate graph
embeddings pose challenges for biochemical interpretation.
Alternatively, MGraphDTA proposed an ultra-deep GNN
architecture with 27 layers to encode both local and global
features of drug molecular graphs (Yang et al., 2022). The
authors suggested that stacking sufficient GNN layers allows the
receptive field of model to cover the entire graph, thus leveraging all
available data in drug graphs. It is an insurance and effective way,
but inevitably, the noise hidden in available information is difficult
to distinguish. Contrary to the existence of methods that used GNNs
to implicitly extract graph structural features, MSGNN-DTA chose
to construct advanced molecular graphs for explicitly structural

character encoding (Wang et al., 2023). MSGNN-DTA
reconstructed the atom-level graphs into the motif graphs
composed of subgraphs or substructures, incorporating
complementary structural information. While subgraphs or
substructures can be chemically explained as they determine
molecule properties, predefined graph components face
challenges due to generalization bias and the difficulty in
accommodating all molecular variations.

To overcome the aforementioned challenges, we developed a
novel model with enhanced encoding capabilities for molecular
objects, named GNNBlockDTI. In processing drug data, we
introduced the concept of the graph neural network block
(GNNBlock), designed for the efficient extraction of local
structural features. The GNNBlock comprises multiple GNN
layers, which expand the model’s receptive field to capture
substructural details across various scales. By stacking
GNNBlocks, the substructural information within the entire
graph can be collected and contribute to the overall structural
properties. To ensure a more refined global representation and
avoid the loss of important substructure features in our deep
GNN-based architectures, we implemented a feature
enhancement strategy and the gating units to improve the
expressiveness of the learned structural features and filter out
redundant information within each of GNNBlock, respectively.

In processing target proteins, we represented targets as both
amino acid sequences and residue-level graphs to create a
comprehensive protein embedding. In contrast to those methods
with shallow fusion at the protein level (Yang et al., 2024; Sun et al.,
2024), we embed sequential and spatial information simultaneously
at the residue level for deep multimodal information fusion to
achieve more expressive protein features. Considering only
protein fragments around the binding pocket are involved in the
real protein-ligand interaction process (Schenone et al., 2013), we
focused on local fragment features in protein encodings.
GNNBlockDTI utilizes CNNs and graph convolutional networks
(GCNs) to encode sequences and graphs with the local
convolutional operation, respectively. In summary, the main
contributions of this paper are as follows:

• We proposed the concept of the GNNBlock as the
fundamental component of our drug encoding module. The
GNNBlock integrates multiple layers of GNN for a wide
receptive field, which enables our model to concentrate on
local structural characteristics within the molecular graph.

• We introduced a feature enhancement strategy within the
GNNBlock to improve the expressiveness of node features in
graphs. This strategy employs an “expansion-then-
refinement” method. Initially, it maps features into a high-
dimensional space and then refines them to retain relevant
information.

• We incorporated gating units between GNNBlocks to manage
the outputs of each block effectively. These gating units utilize
a reset gate to filter out redundant information and an update
gate to preserve essential features.

• We separately encoded the sequence and graph inputs of
proteins from a localized perspective to achieve a
multivariate protein representation that includes both
sequence and spatial information. This local encoding
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strategy effectively reduces noise, allowing the model to
concentrate on the specific residue fragments involved in
drug-target binding.

2 Methods

GNNBlockDTI takes drug graph representations and target dual
representations as inputs and outputs the interaction probabilities of
the drug-target pairs. The drug graph representations are encoded
through the proposed GNNBlocks, and the target dual
representations consisted of sequences and graphs are encoded
through convolutional networks. Two obtained embeddings of
drug-target are combined and input into a Multilayer Perceptron
(MLP) classifier for DTI prediction. An overview of the proposed
GNNBlockDTI is depicted in Figure 1A.

2.1 Drug molecular graph encoder

In this work, drugs were represented as molecular graphs that
align well with their inherent characteristics and then encoded
through the GNN-based module. Compared to SMILES string,
graph representation of drug compound provides richer

structural information for feature extraction. A drug graph is
denoted by G � (V, E), where the set of vertexes V corresponds
to atoms, and the set of edges E is constructed from the connectivity
of chemical bonds. Classical GNNs employ a message-passing
mechanism for node feature encoding, which involves
aggregating information from neighboring nodes and updating
the representation of the node itself. We denote the i-th node
vector at time step t as x(t)

i , updating x(t)
i to x(t+1)

i in the
message passing phase through (Equation 1):

x t+1( )
i � σ F 1 x t( )

i( ) + F 2 ∑
j∈N i( )

x t( )
j

⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (1)

where σ(·) denotes activation function, F 1(·) and F 2(·) denote
update function. N (i) is the set of neighbors of node i. The node
vector x(t+1)

i at time step (t+1) is obtained by combining its current
vector x(t)

i with neighboring node vectors x(t)
j at time step t. After

node feature learning by GNNs, the overall embedding of graph G is
then read out from the node embedding matrix using a function
with permutation invariance.

In this work, the initial node embeddings were constructed from
various atomic properties, including Atomic Symbol, Formal
Charge, Degree, IsAromatic, and IsInRing, the total dimension of
a node embedding is 64. We utilized RDKit (Landrum, 2013) to

FIGURE 1
GNNBlockDTI for DTI prediction. (A)Overall framework of GNNBlockDTI. Drug graphs are encoded through the GNNBlock-based module. Targets
sequences embedded by ProtBert are encoded through multi-scale CNNs, and target graphs constructed by ProtBert and ESM-1b are encoded through
weighted GCNs. (B) GNNBlock incorporating the feature enhancement at the last GNN layer. (C) Details of gating units (GU) between GNNBlocks.
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extract these atomic properties and convert drug SMILES strings
into molecular graphs.

2.1.1 Substructural feature extraction based
on GNNBlock

In drug feature encoding, we emphasized the local substructural
properties of drug molecules, as these are crucial in determining the
chemical characteristics. To capture substructural properties, we
developed the GNNBlock based on GNN, which served as the
foundational unit within our drug processing module. In
addition to the GNNBlock, we incorporated a feature
enhancement strategy to further encode the obtained
structural features.

2.1.1.1 GNNBlock
The message-passing mechanism allows each GNN layer to

aggregate information from neighboring nodes within one hop. A
single-layer GNN is inadequate for capturing the detailed local
structure within a molecule. To address this limitation, we
introduced the concept of GNNBlock, which combined multiple
GNN layers into a single unit, thereby enhancing the receptive field
for substructure encoding. A GNNBlock enables information
aggregation from neighboring nodes within N-hop, where N
depends on the number of GNN layers contained in GNNBlock.
The definition of N-layer GNNBlockN is presented in (Equation 2):

GNNBlockN x( ) � GNN n( ) · · ·GNN 1( ) x( )( ), (2)
where GNNn represents the n-th GNN layer in GNNBlockN. To
ensure the feasibility of GNNBlock, the input and output channels of
the intermediate GNN layers are kept consistent. By stacking several
GNNBlocks, we could effectively capture most of the substructure
properties hidden in the molecular graph.

2.1.1.2 Feature enhancement
Based on the proposed GNNBlock, we implemented a feature

enhancement strategy to re-encode the output from the GNNBlock
into a high-dimensional embedding, effectively preserving learned
crucial information. The structure incorporating feature
enhancement within the GNNBlock is illustrated in Figure 1B.
Feature enhancement follows an expansion-then-refinement
approach. At the last GNN layer in GNNBlock, we increased the
dimension of the node vector by doubling the output channels and
extracted latent node vectors as in Equation 3:

h L+1( )
n−1 , h L+1( )

n � GNNBlock L+1( )
N h L( )( ), (3)

where h(L+1)n is the expanded latent vector at last GNN layer and
h(L+1)n−1 is the latent vector at penultimate GNN layer in (L+1)-th
GNNBlockN. h(L) is the input node vector from the previous
GNNBlock. We applied a GLU activation function to refine this
expanded vector and then conducted a residual connection between
the two obtained latent vectors as in Equation 4:

h L+1( ) � h L+1( )
n−1 + GLU h L+1( )

n( )( ) · d, (4)

where d is a scaling factor. After feature enhancement, the resultant
high-dimensional node vector h(L+1) is obtained.

In the specific implementation of GNNBlocks, we initially
applied a fixed 3-layer GNNBlock3 to extract the initial node

embedding and then added multiple GNNBlockN to deeply mine
the structural features, where N is a hyper-parameter. The deep
GNNBlocks architecture enables substructural feature extraction
across the entire graph to contribute to the overall properties of
the drug molecular graph.

2.1.2 Feature refinement based on gating units
We preferred to stack sufficient GNNBlocks to achieve an

effective graph representation containing comprehensive
structural information, but the deeper architecture also brought
us new challenges. Excessive message-passing operations due to the
deep architecture can easily lead to the accumulation of redundant
information and noise within node embeddings, thereby affecting
the performance of graph representation learning. Inspired by the
framework of gated recurrent units (GRUs) Cho et al. (2014), we
incorporated gating units between GNNBlocks to enable the model
to concentrate effectively on essential features. The specifics of the
gating units are illustrated in Figure 1C. We set up the reset gate R
and update gate Z to filter the output of each GNNBlock, the gating
units are calculated as follows in detail:

R � Sigmoid h L+1( )W r( )
1 + h L( )W r( )

2 + b r( )( ), (5)
Z � Sigmoid h L+1( )W z( )

1 + h L( )W z( )
2 + b z( )( ), (6)

where h(L) represents the node vector at L-th GNNBlock. The reset
gate R decides whether to retain features from the previous layer,
while the update gate Z determines the proportion of current versus
previous features to be updated. We performed an element-wise
multiplication between the reset gate R and the feature vector from
the previous layer. Then we fused the previous information with the
current features to obtain the hidden state, as depicted in Equation 7:

h L+1( ) � tanh h L+1( )W h( )
1 + R ⊙ h L( )( )W h( )

2 + b h( )( ), (7)

where ⊙ denotes dot product operation.W1,W2, and b in Equations
5–7 are learnable weights shared across all GNNBlocks. Sigmoid(·)
and tanh(·) denote two different activation functions. The node
feature vectors were updated by Equation 8 using the update gate Z:

h L+1( ) � 1 − Z( ) ⊙ h L( ) + Z ⊙ h L+1( )). (8)

After multiple encoding and updating by our GNNBlock-based
module, the obtained node feature matrix was sent to a max-pooling
layer with permutation invariance to read out the drug molecular
graph representations.

2.2 Target encoder

Considering the complexity of protein objects, we represented
targets as both amino acid sequences and residue-level graphs
simultaneously. The sequence and graph representation were
encoded separately to embed sequential and spatial information,
and then the two embeddings were fused to obtain a multi-
dimensional representation of the target. Meanwhile, considering
that only certain residue fragments within the protein binding
pocket participate in the interaction with a ligand (drug), we
focused on capturing local fragment embeddings using
convolutional networks during protein feature encoding.
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2.2.1 Sequence embedding based on
Multiscale-CNN

We first represented target proteins as sequences consisting of
residue symbols, where the class of symbols is 21, including
20 regular residues and 1 unknown residue. Considering the
limitations of one-hot encoding for residue symbols, we utilized
ProtBert (Elnaggar et al., 2021) to embed sufficient semantic
information of residues. A residue is originally embedded as a
30-dimensional vector, resulting in a protein sequence
representation with dimensions L×30, where L is the
sequence length.

We implemented a 3-layer 1D-CNN with varying convolutional
window sizes to encode the protein sequence at multiple scales. The
latent vectors produced by each CNN layer are then combined to
form the final protein sequence embedding.

2.2.2 Graph embedding based on Weighted-GCN
Given the significance of spatial characteristics in determining

protein properties, we also represented targets as the residue-level
graphs, where the residues denote nodes and the 3D spatial distance
between residues are used as edges. Considering the lack of
structural data for some proteins, we utilized ESM-1b (Rives
et al., 2021), which has been validated in DTI prediction works
(Wang et al., 2023; Jiang et al., 2022), to acquire the contact map of
residues for graph construction. A contact map M contains the
spatial contact probability of any two residues in the protein. And a
higher contact probabilityMij indicates a higher contact probability
between i-th residue and j-th residue. We represented a target graph
as a weighted graph, where the weights of edges are directly assigned
by the contact probabilities, thus emphasizing the residue pairs with
a higher contact probability. Besides, the initial node embeddings in
the protein graph were similarly encoded by ProtBert.

For the weighted graph representations, we utilized a 3-layer
weighted GCN (WGCN) to capture spatially localized information
effectively. WGCN considers the edge weights in the message passing
phase, emphasizing neighboring nodes with high weight and neglecting
those with low weight. A WGCN layer is defined by Equation 9.

h l+1( )
i � σ h l( )

i W l( )
1 + ∑

j∈N i( )

Mij

cij
h l( )
j W l( )

2
⎛⎝ ⎞⎠, (9)

where h(l)i represents the i-th node vector at l-th WGCN layer.W(l)
1

and W(l)
2 are learnable weights at l-th layer. σ(·) donates an

activation function. N (i) is the set of neighbors of node i, and
cij is the product of the square root of node degrees. Mij is the
contact probabilities of i-th residue and j-th residue, which serve as
the scalar weight on the edge from node i to node j.

2.2.3 Multi-dimensional embedding for targets
Finally, we conducted an element-wise summation operation to

fuse the obtained sequence embedding Tseq and graph embedding
Tgraph as in Equation 10:

Tfused � L2 Tseq ·Ws( ) + L2 Tgraph ·Wg( )( ) ·Wt, (10)

where L2(·) donate L2-normalization operation. Ws, Wg, and Wt

are learnable weights. The resulting fused protein embedding Tfused

was sent to the max-pooling layer to obtain a multivariate target
representation.

2.3 Drug-target interaction prediction

In this work, we employed a GNNBlock-based module to encode
drug graph embeddings with rich sub-structure properties and
utilized convolutional networks to encode target sequence and
graph representation from the local perspective. The obtained
representations of drug-target were concatenated and then input
into the MLP classifier for DTI prediction. The MLP consists of
three linear transformation layers, each linear transformation layer
followed by a nonlinear activation layer ReLU and a regularization
layer dropout. We framed the DTI prediction as a binary
classification task, where the prediction result indicated the
probability of interaction between a pair of drug-target. The loss
function was set to the binary cross-entropy (BCE) function as in
Equation 11:

BCE � − ylog ŷ( ) + 1 − y( )log 1 − ŷ( )( )[ ], (11)
where y ∈ [0, 1] is the binary label, and ŷ is the prediction score.

2.4 Feature diversity in GNN-based model

In GNN-based models, the diversity of node features determines
the effectiveness of graph representation learning. Inspired by Liu
et al. (2020), we defined a metric for feature diversity of graphs to
validate the advanced architecture of the GNNBlock-based module.
We first defined a diversity metric dij between the vectors of node i
and node j with their Euclidean distance. A larger distance indicates
a higher diversity between two nodes. Based on the diversity metric,
we proposed a node diversity metric DSi for node i in a graph
G(V, E) by Equation 12:

DSi � 1
n − 1

∑
j∈V,i≠j

dij. (12)

And then, we could obtain the diversity metric DSG for the whole
graph G using Equation 13:

DSG � 1
n
∑
i∈V

DSi. (13)

2.5 Gradient-weighted structural
attribute mapping

Inspired by (Selvaraju et al., 2017; Yang et al., 2022), we perform
a visualization method based on gradient information to visualize
the learning process of the GNNBlock-based module. Specifically,
we extracted the intermediate feature map H of each GNNblock,
and then computed the gradient of the predicted scores P and
obtained the average gradient of the feature map on k-th channel
through Equation 14.
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α n( )
k � 1

|V| ∑v∈V
∂P

∂H n( )
v,k

(14)

where α(n)k represents the average gradient at n-th GNNBlock, V
represents vertex set. By performing a weighted sum of the channel
weights and the intermediate feature map, the final gradient
information W ∈ Rv that can measure the importance of nodes
in the drug graph is obtained by Equation 15.

W n( ) � ∑
k

αnkH
n( )

k (15)

3 Experiments

3.1 Datasets

We selected BIOSNAP as the primary dataset for our
experiments. Huang et al. (2021) obtained the same number of
negative samples by random sampling to construct a balanced
dataset, which served as the version in our work. To
systematically and comprehensively evaluate our method, we also
added two complementary datasets: DrugBank, and BindingDB.
DrugBank is a balanced dataset obtained by Zhao et al. (2022)
sampling from the public database DrugBank. BindingDB is an
unbalanced independent dataset obtained by Huang et al. (2021)
sampling from the public database BindingDB. The statistics for
three datasets are summarized in Table 1.

3.2 Experimental setup

3.2.1 Hyper-parameter setting
The batch size was set to 64, and the dropout rate was set to 0.2.

Adam optimizer with a 0.0005 learning rate was used to update
model parameters. We searched for a selection of hyper-parameters
for the GNNBlock-based module, the search results were presented
in Section 3.6.

3.2.2 Metrics
We selected Area Under the Receiver Operating

Characteristic curve (AUROC) and Area Under the Precision-
Recall curve (AUPR) as primary metrics, accuracy (ACC),
precision (PR), recall (RE), and F1 score as complementary
metrics. During the model training process, we saved the best-
performing model on the validation set and evaluated its true
performance on the test set.

3.2.3 Dataset settings
To simulate real DTI prediction application scenarios, we

compared our model with baselines under two data split
strategies, random split, and unseen split:

• Random split: Drugs/targets randomly appear in the training
set, validation set, and test set.

• Unseen split: Drugs/targets that appear in the test set will not
appear in the training set and validation set.

• Cluster-based split: Minimize the similarity of drugs/targets in
the trainingvalidation and test sets based on the unseen split
setting. Drug similarity was measured by the Tanimoto
coefficient of ECFP4 fingerprints, whereas target similarity
was determined by comparing amino acid sequences through
dynamic programming algorithms. Average-linkage
hierarchical clustering was employed to partition drugs/
targets into distinct clusters, ensuring optimal inter-
cluster distances.

3.3 Baselines

We selected four typical state-of-the-art models as baselines for
comparison. The details of baselines are described as follows. We
followed the same hyper-parameter setting described in their papers.
To be fair, we applied the same dataset setup to re-train the baseline
for comparison.

3.3.1 MolTrans
Huang et al. (2022) MolTrans proposed an FCS algorithm for input

representation of drugs and targets, and embedded the contextual
information using transformer encoder. They constructed an
interaction matrix based on the substructures of a drug-target pair,
and then applied a 2D-CNN for the interaction prediction.

3.3.2 MGraphDTA
Yang et al. (2022) MGraphDTA utilized a 27-layer GCN with

dense connectivity to encode drugs from local and global
perspectives. The protein embeddings were obtained by
multi-scale CNNs.

3.3.3 DrugBAN
Bai et al. (2023) DrugBAN utilized GCN and CNN to process

drug molecular graphs and protein 1D sequences, and proposed a
deep bilinear attention network framework with domain adaptation
to explicitly learn pair-wise local interactions between drugs
and targets.

TABLE 1 Summary of the BIOSNAP, DrugBank, and BindingDB datasets.

Dataset Drugs Targets Pos interactions Neg interactions

BIOSNAP 4,510 2,182 13,836 13,647

DrugBank 6,647 4,294 17,511 17,511

BindingDB 7,165 1,415 9,166 23,433
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3.3.4 BINDTI
Peng et al. (2024) BINDTI proposed a mixed model called

ACmix to encode protein features by incorporating convolution
and self-attention, and utilized GCN to obtain drug graph features.
A bi-directional intention network was proposed to fuse drug and
protein features based on multi-head attention and intention.

3.4 Comparison experiments

3.4.1 Performance evaluation under random
split setting

To test the performance of our proposed model, we first
conducted a comparison experiment with baselines on three
benchmark datasets under the random split setting. During
specific works, we applied a five-fold cross-validation on two
balanced datasets, BIOSNAP and DrugBank. The datasets were
first divided into a training set and a test set in a 4: 1 ratio, and
then followed random sampling from the training set to get the
validation set, the ratio of training set, validation set, and test set is 7:
1:2. In addition to balanced datasets, we also employed an
unbalanced dataset BindingDB to test how well our model
performs in the face of extreme data distributions. To ensure
stability in the training process, we balanced positive and
negative samples in the training set by random sampling. The
specific sample sizes for the training, validation, and testing sets
are 12,668, 6,644, and 13,289, respectively. The ratio of positive to
negative is 1: 1 in the training set and 1: 6 in the validation and
testing sets.

The results of comparison experiments are presented in Table 2.
GNNBlockDTI outperformed the state-of-the-artmodels across all three
datasets. Compared to the highest AUROC and AUPR achieved by
baselines, our model showed improvements of 0.020 and 0.021 on
BIOSNAP, 0.026 and 0.025 on DrugBank, and 0.011 and 0.045 on
BindingDB. The exceptional performance across complementary
metrics further underscores the effectiveness of GNNBlockDTI.
However, the poor performance of absolute AUPR, PR, and F1 score
on the BindingDB dataset suggested that our model’s performance will
inevitably be affected by extreme data distributions.

3.4.2 Performance evaluation under unseen
split setting

We verified the superiority of GNNBlockDTI on all three
datasets using a routine random split setting. To test the
robustness of GNNBlockDTI given different prediction scenarios,
we also evaluated our approach on BIOSNAP under unseen drug/
target settings. In the specific unseen drugs/targets settings, 20%
drugs/targets were first randomly selected, and then all drug-target
pairs associated with these drugs/targets formed the test set, the
remaining pairs were used as training set and validation set. The
unseen split settings reduce the influence of data leakage during the
training process, avoiding over-optimistic results. Moreover, the
unseen split settings more accurately reflect real-world conditions in
drug discovery compared to the random split setting.

As demonstrated in Table 3, our model maintained strong and
consistent performance in both unseen drug and unseen protein
scenarios. Compared to the optimal performance of AUROC and
AUPR in baselines, our approach achieved an improvement of

TABLE 2 Comparison experiments under random split setting on three benchmark datasets.

Method AUROC(std)↑ AUPR(std)↑ PR (std)↑ RE (std)↑ F1 score (std)↑

BIOSNAP

MolTrans 0.885 (0.001) 0.893 (0.004) 0.762 (0.013) 0.869(0.008) 0.817 (0.003)

MGraphDTA 0.902 (0.003) 0.905 (0.003) 0.837 (0.030) 0.804 (0.038) 0.819 (0.007)

DrugBAN 0.905 (0.004) 0.909 (0.005) 0.826 (0.015) 0.842 (0.010) 0.838 (0.003)

BINDTI 0.899 (0.002) 0.899 (0.003) 0.814 (0.018) 0.841 (0.009) 0.834 (0.003)

GNNBlockDTI 0.925 (0.001) 0.930 (0.001) 0.855 (0.010) 0.853 (0.011) 0.854 (0.002)

DrugBank

MolTrans 0.878 (0.004) 0.887 (0.002) 0.786 (0.014) 0.834 (0.002) 0.809 (0.007)

MGraphDTA 0.875 (0.004) 0.877 (0.006) 0.827 (0.014) 0.764 (0.025) 0.794 (0.007)

DrugBAN 0.883 (0.003) 0.888 (0.003) 0.796 (0.016) 0.818 (0.006) 0.812 (0.003)

BINDTI 0.880 (0.001) 0.880 (0.003) 0.785 (0.014) 0.824 (0.006) 0.813 (0.001)

GNNBlockDTI 0.909 (0.003) 0.913 (0.004) 0.833 (0.007) 0.841 (0.016) 0.837 (0.005)

BindingDB

MolTrans 0.912 (0.001) 0.617 (0.002) 0.460 (0.011) 0.874 (0.012) 0.605 (0.005)

DrugBAN 0.907 (0.002) 0.613 (0.004) 0.462 (0.004) 0.599 (0.002) 0.599 (0.002)

BINDTI 0.824 (0.004) 0.444 (0.004) 0.355 (0.019) 0.712 (0.007) 0.474 (0.006)

GNNBlockDTI 0.923 (0.002) 0.662 (0.004) 0.467 (0.023) 0.895 (0.027) 0.614 (0.004)

Note: Best performance and second-best performance are highlighted in bold and underlined, respectively. The format “mean (std)” represents the mean and standard deviation.
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0.0053, 0.0086 under the unseen drug setting, and 0.1042,
0.0814 under the unseen target setting. Besides, the stable
performances on BIOSNAP across two different split settings
demonstrated our model’s generalization ability, especially under
the unseen target setting. However, our model did not perform as
well in the unseen drug setting as in the other split settings. The
relatively poor performance of recall (RE) compared to baselines
indicated the weakness of our model in identifying positive drug-
target interactions. Although previous experiments have validated
the effectiveness of GNNBlockDTI, the results here remind us that
there is still room for improvement in ourmodel, like the embedding
of bilateral information used in MolTrans and DrugBAN.

To explore the reasons for the model’s poor performance on
the RE metrics, we statistically analyzed the drug-target pairs
that led to RE errors in the test set which those pairs with true
label and false predicted label. The statistics show that a few
drugs/targets contribute disproportionately to large recall
errors, as shown in Figures 2, 3. After analyzing the data
composition of the two test sets, we identified a one-sided
data imbalance as causing the above phenomenon. Drugs/
targets that contribute large recall errors tend to have more
associated drug-target pairs, and there is an uneven positive
and negative ratio for the drug-target pairs related to these
error-related drugs/targets.

TABLE 3 Comparison experiments under unseen split setting on BIOSNAP dataset.

Method AUROC(std)↑ AUPR(std)↑ PR (std)↑ RE (std)↑ F1 score (std)↑

BIOSNAP–unseen drug

MolTrans 0.830 (0.001) 0.858 (0.005) 0.733 (0.117) 0.804 (0.289) 0.767 (0.005)

MGraphDTA 0.858 (0.003) 0.882 (0.002) 0.826 (0.006) 0.711 (0.013) 0.764 (0.003)

DrugBAN 0.883 (0.006) 0.896 (0.006) 0.799 (0.008) 0.802 (0.017) 0.811 (0.007)

BINDTI 0.868 (0.003) 0.887 (0.004) 0.828 (0.008) 0.773 (0.012) 0.797 (0.003)

GNNBlockDTI 0.888 (0.002) 0.904 (0.003) 0.844 (0.009) 0.781 (0.023) 0.812( 0.009)

BIOSNAP–unseen target

MolTrans 0.667 (0.046) 0.689 (0.050) 0.507 (0.071) 0.917 (0.132) 0.653 (0.008)

MGraphDTA 0.751 (0.004) 0.773 (0.006) 0.776 (0.015) 0.503 (0.028) 0.611 (0.013)

DrugBAN 0.670 (0.016) 0.667 (0.021) 0.690 (0.037) 0.371 (0.027) 0.483 (0.014)

BINDTI 0.649 (0.008) 0.665 (0.008) 0.699 (0.025) 0.394 (0.014) 0.504 (0.009)

GNNBlockDTI 0.855 (0.006) 0.854 (0.002) 0.820 (0.010) 0.672 (0.021) 0.739 (0.008)

Note: Best performance and second-best performance are highlighted in bold and underlined, respectively. The format “mean (std)” represents the mean and standard deviation.

FIGURE 2
Statistics of drug-target pairs contributing to RE errors in the BIOSNAP test set under unseen drug setting. (A)Number of drug-target pairs (DT-pairs)
per drug leading to RE errors. (B) Positive and negative proportions of DT pairs associated with “error” drug.
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3.4.3 Performance evaluation under cluster-based
split setting

Acknowledging the limitations of the unseen split setting in
simulating real-world prediction scenarios, we introduced an
advanced split strategy rooted in hierarchical clustering that
incorporates sample similarity across different sets while maintaining
the principles of the unseen split setting. By minimizing structural/
sequential similarities of drugs/targets between training and test sets, we
further evaluated our model’s robustness and generalization capabilities.
The comparative experimental results of clustering partitions on the
BIOSNAP dataset are presented in Table 4. Our model consistently
demonstrates superior performance, achieving optimal results across all

evaluationmetrics while maintainingminimal performance degradation
compared to the other two split settings.

3.5 Ablation study

The inclusion of GNNBlock is crucial to our model’s optimal
performance. To illustrate the effectiveness and necessity of each
module in the design of the GNNBlock, we conducted a series of
ablation experiments on the BIOSNAP dataset. In addition, we also
validated the superiority of spatial information embedding in
target encoding.

FIGURE 3
Statistics of drug-target pairs contributing to RE errors in the BIOSNAP test set under unseen target setting. (A) Number of drug-target pairs (DT-
pairs) per target leading to RE errors. (B) Positive and negative proportions of DT pairs associated with “error” target.

TABLE 4 Comparison experiments under cluster-based split setting on BIOSNAP dataset.

Method AUROC(std)↑ AUPR(std)↑ PR (std)↑ RE (std)↑ F1 score (std)↑

BIOSNAP–drug clustering

MolTrans 0.790 (0.012) 0.777 (0.009) 0.772 (0.010) 0.613 (0.026) 0.683 (0.008)

MGraphDTA 0.756 (0.011) 0.762 (0.014) 0.724 (0.021) 0.623 (0.019) 0.670 (0.015)

DrugBAN 0.779 (0.005) 0.769 (0.007) 0.776 (0.022) 0.542 (0.017) 0.639 (0.028)

BINDTI 0.791 (0.009) 0.793 (0.004) 0.770 (0.013) 0.615 (0.011) 0.684 (0.023)

GNNBlockDTI 0.809 (0.008) 0.812 (0.003) 0.801 (0.011) 0.628 (0.017) 0.699 (0.007)

BIOSNAP–target clustering

MolTrans 0.682 (0.012) 0.708 (0.017) 0.650 (0.020) 0.542 (0.013) 0.591 (0.010)

MGraphDTA 0.763 (0.005) 0.771 (0.012) 0.758 (0.009) 0.570 (0.031) 0.651 (0.015)

DrugBAN 0.618 (0.013) 0.622 (0.008) 0.685 (0.022) 0.421 (0.027) 0.434 (0.016)

BINDTI 0.603 (0.012) 0.6 (0.014) 0.653 (0.024) 0.471 (0.029) 0.483 (0.017)

GNNBlockDTI 0.841 (0.009) 0.847 (0.007) 0.827 (0.012) 0.651 (0.013) 0.728 (0.006)

Note: Best performance and second-best performance are highlighted in bold and underlined, respectively. The format “mean (std)” represents the mean and standard deviation.
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The results of ablation experiments are detailed in Table 5. FE
represents the feature enhancement mechanism in GNNBlocks, GU
represents the gating units incorporated between GNNBlocks.
When we removed both the feature enhancement mechanism
and gating units, which is equivalent to the removal of
GNNBlock as well. From Table 4, it is evident that the feature
enhancement mechanism, gating units, GNNBlock, and target graph
encoding play a significant role in contributing to the overall
performance of GNNBlockDTI.

3.6 Hyper-parameter optimization
for GNNBlock

As the core of our model, we focused on the specific architectural
implementation of the GNNBlock, which is designed for efficient
substructure encoding based on GNN. Shallow GNN architectures
are capable of substructure recognition but are not complete. While
deep GNN architectures enable a comprehensive collection of
structural features across the entire graph, the interspersed noise
will affect the encoding of key structural features. Meanwhile, the
deep GNN architectures are constrained by the inherent limitations
of over-smoothing or over-squashing of node features. To optimize
our model’s performance, we explored various combinations of
hyper-parameters about the GNN layers included in the
GNNBlock-based module, including the number N of GNN
layers in GNNBlock, and the number L of GNNBlocks.

We first selected N from [2, 3, 4] and adjusted L accordingly to
ensure the total number of GNN layers does not exceed 21. The
search results of N and L are illustrated in Figure 4. When N is set to
2 or 3, the model achieves the optimum where the total number of
the GNN layers reaches around 10. While the model performance
continues to decline as L increases. And whenN is set to 4, the model
performs unexplainably worse. In addition, we also tried different
GNN variants as the base unit of GNNBlock, including GCN, GAT,
GIN, and GCN&GAT, where GAT&GCN indicates the use of GAT
before the last layer and the GCN at the last layer in GNNBlock. The
comparison results of four GNN variants are displayed in Figure 5.

Ultimately, our optimized GNNBlock-based module is
structured with L = 5 GNNBlocks, each containing N = 2 GNN
layers. The GNN type used in GNNBlock is the GAT&GCN.

3.7 Model interpretability

3.7.1 Visualization of drug-target fused feature
To verify the effectiveness of our model, we performed a

visualization for the learned high-dimensional drug-target fused
features. We first extracted the drug-target fused feature
representations of the 19,112 drug-target pairs in the BIOSNAP
training set and then downscaled them to 2D data using the t-SNE
(van der Maaten and Hinton, 2008) algorithm. The visualization
results of the 2D fused representations with labels are presented in
Figure 6, we did the same visualization for the original embedding of

TABLE 5 Ablation experiments about Feature Enhancement (FE), Gating Units (GU), and target graph.

Method AUROC(std)↑ AUPR(std)↑ ACC(std)↑ F1score (std)↑

w/o FE 0.906 (0.002) 0.910 (0.002) 0.837 (0.006) 0.842 (0.002)

w/o GU 0.907 (0.001) 0.907 (0.001) 0.837 (0.002) 0.835 (0.001)

w/o GU&FE 0.879 (0.003) 0.870 (0.002) 0.814 (0.002) 0.817 (0.003)

w/o target graph 0.908 (0.002) 0.911 (0.002) 0.835 (0.001) 0.836 (0.001)

GNNBlockDTI 0.925 (0.001) 0.930 (0.001) 0.853 (0.002) 0.854 (0.002 h)

Note: The format “mean (std)” represents the mean and standard deviation.

FIGURE 4
The performance of GNNBlockDTI with various combinations of the number N of GNN layers in GNNBlock and the number L of GNNBlocks.
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drug-target pairs as a control. The distinct separation between true
and false interactions in this visualization attests to the accuracy and
validity of our model’s feature encoding.

3.7.2 Feature diversity based on GNNBlock
To explore the impressive performance of the GNNBlock-based

architecture, we extracted the learned latent features from each
GNNBlock for diversity assessment. We selected 47 complex drugs
with a higher number of atoms from the BIOSNAP dataset for
feature diversity assessment. Figure 7 presents the diversity metric
values of graphs from each GNNBlock. The diversity of node

features increases with deeper GNNBlocks, which indicates our
GNNBlock-based architecture is capable of effective feature
learning for molecular structure. Meanwhile, the results show
that the GNNBlock is hardly affected by the inherent limitations
of the message-passing mechanism in GNN, like feature over-
smoothing or over-squashing.

3.7.3 Local structural pattern recognized
by GNNBlock

Despite the outstanding performance of our model, we do not
know if the model will work as we expected during the learning and
prediction process. The entire model remains a black box. To
rationalize the GNNBlock-based module, we apply a visualization
method based on gradient information to visualize the learning
process of the GNNBlock-based module. We selected the optimal
model structured with 5 GNNBlocks achieved in Section 3.6 as the
visualization model. The encoding process of the GNNBlock-based
module on the drug graph is shown in Figure 8. As GNNBlock goes
deeper, our GNNBlock-based module is capable of selectively
focusing on important local structural pattern in the molecule
graph and capturing the overall structural properties of the
entire graph.

3.8 Case study

To validate the effectiveness of our model in practical drug
discovery scenarios, we selected two targets for candidate ranking

FIGURE 5
The performance of GNNBlockDTI with four GNN variants in GNNBlock, including GCN, GAT, GIN, GAT&GCN.

FIGURE 6
Visualization of the original embedding (left) and the fused feature (right) learned by GNNBlockDTI of drug-target pairs.

FIGURE 7
The diversitymetric of graph features learned by eachGNNBlock.
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prediction, including adenosine 5′-monophosphoramidase HINT1
(P49773), and Receptor for adenosine (P30542). For the task of
predicting drug candidate rankings, we created candidate libraries
with a ratios of 1:100 of true to false candidates for each of the two
targets. True candidates interact with the target, whereas false
candidates do not. The model we used in drug candidate rankings
was training on BIOSNAP dataset, where all drug-target pairs involving
a query drug/target in the case study were removed. The ranking results
are detailed in Table 6, where we presented the top 10 candidates based
on their predicted interaction probability with the target. In the case of
P49773, all 5 true candidates appeared in the top 10. In P30542, 7 out of
11 true candidates were within the top 10, while the remaining 4 were
ranked 18th, 30th, 32nd, and 46th.

In addition, to validate the effectiveness of GNNBlockDTI in the
drug repositioning task, we also performed the target candidate
ranking task for two selected drugs DB08875 and DB00647 with the
same settings as drug candidate rankings. As presented in Table 7, In
DB08875, all 5 true candidates appeared in the top 10. In DB00647,
6 out of 8 true candidates were within the top 10, while the
remaining 2 were ranked 22nd and 31st. These results clearly
demonstrate the reliability and effectiveness of our model in
realistic drug discovery.

To further illustrate the advantages of our proposed model, we
compared GNNBlockDTI with the traditional molecular docking
method Autodock-vina (Trott and Olson, 2010) in the drug
candidate ranking task. We selected 20 targets for drug candidate

FIGURE 8
Visualization of node importance based on gradient information for each GNNBlock.

TABLE 6 Top 10 drug candidates which were predicted to interact with P49773 and P30542.

Rank P49773 P30542

DrugBank ID True Label DrugBank ID True Label

1 DB01752 0 DB08844 0

2 DB00131 1 DB01223 1

3 DB02183 0 DB00277 1

4 DB01972 1 DB00201 1

5 DB02483 1 DB00806 1

6 DB04099 1 DB01303 1

7 DB03708 0 DB07733 0

8 DB03349 0 DB04638 0

9 DB00627 1 DB00651 1

10 DB02162 0 DB00824 1
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ranking with the same settings as above. AUROC, enrichment factor
(EF), and ROC enrichment (Re) (Jain and Nicholls, 2008) were used
as evaluationmetrics to assess the model’s performance. The average
metric across all targets is presented in Table 8. We performed the
drug candidate ranking with autodock-vina based on the calculated
binding energy, and the threshold for the positive and the negative
was set at -5 kcal/mol. The results show that our model performs
better in the case study compared to the molecular docking method.

4 Discussion

In this DTI prediction work for drug discovery, we constructed a
robust and comprehensive GNN-based drug molecular encoding
framework and provided a rational approach for target feature
encoding. Our drug encoding framework is manifested as a two-
stage feature extraction strategy. GNNBlock is proposed for capturing
local substructures critical to the exhibited properties of drug molecules.
The feature enhancement mechanism and gating units are introduced
into deep GNNBlocks to coordinate substructural features across the
graph and achieve comprehensive structure characteristics. We also
considered the biological nature of the drug-target binding process and
proposed a localized encoding strategy focused on residue fragments in
the target encoding. In addition, we embed semantic and spatial
information at the residue level for a multidimensional vector of
residues, to achieve an effective target representation. Comparative
experiments confirmed the superiority of our overall model, and we
also evaluated each of the modules separately in the subsequent analysis.

We conducted a series of searches to investigate the capability of
GNNBlock used for substructural capture in Section 3.6. When the
number of GNN layers included in a GNNBlock was set to 2 or 3,
experimental results were broadly in line with our expectations. The
concept of GNNBlock enhances GNN’s encoding capability. Before
reaching the optimum, our model’s performance gradually
improved as the depth of the GNNBlock increased. When the
criticality was reached, the performance continued to decline,
which is determined by the inherent limitations of the message-
passing mechanism (Liu et al., 2020). However, when we adopted
GNNBlock with 4 or higher GNN layers, the model’s performance
behaved inexplicably worse. There is still much more to the
combination of molecular graph data and graph neural networks
that are waiting to be explored in DTI prediction. Besides,
considering the unsatisfactory encoding capability of message-
passing neural networks with deeper architectures, the current
challenges also include novel frameworks for effective graph
representation learning. The Graph Transformer based on self-
attention mechanism processing topological information provides
us with a direction (Wu et al., 2024; Rampášek et al., 2024), which is
included in our future work.

We selected the molecular graphs as the unique drug encoding
channel, without including the drug SMILES string, although
previous work had confirmed the contribution of SMILES input
to DTI prediction. Models cannot infer the underlying structural
features from the associated symbols alone but perform a similarity
correlation encoding (molecules with similar sequence compositions
have more associations). These similarity-based features may even
affect the performance of our graph encoding module. Actually,
similar problems had already arisen in the early stages of our work.
On the contrary, we adopted bimodal representation in the encoding
engineering of the target, as the commonly used sequence
representations contain limited valid information. So we
embedded 3D structural information in the form of topological
graphs to complement our encoding strategy.

The introduction of bilateral information can improve the
stability of the model in the face of extreme data distributions,
according to the experimental results presented in Section 3.4. Our
model demonstrated outstanding performance under a routine
random split setting due to the powerful feature encoding
capability, while the gap between GNNBlockDTI and some of
baselines under the unseen split and clustering-based settings
became close. The representation embedded with bilateral
correlation information coped well with such extreme data
distributions, as implemented in the well-performing baselines,
MolTrans (Huang et al., 2021) and DrugBAN (Bai et al., 2023).
And this aspect will also included in our future work.

5 Conclusion

In this study, we proposed a novel model named GNNBlockDTI
for drug-target interaction prediction. GNNBlockDTI thoroughly
considered the natural properties of the drug and targets molecular
objects, as well as the essence of the drug-target interaction. In drug
encoding, we proposed the concept of GNNBlock based on GNN
and introduced the feature enhancement mechanism as well as the
gating units for substructural feature learning. In protein encoding,

TABLE 7 Top 10 target candidates which were predicted to interact with
DB00647 and DB08875.

Rank DB00647 DB08875

Uniprot ID True
Label

Uniprot ID True
Label

1 P10632 1 P35968 1

2 P08684 1 Q15788 0

3 P01859 0 P08581 1

4 P10635 1 P08684 1

5 P24462 1 P03372 0

6 P20813 0 P11712 1

7 P11712 1 Q8IZS8 0

8 P46098 0 P07949 1

9 P35372 1 P00533 0

10 P06276 0 O00329 0

TABLE 8 Comparison results of drug candidate ranking.

AUROC 1%EF 5%EF 1%Re 5%Re

Autodock-vina 0.771 17.756 45.812 8.142 5.723

GNNBlockDTI 0.943 38.604 62.754 45.688 14.292

Note: The percentage before Re is the given threshold of FPR.

Frontiers in Pharmacology frontiersin.org13

Deng et al. 10.3389/fphar.2025.1553743

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1553743


we focused on capturing localized features by utilizing 1D-CNN-
based modules for sequential features and GCN-based modules for
spatially localized features. We conducted a series of experiments to
evaluate the effectiveness of GNNBlockDTI across three benchmark
datasets. The results demonstrated that GNNBlockDTI
outperformed the state-of-the-art models. Furthermore, realistic
case studies highlighted our model is a powerful and robust tool
in drug discovery.
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