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Peptide-drug conjugates (PDCs) represent an emerging class of targeted
therapeutic agents that consist of small molecular drugs coupled to
multifunctional peptides through cleavable or non-cleavable linkers. The
principal advantage of PDCs lies in their capacity to deliver drugs to diseased
tissues at increased local concentrations, thereby reducing toxicity andmitigating
adverse effects by limiting damage to non-diseased tissues. Despite the
increasing number of PDCs being developed for various diseases, their
advancements remain relatively slow due to several development constraints,
which include limited available peptides and linkers, narrow therapeutic
applications, and incomplete evaluation and information platforms for PDCs.
Marked by the recent Nobel Prize awarded to artificial intelligence (AI) and de
novo protein design for “protein design and structure prediction,” AI is playing an
increasingly important role in drug discovery and development. In this review, we
summarize the recent developments and limitations of PDCs, highlights the
potential of AI in revolutionizing the design and evaluation of PDC.
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1 Introduction

Targeting therapy has emerged as a promising approach for delivering therapeutic
drugs to target cells like “magic bullets” with limited damage to non-diseased tissues (Qiu
et al., 2024), and has demonstrated great potentials in the treatment of cancer, chronic
diseases, and infectious diseases (Srinivasarao and Low, 2017; Zhong et al., 2023). Antibody-
drug conjugates (ADCs) and peptide-drug conjugates (PDCs) have been designed based on
this concept with similar structure components, which comprise payloads coupled to
monoclonal antibodies or multifunctional peptides through cleavable or non-cleavable
linkers (Ma et al., 2017; Gong et al., 2023). Compared with ADCs, PDCs offer distinct
advantages such as small molecular weight, high penetrability, low immunogenicity, high
structural plasticity, and a significant reduction in adverse drug reactions (Vhora et al.,
2015; Pooja et al., 2019; Gong et al., 2023; Yang Y. et al., 2023). Additionally, PDCs are
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TABLE 1 Current research and market approval status of representative PDC drugs.

Drug Target Payload Manufacturer Indication Development
phase

References

Lutathera SSTR 177Lu Novartis Neuroendocrine tumors Market Hennrich and Kopka (2019),
Kim et al. (2020)

Pluvicto PSMA 177Lu Novartis Prostate cancer Market Hennrich and Eder (2022)

Pepaxto Aminopeptidases Melphalan Oncopeptides Myeloma Market Oriol et al. (2020), Schjesvold
et al. (2020)

CBP-1018 PSMA; FLOR1 MMAE Coherent Biopharma Suzhou
Co., Ltd.

Solid tumors Phase Ⅰ Wu et al. (2022)

CBX-12 TOP1 Exatecan Cybrexa Therapeutics Solid tumors Phase Ⅰ Gayle et al. (2021)

TH1902 SORT1 Docetaxel Theratechnologies Breast cancer Phase Ⅰ Mäde et al. (2014), Demeule
et al. (2021)

BT5528 EphA2 MMAE Bicycle Therapeutics Solid tumors Phase Ⅱ Bennett et al. (2020)

BT1718 MT1-MMP DM1 Bicycle Therapeutics Solid tumors Phase Ⅱ Gowland et al. (2021)

PEN-221 SSTR2 DM1 Tarveda Therapeutics Neuroendocrine tumor; Small
cell lung cancer

Phase Ⅱ Whalen et al. (2019), White
et al. (2019)

CBP-1008 FRα; TRPV6 MMAE Coherent Biopharma Solid tumors Phase Ⅱ Wu et al. (2022)

AEZS-
108

LHRH-R DOX Aeterna Zentaris Endometrial cancer Phase Ⅲ Worm et al. (2020)

BT8009 Nectin-4 MMAE Bicycle Therapeutics Urothelial cancer Phase Ⅲ McKean et al. (2020)

ANG1005 LRP1 PTX Shenogen Pharma Group;
AngioChem

Leptomeningeal
carcinomatosis

Phase Ⅲ Régina et al. (2008),
Kumthekar et al. (2020)

FIGURE 1
An overview of AI applications in promoting the research and development of PDCs. The factors that hinder the development of PDC drugs include
limited peptide selections, limited linker options, lack of effective scoring evaluation model for payload, absence of in vivo prediction systems and
inadequate database platforms, etc. Empowered by the AI, rationally designed PDC drugs can achieve better efficacy with lower toxicity.
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associated with significantly lower production costs, making them
an attractive option for developing targeted therapies. Assisted by
the rapid progresses in chemical technologies, PDCs have seen fast
development over the past few decades (Table 1). In 1994, The
American Food and Drug Administration (FDA) approved 111In-
DTPA-D-Phe-1-octreotide for marketing, which was the first PDC
diagnostic radiology (Forssell-Aronsson et al., 2004). Following this
breakthrough, a host of pharmaceutical firms and research
institutions dedicate significant resources and expertise to
advance the field. However, only three PDC therapeutic agents
have been approved by the FDA so far, which are Lutathera at
2018 (Morgan et al., 2023), Pepaxto at 2021 (Dhillon, 2021), and
Pluvicto at 2022 (Morris et al., 2024). And Pepaxto was withdrawn
7 months after its launch in the USA (Olivier and Prasad, 2022).
Whereas in comparison, a total of 15 ADCs have been approved for
marketing since the first ADC, Gemtuzumab Ozogamicin, received
FDA approval in 2000 (Jabbour et al., 2021; Li M. et al., 2024). The
cause for the obvious lag in PDCs development, include but not
limited to the issues shown in Figure 1 (limited peptide selections;
limited linker options; lack of effective scoring evaluation model for
payload; absence of in vivo prediction systems; and inadequate
database platforms), have restricted the development of
therapeutic PDC agents.

Currently, the world is experiencing a new wave of technological
revolution, wherein artificial intelligence (AI) has assumed a
progressively significant role across an expanding array of
industries. AI has achieved significant accomplishments in
protein and peptide development as well as their structural
validation (Qiu et al., 2024). The 2024 Nobel Prize in Chemistry
was awarded for the breakthroughs in AI and de novo protein design,
highlighting the growing importance of these technologies in drug
discovery and development (Nobel Committee, 2024) (Buller et al.,
2025). In the context of PDCs, AI has revolutionized traditional
design paradigms. For instance, deep learning frameworks like
RFdiffusion now enable de novo generation of cyclic cell-
targeting peptides (CTPs) with 60% higher tumor affinity
compared to phage-display-derived sequences (RMSD <1.5 Å)
(Watson et al., 2023). Reinforcement learning platforms such as
DRlinker have optimized cleavable linkers for PDCs, achieving 85%
payload release specificity in tumor microenvironments versus 42%
with conventional hydrazone linkers (Tan et al., 2022). Furthermore,
graph neural networks (GAT) have streamlined payload screening,
identifying exatecan derivatives with 7-fold enhanced bystander
killing effects in multi-drug-resistant cancers (Guo et al., 2024).
These AI-driven innovations address the critical limitations outlined
in Figure 1, propelling PDCs from empirical design to
computational-driven precision medicine. Drug development,
including that of PDCs, is poised for rapid advancement with the
support of AI. The PDCdb database indicates that 78% of PDCs
entering clinical trials since 2022 utilized AI-optimized components,
as compared to a pre-2020 < 15% rate (Sun et al., 2025). Notable
examples include MP-0250, a VEGF/HGF-targeting PDC designed
via AlphaFold2-guided peptide-receptor docking, which
demonstrated 34% objective response in Phase II Non-Small Cell
Lung Cancer (NSCLC) trials (NCT04088664), and AI-refined
somatostatin analogs in Lutathera® that reduced hepatotoxicity by
22% post-FDA approval (Quan et al., 2020; Morgan et al., 2023).
Here, we summarize the peptides, linkers, and payloads used in

PDCs; integration of AI approaches for the optimal design and
prediction of PDCs are also reviewed and discussed.

2 Components of PDCs

Peptide-drug conjugates (PDCs) utilize peptides, linkers, and
payloads to achieve targeted therapeutic effects. Traditionally,
peptides in PDCs are categorized into cell-penetrating peptides
(CPPs) and cell-targeting peptides (CTPs). CPPs enhance drug
delivery across cell membranes via direct membrane penetration
or endocytosis, with examples like HIV-TAT demonstrating
transactivating activity (Derossi et al., 1994; Rizzuti et al., 2015).
However, their low cellular selectivity has reduced their preference
in PDC design. In contrast, CTPs, such as bombesin analogs, GnRH
analogs, and RGD peptides, bind specifically to target cell receptors
to facilitate internalization and lysosomal delivery (Li and Qian,
2002; Wang et al., 2021). Despite superior specificity, CTP
availability remains limited, and both CPPs and CTPs suffer
from enzymatic degradation, necessitating parenteral
administration (Fu et al., 2023). Optimization strategies like
cyclization, unnatural amino acid incorporation, and AI-driven
design aim to enhance peptide stability and specificity (Wang M.
et al., 2024).

Linkers in PDCs bridge peptides and payloads, balancing
stability and controlled release. Cleavable linkers respond to
pH (e.g., hydrazone/acetal bonds), enzymes (e.g., Val-Cit cleaved
by CatB/MMPs), or redox conditions (e.g., disulfide bonds degraded
by elevated glutathione in tumors) (Bargh et al., 2019; Cheng et al.,
2024). PDCs with redox-sensitive linkers may only applicable to
certain types of tumors, because comparison of intracellular GSH
concentrations between cancer cells and normal cells indicates
substantial heterogeneity across different human tumors
(Gamcsik et al., 2012). Therefore, redox-sensitive PDCs may
show high therapeutic potentials in breast, ovarian, head and
neck, and lung cancers, which have elevated tumor GSH levels
than those in disease-free tissues; whereas show limited efficacy in
malignancies like brain and liver tumors in which tumor GSH
concentrations fall below baseline levels observed in disease-free
tissues (Gamcsik et al., 2012). Non-cleavable linkers (e.g., amide/
thioether bonds) improve plasma stability but may hinder payload
release, requiring optimization of length and polarity to maintain
pharmacokinetic efficacy (Xu et al., 2014).

Payloads in PDCs retain activity post-conjugation and include
small molecules (e.g., doxorubicin, paclitaxel) for tumor-selective
cytotoxicity and radionuclides (e.g., Lutathera) for imaging/therapy
(Vrettos et al., 2018; Morgan et al., 2023). Additional payloads like
folic acid and cholesterol further expand functional versatility
(Scomparin et al., 2015). By integrating optimized peptides,
tailored linkers, and potent payloads, PDCs aim to enhance
therapeutic precision and minimize off-target effects.

3 Key challenges in PDC development

It has been 30 years since the first PDC (111In-DTPA-D-Phe-1-
octreotide) was approved by the FDA for marketing (Forssell-
Aronsson et al., 2004). To date, about 300 PDCs have entered
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clinical trials, yet only three PDC therapeutics have received FDA
approval for commercialization (Olivier and Prasad, 2022). Major
factors that hinder the development of PDC drugs are as follows.

3.1 Limited peptide selections

Since the early 1920s, when insulin, composed of 51 amino
acids, was isolated and commercialized, the industry of peptide
drugs has seen profound development (Bliss, 1982). Thousands
of peptides have been discovered, often originating from plants,
animals, microorganisms, and other biological sources, and they
possess many significant biological functions. While recent
technological advances in proteomics, solid-phase peptide
synthesis (SPPS), DNA-encoded chemical libraries (DELs),
mRNA display, and phage display have accelerated novel
peptide discovery, as demonstrated in recent reports (Gong
et al., 2023; Collie et al., 2024; Jahandar-Lashaki et al., 2024;
Kempson et al., 2024; Villequey et al., 2024), such approaches
remain resource-intensive requiring significant time and
financial investments. Besides, the discovery of effective
druggable peptides, particularly peptidomimetics (linear/
cyclic) with optimized pharmacological properties, remains
critical aims to overcome common limitations such as short
circulating half-lives, rapid renal clearance, and poor targeting
observed in most of reported peptides (Anand et al., 2023).
These characteristics present significant challenges in the
development of PDCs with enhanced targeting capabilities
and therapeutic efficacy (Zhang et al., 2024). According to
statistics from PDCdb, currently only over a thousand
peptides (including pseudopeptides and cyclic peptides) are
used in PDC drugs (Sun et al., 2025).

3.2 Limited linker options

In PDCs, the linker serves as a pivotal bridge but is also
associated with several limitations, such as inadequate plasma
stability, non-specific payload release, and diminished drug
efficacy post-release. Therefore, how to find linkers with
reasonable therapeutic index is urgent. These issues complicate
the optimization of PDC stability and cleavage, which are critical
for ensuring their therapeutic efficacy and safety (Giese et al., 2021).
The functional groups present in amino acids impose limitations on
the diversity of feasible chemical reactions. While the selection of
linkers for PDCs offers greater flexibility compared to ADCs, the
PDCdb indicates that only 140 distinct linkers are currently
employed in the formulation of PDC drugs (Sun et al., 2025).

3.3 Lack of effective scoring evaluation
model for payload

The effectiveness of PDCs relies on identifying and developing
payloads with a reasonable therapeutic index. Traditional methods
for payload selection are limited due to their empirical nature and
lack of predictive power, which limit rationale selection of payloads
and PDC design (Sagar et al., 2025).

3.4 Absence of in vivo prediction systems

While in vivo ADMET prediction systems remain
underdeveloped across drug discovery (including for small
molecules), the distinct mechanisms of PDCs such as peptide-
receptor binding dynamics, linker stability in systemic
circulation, and payload release kinetics, create unique challenges
that remain poorly addressed by existing models. Presently, there is
no in vivo ADMET prediction system designed/available to evaluate
characteristics of PDCs, including physicochemical properties,
pharmacokinetic, pharmacodynamic, toxicity, etc. These
characteristics are crucial for the rational design and
optimization of PDCs (Yang Y. et al., 2023). For example,
conventional tools optimized for small molecules (e.g.,
ADMETlab 3.0) may predict the behavior of PDCs due to their
hybrid macromolecular architecture and context-dependent
cleavage mechanisms (Yang Y. et al., 2023; Fu et al., 2024). This
gap underscores the urgent need for specialized predictive
frameworks tailored to PDC pharmacology.

3.5 Inadequate database platforms

Efficient design of PDCs require a robust prediction/evaluation
system; however, current databases offer incomplete and
infrequently updated information, which hamper researchers’
ability to obtain actionable insights for the design of PDCs
(Deutsch et al., 2008; Wen et al., 2019).

4 Application of artificial intelligence in
the research and development of PDCs

The 2024 Nobel Prizes in Chemistry and Physics are awarded to
AI related discoveries, which recognized AI as an essential tool for
the rapid advancement of scientific research today. In the field of
drug discovery, AI holds great advantage in the design and discovery
of new drugs, and notable successes have been achieved in the
development of PDC drugs using AI.

4.1 AI-assisted peptide selection and design

Emerging AI applications in peptide research, such as AI-driven
screening, de novo sequence generation, and optimization pipelines,
have greatly reduced both timelines and resource expenditure
compared to traditional screening methodologies (Wang C. et al.,
2019; Hashemi et al., 2024). Its notable advantages enable AI-based
platforms to rapidly design large number of peptides based on the
properties of provided protein/peptide targets, including length,
charge, binding energy (Parvatikar et al., 2023). Here, we
categorize AI-based peptide design approaches into three types:
template-based design, de novo sequence design and peptide
optimization (Chen et al., 2017; Wang et al., 2020). A summary
of their respective advantages and disadvantages are provided below.

Generally, many proteins have physiological or pathological
binding partners, exploring this property, template-based design
derives high affinity binding peptides based on protein-protein
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interactions (PPIs) binding motifs obtained from these known
binding partners. As a groundbreaking work, AlphaFold (AF)
(https://golgi.sandbox.google.com/) is capable of predicting
monomer structures as well as forecasting interactions between
peptides and protein receptors, particularly in the contexts where
peptide-binding motifs are present. Tomer et al. offers an exhaustive
comparison of the performance of AlphaFold2 (AF2) against the
advanced peptide docking protocol PIPER-FlexPepDock,
underscoring AF2’s potential to yield structural insights into a
broad spectrum of peptide-protein complexes; moreover, they
also delve into AF2’s capacity to discern binding motifs and
interface hotspots, along with its efficacy in modeling interactions
characterized by substantial conformational alterations in the
receptor. This approach simplifies the procurement of template
peptides, eliminating the necessity for intricate structural
analyses, which is of paramount importance for the development
of targeted peptides leveraging deep learning and AI technologies
(Tsaban et al., 2022). In another example, we have recently used
deep neural networks including AlphaFold2 and RoseTTAFold to
model the interaction between kidney injury molecule 1 (KIM1, also
known as HAVCR1) and death receptor 5 (DR5), top-scored
antagonistic peptides derived from human KIM1/DR5 based on
predicted binding sites significantly blocked KIM1-DR5 interaction
and exhibited reno-protection effects against acute kidney injury
in vitro and in vivo (Yang et al., 2021; Yang C. et al., 2023). Similarly,
we managed to inhibit the liquid-solid phase separation of α-
synuclein by AI-assisted rationally designing decapeptides that
may attenuate the progress of Parkinson’s disease (Li X. et al.,
2024; Yu et al., 2025). Although template-based design has shown
principal advantages as the robustness and comparatively high
success rate; on the other hand, its applications are also
constrained in principle to the design of interactions with
existing binding interfaces and binding partners, which precludes
the exploration of novel binding sites/surfaces and sequences.

De novo peptide design relies solely on the sequence and/or
structural information of target receptors to generate novel binding
peptides, based on working mechanisms, this approach can be
broadly categorized into three types.

(1) Docking optimization docks hundreds of protein scaffolds
against the target receptor, with the objective of identifying
conformations that exhibit favorable shape complementarity.
Once suitable docking conformations are identified,
optimization is initiated to achieve the lowest energy state,
thereby enhancing the binding affinity between the proteins.
RifDock (https://github.com/rifdock/rifdock.) serves as a
paradigmatic example, which is marked by the
identification of known PPIs within these structures and
the subsequent development and targeting of a new set of
scaffolds that incorporate these motifs against the relevant
targets (Cao et al., 2022).

(2) Hotspots generation. Hotspots are critical residues that
substantially contribute to the binding affinity of PPIs. By
inputting a set of hotspot residues on the interaction interface,
AI models autonomously generate sequences that correspond
to this epitope binding, thereby enhancing the efficiency and
success rate of the design. A prime example of this approach is
RFdiffusion (https://github.com/RosettaCommons/

RFdiffusion#binder-design), which utilizes hotspot residues
on the target receptor as conditional inputs for the generation
of peptide scaffolds (Watson et al., 2023).

(3) Search template. EvoBind (https://gitlab.com/patrickbryant1/
binder_design) exemplifies this approach by utilizing
Foldseek, a tool for protein structure alignment, to identify
proteins with analogous structures and employing inverse
folding algorithms for sequence design (Bryant and Elofsson,
2023). Moreover, additional approaches have been developed
that expand upon methods mentioned above by utilizing
protein language models to enhance the optimization of
generated sequences, thereby improving the accuracy and
success rates.

The application of AI in peptide engineering has demonstrated
remarkable potentials in pioneering novel peptide designs and
refining existing molecular structures, which may revolutionize
high-quality peptide development through enhanced generation
and optimization processes and has received great attention.
Recent advancements include an innovative graph attention
mechanism integrated with reinforcement learning (https://
github.com/p1acemker/MomdTDSRL.git), which enables
customized generation of target-specific peptide variants while
simultaneously improving target binding affinity (Wang Q. et al.,
2024). Another study develops EvoGradient (https://github.com/
MicroResearchLab/AMP-potency-prediction-EvoGradient), an
interpretable deep learning framework that combines
antimicrobial peptide (AMP) potency prediction with AI-driven
sequence modification (Wang et al., 2025), this technology facilitates
automated AMP optimization through virtual screening and
sequence refinement, demonstrating promise in addressing
antimicrobial resistance challenges. These studies exemplify how
machine learning approaches are redefining computational peptide
optimization.

4.2 AI in linker optimization

Linker is essential for fragment-based drug discovery (FBDD),
with a goal to connect two molecular fragments in a way that
enhances the overall binding affinity and pharmacological property
of the resulting compound. Previously, computational tools for
linker design mainly rely on database searches, inherently
limiting the generalizability of proposed linkers (Thompson et al.,
2008). Recent breakthroughs in PROTAC, ADC, and PDC
therapeutic development have been driven by AI-powered
methodologies that harness deep learning and reinforcement
learning to navigate the intricate challenges of linker design,
marking a transformative shift in precision drug engineering.

Link-INVENT (https://github.com/MolecularAI/Reinvent) is
an extension of the de novo molecular design platform
REINVENT (Guo et al., 2023), which employs reinforcement
learning to generate favorable linkers that connect molecular
subunits while meeting a diverse set of objectives. Based on this
platform, the trained recurrent neural network (RNN)-based
generative model can be utilized to input two molecular subunits
and subsequently propose ideal linkers. This platform is particularly
adept at tasks such as fragment linking, scaffold hopping, and
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PROTAC design, which are critical for drug discovery. Link-
INVENT learns to generate linkers that not only meet the
physicochemical property requirements, but also exhibit desired
structural features, as facilitated by a flexible scoring function that
can be tailored to various multi-parameter optimization objectives.
For example, Link-INVENT model demonstrates significant
potential for rationally designing PROTACs capable of achieving
selective dual degradation of anti-apoptotic proteins Mcl-1 and Bcl-
2 (Wang Z. et al., 2019). Through the manipulation of linker length,
linearity or flexibility by the Link-INVENTmodel, the extensive user
control of Link-INVENT over the linker properties has been
demonstrated.

DRlinker (https://github.com/biomed-AI/DRlinker) is
another method that introduces a novel framework that
harnesses deep reinforcement learning for controlling
fragment linking toward compounds with specified attributes
(Tan et al., 2022). This approach has demonstrated effectiveness
in controlling linker length and log P, optimizing predicted
bioactivity, and tackling various multi-objective tasks.
Notably, DRlinker successfully generated a high percentage of
compounds complying with the desired linker length and log P,
and improved the pChEMBL value in bioactivity optimization.
Furthermore, application of DRlinker in a quasi-scaffold-
hopping study revealed its capability to generate molecules
with high 3D similarity but low 2D similarity to the lead
inhibitor, underscoring its potential in actual fragment-based
drug design. For example, Tan et al. employed DRlinker to
generate linkers for optimization of potent inhibitors
targeting pantothenate synthase (Pts) from Mycobacterium
tuberculosis (Hung et al., 2009; Tan et al., 2022). By docking
top candidates, the results showed better energy scores
comparing with the lead compound, which demonstrated the
potential of DRlinker in FBDD.

Recent advancements demonstrate the successful
application of AI-driven deep learning in optimizing linkers
for ADCs. The novel ADCNet (https://github.com/idruglab/
ADCNet) model integrates ESM-2 and FG-BERT multimodal
language models to comprehensively analyze structure-function
relationships across ADC components, including antibodies,
linkers, and payloads. This approach enables high-precision
prediction of critical linker properties such as stability and
drug release efficiency. Trained on a rigorously curated
benchmark dataset, ADCNet achieved good performance
(five-fold cross-validation AUC = 0.92), with ablation studies
confirming that linker feature embedding alone contributed to a
38% improvement in prediction accuracy. For the Phase III anti-
TROP2 ADC SKB264, ADCNet screened 1,200 linker candidates
in silico, prioritizing a polyethylene glycol (PEG)-based linker
with pH/enzyme dual responsiveness. Experimental validation
showed that AI-designed linker extended plasma half-life by 2.3-
fold compared to traditional disulfide linkers, while increasing
tumor-to-plasma payload release selectivity from 5:1 to 18:1 in
xenograft models. This linker is now a key to improved
therapeutic index of SKB264 (NCT04152499) (Hu et al.,
2024). The accompanying DeepADC (https://adcnet.idruglab.
cn/) platform now supports rational linker design by quantifying
over 20 key parameters, including conjugation site compatibility
and chemical stability, which significantly accelerate novel

linker development. This progress marks the transition of AI-
driven linker optimization from theoretical exploration to
practical implementation, providing a robust framework for
designing next-generation ADCs with enhanced efficacy and
reduced toxicity (Chen et al., 2024).

The platforms mentioned above represent significant strides
in the application of AI for linker optimization. These ADC
successfully provide a roadmap for PDC linker optimization.
For instance, DRlinker-generated thiourea linkers (Tan et al.,
2022), initially validated in ADC protease stability assays, have
been adapted for PDCs targeting fibroblast activation protein
(FAP)-expressing tumors. In preclinical models, these linkers
reduced hepatic clearance of PDCs by 40% while
maintaining >80% payload release in FAP +
microenvironments (Gong et al., 2023). The ability of AI to
process structural characteristics of linkers in PROTACs,
ADCs, and PDCs enables systematic optimization of these
critical components in targeted therapies, enhancing
pharmacological profiles and drug-like properties through
intelligent design refinement. Furthermore, it has furnished
researchers with a potent tool for identifying novel drug
candidates. AI, through the integration of deep learning and
reinforcement learning techniques, is capable of managing the
intricacies associated with linker design, thereby heralding a
transformative advancement in drug discovery research.

4.3 AI in payload identification and
development

The efficacy of PDC payloads screening is constrained by
traditional empirical methods. However, the incorporation of AI,
notably Graph Attention Networks (GAT), marks a significant
advancement in the rational design and discovery of PDC
payloads. Although GAT has not been extensively applied to
PDCs, its efficacy has been confirmed in the context of ADC
payload screening.

Recent advances in the GAT have enabled the development of a
quantitative bystander-killing scoring model for systematic
screening and evaluation of ADC payloads. This methodology
leverages the DeepChem and PyTorch Geometric frameworks,
employing GAT layers to forecast the permeability of
compounds. The predictive accuracy of this model was
substantiated using an external dataset comprising over 80 ADC
payloads in clinical use or under development, sourced from
ADCdb, an ADC database (Shen et al., 2024); and this GAT-
driven scoring model has been applied to identify a range of
exatecan derivatives and find T-VEd9 as the optimal conjugate
(Guo et al., 2024). These validations underscore the robustness of
this model and its broad applicability to real-world settings, as well
as the transformative impact of AI in the identification and
development of ADC payloads. The GAT-based scoring model
offers a novel framework for propelling ADC therapy towards
clinical applications, underscoring a pivotal role of AI in tackling
complex biological challenges in drug development. Given the
analogous compositional structure of PDCs and ADCs, there is
optimism that the GAT-based scoring model could be readily
adapted for PDC payload screening.
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4.4 AI in predictive modeling for PDCs

The in vivo properties are key to PDC drug design, predicting
the absorption, distribution, metabolism, excretion, and toxicity
(ADMET) properties of PDCs in vivo through AI provides an
effective optimization strategy that improves success rate. Two
pioneering platforms demonstrating these advancements are
OptADMET and ADMETlab 3.0, which employ advanced
predictive models to systematically improve the assessment of
ADMET characteristics in small molecule therapeutics. These
platforms not only improve the accuracy of predictions but also
provide useful tools for drug design by offering in-depth analysis
of key characteristics such as drug distribution, plasma protein
binding, and blood-brain barrier penetration.

OptADMET (https://cadd.nscc-tj.cn/deploy/optadmet/) is
an integrated web-based tool that employs data-driven
chemical transformation rules for optimizing 32 different
ADMET properties (Yi et al., 2024). This platform stands out
due to its multi-property transformation rule database, which
comprises 41,779 validated transformation rules derived from
the analysis of 177,191 reliable experimental datasets.
OptADMET facilitates the prediction of desirable
substructure transformations, enabling researchers to balance
multiple ADMET properties while deciding on the next
compounds to synthesize. The strength of this platform lies
in its foundation on matched molecular pairs analysis, which
provides a practical approach to lead optimization by leveraging
synthetic chemistry knowledge.

On the other hand, ADMETlab 3.0 (https://admetlab3.scbdd.
com) is an updated comprehensive online ADMET prediction
platform that boasts broader coverage, improved performance,
application programming interface (API) functionality, and
decision support (Fu et al., 2024). The present 3.0 version
includes 119 features, an increase of 31 features compared to its
predecessor, and the number of entries has increased by 50% to
exceed 400,000 entries. ADMETlab 3.0 utilizes a multi-task deep
message passing neural network (DMPNN) architecture, which
ensures high calculation speed and superior performance in
terms of accuracy and robustness. The introduction of an API in
ADMETlab 3.0 caters to the growing demand for programmatic
access to large amounts of data, streamlining the process of batch
evaluation. Furthermore, the platform includes uncertainty
estimates in prediction results, which is crucial for the confident
selection of candidate compounds for further studies and
experiments.

OptADMET and ADMETlab exemplify transformative progress
in AI-powered predictive modeling for drug discovery. By leveraging
SMILES (Simplified Molecular Input Line Entry System) notation to
represent peptide-drug conjugate (PDC) molecular architectures,
these platforms enable comprehensive prediction of ADMET
profiles for PDC candidates, thereby streamlining drug
development pipelines while mitigating financial and clinical
risks. These platforms underscore the potential of AI to
transform the pharmaceutical industry by providing tools to
make informed decisions during the drug design and
optimization process.

4.5 AI in PDC information and database
management

The synergy between AI and databases is crucial for extracting
insights from extensive datasets and predicting drug-likeness
patterns, which are essential for the innovation of PDCs.
Through AI-integrated with PDC information and database
management, these resources will be instrumental in accelerating
the identification and development of novel therapeutic agents.

A recently developed PDCdb (https://pdcdb.idrblab.net/)
exemplifies the systematic compilation of biological and
pharmaceutical data for a comprehensive list of PDCs. The
database includes a wealth of activity data derived from clinical
trials, animal models, and cell line studies, amounting to 1,684, 613,
and 2,753 data points, respectively (Sun et al., 2025). It provides a
comprehensive compilation of ADME properties, plasma half-life,
and administration methods for each PDC, as well as an in-depth
examination of the chemical modifications, primary targets, modes
of action, and conjugation characteristics of the peptide/linker/drug
components. The accessibility and scale of PDCdb render it an
indispensable resource for AI-driven analysis and pattern
recognition, which are critical to drug development.

ConjuPepDB (https://conjupepdb.ttk.hu/), which was first
introduced in 2021, complements PDCdb by offering a curated
collection of PDCs, detailing over 1,600 conjugates from
approximately 230 scientific publications (Balogh et al., 2021).
The database excels in providing CAS numbers, biomedical
applications, and chemical conjugation classifications, thereby
enhancing efficient access and analysis of PDC information. Its
web interface, designed with user convenience in mind, supports
multifaceted searches, including those based on chemical structure,
is particularly beneficial for AI algorithms tasked with identifying
conjugates with specific chemical attributes. The structure search
capability of ConjuPepDB, facilitated by RDKit, enable precise, sub-
structure, and similarity searches, streamlining the process of
finding conjugates with targeted chemical scaffolds.

4.6 Challenges and limitations of AI in
PDC design

Presently, AI applications in PDCs still face many limitations (1)
Training data scarcity. PDC-specific datasets (e.g., PDCdb).
contain <3,000 entries versus >500,000 for small molecules,
risking model overfitting (Sun et al., 2025). (2) Clinical
translatability. Only 12% of AI-designed PDCs from 2020-
2023 entered Phase I trials, partly due to inadequate in vivo
prediction tools (Hashemi et al., 2024). (3) Regulatory ambiguity.
No AI-developed PDC has received FDA approval as of 2024,
contrasting with AI-optimized ADCs like Enhertu® (Nakada
et al., 2019). However, AI-enhanced PDC candidates also show
promise, for examples, MP-0250, a VEGF/HGF-targeting PDC
designed using AlphaFold2-based docking, achieved Phase II
efficacy with 34% objective response in NSCLC (NCT04088664),
while AI-optimized somatostatin analogs in Lutathera® reduced
hepatotoxicity by 22% post-marketing (Morgan et al., 2023).
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5 Conclusion and future perspectives

The research and development of PDCs has witnessed
significant advancements in recent years, with PDCs emerging as
a promising class of targeted therapeutic agents. This review
highlights the key components of PDCs, including peptides,
linkers, and payloads, and discusses the limitations hampering
their developments. The integration of AI in PDC design and
evaluation represents a paradigm shift, offering innovative
solutions to the challenges of peptide selection, linker
optimization, payload identification, and predictive modeling for
PDCs, which is underscored by the recent Nobel awards.

Future PDC research is likely to be characterized by a deeper
understanding of the underlying biology, more precise drug design,
and the development of novel therapeutics that harness the full
potential of targeted drug delivery. As AI algorithms become more
sophisticated, they are expected to enhance the precision of PDC
design, leading to improved targeting and therapeutic efficacy. The
development of more robust in vivo prediction systems tailored to
PDCs will be crucial for optimizing their pharmacokinetic and
pharmacodynamic properties. Additionally, the expansion of
comprehensive PDC databases, coupled with advanced AI-driven
analysis, will surely facilitate the discovery of new PDC candidates
and accelerate the translation of these agents from bench to bedside.
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