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Introduction: Cost-effectiveness analysis (CEA) serves as a critical tool to
evaluate the economic sustainability of new treatments. However, many CEA
tools are not specifically tailored to address the intricate cost composition
resulting from the complex treatment regimens in oncology trials.

Methods: We extracted data from Kaplan-Meier (KM) curves, reconstructed
individual patient data (IPD) using an iterative KM algorithm, and fitted
parametric survival functions to the IPD data. Based on these functions, we
constructed Partitioned Survival Model (PSM), calculated the probability of each
survival state per cycle, and combined these with utility values to compute the
effect per cycle and the incremental effect for the experimental group. We
employed a treatment-cycle-specific cost analysis, simulating cost uncertainty
through gamma distribution. Using the PSM, we calculated the state-weighted
cost, applied a discount rate, determined the incremental cost for the
experimental group, and calculated the Incremental Cost-Effectiveness
Ratio (ICER).

Results: The OncoPSM application is available at http://sw2-primary1.
xiyoucloud.pro:13471/oncoPSM/. Validation with real-world data from the
CHOICE-01 trial showed that OncoPSM accurately reconstructed IPD from
KM curve, with RMSE below 0.004 for all curves. Log-rank p-values for the
experimental and control groups (PFS: <0.001; OS: 0.010) closely matched the
original article (PFS: <0.001; OS: 0.010). Hazard Ratios (HR) from reconstructed
IPD data (PFS: 0.504 [0.4–0.63], OS: 0.731 [0.57–0.93]) were consistent with the
original paper (PFS: 0.49 [0.39–0.61], OS: 0.73 [0.57–0.93]). The Log-logistic
model provided the optimal fit for both PFS and OS curves according to the
Akaike Information Criterion (AIC). Extrapolating the survival to a 10-year horizon,
we created the PSM, derived the average state probability per cycle, and
calculated state-weighted costs. The incremental cost for the experimental
group was ¥42,068, with incremental quality-adjusted life years (QALYs) of 0.
35, resulting in an ICER of 121,402, significantly below the willing-to-pay (WTP)
threshold of 268,200 RMB/QALY. Uncertainty analysis showed a 99.7%
probability of the experimental group being cost-effective.
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Conclusion: OncoPSM provides convenient treatment-cycle-based cost analysis,
addressing the complexities of treatment costs in oncology research. By visualizing
the entire CEA process, OncoPSM enables decision-makers to make informed
decisions based on both statistical and intuitive assessments.

KEYWORDS

cost-effectiveness analysis, incremental cost-effectiveness ratio, partitioned survival
model, oncology, lung cancer

Introduction

The rapid progress in oncology therapeutics, marked by the
advent of personalized medicine and innovative targeted therapies,
has inaugurated a new era in cancer treatment. However, these
advancements bring significant financial challenges to healthcare
systems globally. The imperative to balance clinical effectiveness
with economic sustainability has never been more pronounced
(Lichtenberg, 2020). Cost-effectiveness analysis (CEA) stands out
as a pivotal tool, offering a structured approach to assess whether the
health benefits of a new treatment justify its costs compared to
existing standards of care (Ademi et al., 2013). Through CEA,
decision-makers can optimize the allocation of limited healthcare
resources, ensuring optimal patient care while managing healthcare
expenditure growth.

CEA tools are indispensable for healthcare decision-makers,
empowering them to make informed decisions regarding resource
allocation (Seo and Cairns, 2021). Various tools and software
packages are available to model, simulate, and analyze the costs
and outcomes associated with different interventions. The CEA
model framework can be configured in several ways, including
Decision Tree (Gurusamy et al., 2017), State-Transition (Markov
Cohort) Model (Peersman et al., 2014), and Partitioned Survival
Model (PSM) (Tikhonova et al., 2017). Excel is one of the most
widely accessible tool that can be used for basic CEA, it is often used
in conjunction with other specialized software for data analysis and
visualization (Buyukkaramikli et al., 2019). TreeAge Pro, which is a
commercial software, is a versatile decision analysis software for
creating decision trees, Markov models, and Monte Carlo
simulations (Jiang et al., 2019). R packages such as rdecision
(https://github.com/cran/rdecision), dampack (https://github.com/
DARTH-git/dampack), BCEA (https://gianluca.statistica.it/books/
bcea/), heemod (Filipović-Pierucci et al., 2017) and hesim (Zhang
H. et al., 2023) are designed for health economic evaluation. They
provide frameworks for conducting CEA and other types of
economic evaluations using simulation-based approaches. By
programming, researchers could achieve high level of
customization and flexibility in data manipulation, model
building, and statistical analysis.

However, most of these tools are designed for general clinical
trials where treatment costs are often approximated using average
values across the entire treatment period. While this approach is
convenient, it fails to capture the significant variability in costs that
can occur within individual treatment cycles, particularly in
oncology, where treatment regimens are characterized by
complex and dynamic dosing schedules (Zhang H. et al., 2023;
Presa et al., 2023; Hui et al., 2023). To refine cost analysis in
oncology cost-effectiveness modeling, it is essential to move

beyond average costs and adopt a more granular consideration of
treatment-cycle specific costs. By capturing the variability and true
economic value of therapies, these refined approaches can lead to
more accurate and meaningful cost-effectiveness evaluations,
ultimately supporting better-informed clinical decision-making
and healthcare policy.

We present oncoPSM, an interactive tool tailored for cost-
effectiveness analysis in oncology trials using the Partitioned
Survival Model (PSM). OncoPSM offers precise, efficient, and
visually intuitive methods for computing research costs in
oncology. We have also integrated the entire cost-effectiveness
analysis pipeline, starting from reconstructing IPD, through
fitting parametric survival models, to creating PSM models.
Furthermore, we have visualized key aspects of the analysis
process, enhancing researchers’ capacity to comprehend and
intuitively evaluate the accuracy of results.

Materials and methods

The user-interface of oncoPSM

The oncoPSM presents an interactive online analysis tool
developed, accessible at http://sw2-primary1.xiyoucloud.pro:
13471/oncoPSM/. The user interface (UI) features four primary
pages listed in the left sidebar: Parameters, Analysis, Document, and
Contact. Users are encouraged to begin by reviewing the
documentation, followed by inputting their custom parameters
and submitting them for analysis. The parameter page consists of
three main sections: parameters for IPD reconstruction, cost
analysis, and PSM creation. Once all parameters are set, simply
click the submit button at the bottom of the page to proceed with the
analysis. The Analysis page primarily displays the key analysis
results, the Incremental Cost-Effectiveness Ratio (ICER),
alongside visualization of detailed processes including survival
analysis, efficacy analysis, and cost analysis.

Extracting data from published Kaplan-
Meier survival curves

Data points can be extracted from Kaplan-Meier survival curves
(KM Curves), where the x-axis represents time and the y-axis
indicates survival probability. While we did not include this step
in our analysis, various software options are available to digitize
these graphs. Commonly used software includes DigitizeIt (http://
www.digitizeit.de/), ScanIt (https://www.amsterchem.com/scanit.
html), and WebPlotDigitizer (https://automeris.io/
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WebPlotDigitizer/). Although data extracted using different
methods generally produce similar results (Liu et al., 2021), it is
essential to manually verify the similarity between the original KM
curve and the reconstructed KM curve to ensure the accuracy of
estimation.

Reconstructing individual patient data (IPD)
from extracted survival data

For reconstructing IPD from the extracted survival data, we
employed the R package IPDfromKM. This package utilizes an
iterative algorithm adapted from the iKM method (Liu et al., 2021;
Guyot et al., 2012). To assess the accuracy of the reconstruction, we
provided statistical summary and KM curves reconstructed for
visual evaluation. The statistical summary includes metrics such
as root mean square error (RMSE), maximum absolute error, and
mean absolute error per curve. Notably, the following thresholds are
commonly utilized to signify the adequacy of the extracted data
points for subsequent analyses: RMSE ≤0.05, mean absolute
error ≤0.02, and maximum absolute error ≤0.05. Meanwhile, the
reconstructed KM curve is presented for manual comparison with
the original KM curve.

Fitting parametric survival functions

To extrapolate the survival curve, the first step is to fit the
Individual Patient Data with a full-parametric survival function,
which involves selecting a suitable regression function for the time-
to-event data. We incorporated six common accelerated failure time
(AFT) models: Weibull, generalized Gamma, Log-Logistic, Log-
Normal, Exponential and Gompertz. To assess the accuracy of
the fitting, we utilized the Akaike Information Criterion (AIC),
which evaluates the goodness of fit of the parametric function to the
observed data while penalizing the number of parameters. The
model with the smallest AIC was selected for both progression-
free survival (PFS) and overall survival (OS), respectively.

Creating partitioned survival model and
conducting Monte-Carlo simulation

Utilizing the full-parametric survival function, we established a
three-state PSM comprising stable disease (SD), progressive disease
(PD), and death states. The PSM estimates the probability of a
patient being in each health state at any given time under a specific
therapy, by comparing the AUC (area under the curve) of KM curve
between PFS and OS. Alongside the survival function, utility is a
critical parameter in PSM creation, with values typically derived
from literature focusing on similar contexts. We introduced a beta
distribution to simulate utility values within a 20% range, consistent
with prevailing literature practices (Nafees et al., 2017; Cheng et al.,
2024; Zhang M. et al., 2023; Wang H. et al., 2023; Huo et al., 2023).
For Monte-Carlo simulation, which involves multiple model
iterations, users can define custom cycle lengths (weeks/cycle)
and utility values for each survival state (SD, PD). The lifetime
horizon is automatically calculated based on the user-input cycle

length and the total number of treatment cycles in the cost data,
ensuring flexibility for diverse trial designs. The lifetime horizon
denotes the timeframe considered in the pharmacoeconomic model
and significantly influences ICERs, which tend to decrease
(indicating enhanced cost-effectiveness) with longer horizons.
Model cycle represents the period used for calculating immediate
state-transition probabilities, conventionally set at 3 weeks (Zhang
M. et al., 2023; Wang H. et al., 2023; Huo et al., 2023). We then
estimated three transition probabilities within each model cycle
throughout the lifetime horizon: the probability of PD observed
before death (psd.pd), the probability of death from the SD (psd.d),
and the probability of death from the PD (ppd.d). By simulating this
process N times, we can derive statistical distributions of costs
and effects.

Analyzing treatment costs across survival
states and treatment cycles

Costs are categorized into State-Dependent Costs and State-
Independent Costs. State-Dependent Costs capture medication
expenses associated with disease states, while State-Independent
Costs include all other care-related costs. Utilizing these user-
defined costs per treatment cycle for each survival state, our
approach initially involved simulating the cost distribution N
times using a gamma distribution. This process generated a four-
dimensional matrix comprising treatment group, survival state,
treatment cycle, and simulation time. Leveraging the results
obtained from the PSM, we extracted state probabilities for each
model cycle. Crucially, we aligned the model cycle with the
treatment cycle, enabling the calculation of survival state-
weighted costs per model cycle. To address potential bias in cost
attribution due to events occurring within model cycles, we applied
half-cycle correction. Finally, we computed the present value of costs
by discounting the model cycle costs with the specified discount rate.

Decision analysis and uncertainty
quantification

With the previously computed fitted parametric survival
function, PSM, and user-inputted survival-state specific utilities,
we can calculate the effectiveness metric, QALYs, and its
distribution across N simulation runs. Utilizing the precomputed
survival-state-weighted costs, we derive the core metric for cost-
effectiveness analysis, the ICER. This ratio represents the difference
in incremental cost divided by the difference in incremental effect,
with a statistical distribution generated from Monte-Carlo
simulation. To facilitate decision-making, we evaluated the
magnitude of the ICER, typically against a willing-to-pay (WTP)
threshold. According to The Guidelines of Pharmacoeconomic
Evaluations of China (2020) (Liu et al., 2020), the threshold is set
as 3×GDP for ‘cost-effective’ interventions, with 1×GDP used as a
strict benchmark for ‘highly cost-effective’ classifications.
Additionally, other metrics such as net monetary benefit (NMB)
and incremental NMB (iNMB) are inferred and reported with the
assistance of WTP. Probability Sensitivity Analysis (PSA) is the
standard methodology for quantifying the impact of parameter
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uncertainty. In our analysis, we have integrated beta and gamma
distributions for the two critical parameters, utility and cost,
respectively. Notably, as our cost varies with the treatment cycle
and is not fixed, it is not suitable for univariate sensitivity analysis.

Data visualization

We thoroughly visualized the entire analysis process, which
sequentially includes the statistical evaluation of IPD reconstruction,
the KM curve of the reconstructed IPD, accuracy assessment in
fitting the parametric survival function, the parametric survival
function after Monte-Carlo simulation, changes in survival state
probability over treatment cycles, changes in survival state-weighted
costs over treatment cycles, and the assessment of cost-effectiveness.
This included the cost-effectiveness plane, cost-effectiveness
acceptability curve (CEAC), and the expected value of
information (EVPI) plot. All visualizations were implemented
using the R packages ggplot2 and survminer.

Results

Data extraction and processing from KM
curves of CHOICE-01 trial

An example using oncoPSM was provided based on the
CHOICE-01 trial, a multicenter randomized phase III study. This
clinical trial compared Toripalimab plus chemotherapy
(experimental group) versus chemotherapy alone (control group)
for treatment-naïve advanced non–small-cell lung cancer (NSCLC)
(Wang J. et al., 2023) The experimental group enrolled 309 patients,
while the control group enrolled 156 patients. The study reported
PFS data up to 30 months and OS data up to 42 months. The total
PFS events were 194 in the experimental group and 132 in the
control group. The total OS events were 17 in the experimental
group and 108 in the control group. We extracted datapoints of PFS
and OS for both the experimental and control groups using
WebPlotDigitizer (Supplementary Tables S1-S4). To reconstruct
the IPD more accurately, we also used risk tables of each survival
curve as input (Supplementary Table S5).

Cost composition in CHOICE-01 trial

The cost composition in this study is quite complex due to the
treatment regimens that adjust over time and with disease state.
Briefly, patients received first-line therapy every 3 weeks for 4-
6 cycles, followed by maintenance therapy until disease progression,
death, unacceptable toxicity, investigator decision, withdrawal, or
completion of 2 years of treatment, whichever occurred first. Based
on this, we collected and organized direct drug costs according to
treatment cycle and disease state (Supplementary Tables S6-S7).
Since the trial did not specify treatment details after disease
progression, we set the cost after PD to 0 for all groups for
convenience. Indirect costs resulting from tumor assessments are
also complex. The study reported that computed tomography/
magnetic resonance imaging were performed at baseline, every

6 weeks during the first 12 months, and every 9 weeks thereafter.
Given that indirect costs generally do not vary with survival state, we
consolidated all indirect costs—including imaging, lab exams, and
supportive care—into a single table, with each row representing a
treatment cycle and each column representing a type of indirect
cost (Supplementary Table S8). To facilitate researcher, a template
pre-loaded with the data used in this example can be downloaded
from https://github.com/dev01ontheway/oncoPSM/tree/main/
oncoPSM_demoData.

Another important parameter to consider is the time unit. Many
studies, including CHOICE-01, use months as the unit for KM
curves. However, CEA often uses QALYs to measure effect, and
utility values are typically calculated on an annual basis. Therefore, it
is necessary to convert the time units accordingly. Additionally, the
times of simulations significantly impacts memory usage.

IPD reconstruction and parametric survival
function fitting

Based on the data points extracted from the KM curves, we
reconstructed the IPD. We first assessed the accuracy of our
reconstruction using three metrics: root mean square error
(RMSE), maximum absolute error, and mean absolute error. All
three metrics for the four curves were less than 0.004, which is
significantly better than the recommended standards, indicating
high reconstruction accuracy (Figure 1A). Notably, the PFS curve in
the control group had slightly poorer metric values, possibly due to
the number of data points we extracted.

Next, we plotted KM curves for PFS and OS using the
reconstructed IPD data (Figures 1C,D). Comparing the
reconstructed KM curves to those published in the original
article, we observed a high degree of similarity, indicating no
significant reconstruction bias. We also calculated the log-rank
p-values for the experimental and control groups using the
reconstructed IPD data. For PFS, the p-value was <0.0001, and
for OS, it was 0.0104. These results are very similar to the original
article’s p-values of <0.0001 for PFS and 0.0108 for OS. Additionally,
the Hazard Ratios (HR) calculated using the reconstructed IPD data
were 0.504 [0.4–0.63] for PFS and 0.731 [0.57–0.93] for OS. These
are closely aligned with the original paper’s reported values of HR:
0.49 [0.39–0.61] for PFS and 0.73 [0.57–0.93] for OS.

We employed six common parametric survival models to fit the
survival data, with the Akaike Information Criterion (AIC) serving
as the goodness-of-fit indicator. The Log-logistic model
demonstrated the best fitting performance for both PFS and OS
curves (Figure 1B). We compared the reconstructed KM curves with
the Log-logistic fitted curves for PFS and OS (Figures 1C,D).
Interestingly, the parametric fitting exhibited better performance
for the OS curve compared to the PFS curve, likely attributed to the
longer follow-up period for OS. Numerically, the median PFS times
calculated from the parametric function were 0.52 and 0.90 years in
the control and experimental groups, respectively, slightly longer
than those reported in the original paper (0.45 and 0.70 years).
Similarly, the median OS times calculated from the parametric
function were 1.60 and 2.03 years in the control and
experimental groups, respectively, closer to the reported values
(1.42 and 1.98 years).
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Estimating survival state probability per
treatment cycle

With the parametric survival function fitted, we extrapolated
the survival curve to a lifetime horizon derived from dynamic
calculation (e.g., 10 years in this case, based on 172 cycles ×
3 weeks/cycle). According to the survival function, at 10 years,
0.02% and 0.22% of patients are still alive in the control and
experimental groups, respectively. Following multiple simulations,
we derived the average survival probability during lifetime horizon
(Figures 2A,B). In the control group, nearly all patients progressed
at 1.5 years and succumbed to the disease by 5 years, while in the
experimental group, progression occurred at 2.5 years with a
subsequent survival until 7.5 years. We then inferred survival
state probability in each model cycle thereafter (Figure 2C). The
probability of SD state decreased with each treatment cycle, with
the experimental group displaying notably higher SD state
probability during the first 50 treatment cycles compared to the
control group. Conversely, the probability of PD state increased
during the first ~25 treatment cycles before decreasing. The
experimental group exhibited lower PD state probability during

the first 36 treatment cycles but higher PD state probability
thereafter.

With survival state probability per model cycle available, we
calculated the survival state-weighted cost per treatment cycle
(Figure 2D). It is noteworthy that the cost fluctuates with the
treatment cycle, partly due to the introduction of cost probability
distributions. However, more importantly, this variability reflects
the influence of imaging costs within indirect costs, further
emphasizing the ability of our cost model to accurately reflect
cost fluctuations.

Decision analysis and uncertainty assessing

The primary metric was the ICER, which stands at
121,402 RMB/QALY in our dataset. Correspondingly, the
incremental cost is 42,067.86 (35,624.7–48658.39), and the
incremental QALY is 0.3465 (95%CI: 0.2100–0.4783). Since the
ICER was substantially lower than the WTP threshold of
268,200 RMB/QALY, the conclusion was that the experimental
intervention was cost-effective.

FIGURE 1
IPD reconstruction and parametric survival function fitting. (A) Statistical summary of the reconstructed IPD compared to the extracted data. (B)
Akaike Information Criterion (AIC) of six common parametric survival models used to fit the survival data. Llogis: Log-logistic; gengamma: generalized
gamma; lnorm: log-normal; Weibull: Weibull distribution; gompertz: Gompertz; exp: Exponential. (C,D) Reconstructed Kaplan-Meier (KM) curves and the
Log-logistic fitted curves for PFS (C) and OS (D).
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To assess the uncertainty introduced by the parametric
distribution, we utilized cost-effectiveness planes, cost-
effectiveness acceptability curves (CEACs), and the expected
value of information (EVPI). Among the 1,000 simulation runs,
the experimental group lacks cost-effectiveness in only 3 instances
(0.3%), i.e., experimental group showed a 99.7% probability of being
a cost-effective option at a WTP threshold of 268,200 RMB/QALY
(Figure 3A). Comparatively, when using 1-fold GDP as WTP cutoff,
the experimental group exhibited a 6.1% probability of being cost-
effective. From the CEACs, which depict the probability that each
treatment strategy is the most cost-effective, we observed a crossover
between the two curves at a WTP threshold of approximately
122,000 RMB, aligning closely with the value of the ICER. This
represents the point where both the experimental and control
groups demonstrated similar levels of cost-effectiveness
(Figure 3B). The Expected Value of Perfect Information (EVPI),
which integrates the probability of being most effective with
the magnitude of expected Net Monetary Benefit (NMB), reaches
its peak at 3,208.91 RMB when the WTP equals
122,000 RMB (Figure 3C).

Discussion

We developed OncoPSM, an interactive tool for cost-
effectiveness analysis using partitioned survival models in
oncology trials. The main value of the tool lies in its ability to
address the complexities of treatment-cycle-specific cost analysis in
oncology trials. Previously, most software utilized average costs for
estimation when using the PSM model. However, this approach is
overly simplistic for oncology research, where treatment regimens
are often multifaceted, making cost calculations challenging. Direct
drug costs include first-line, maintenance, and second-line
treatments, while indirect costs such as imaging and laboratory
expenses exhibit periodicity. Therefore, in the development of
OncoPSM, we considered these factors. We integrated survival
state and treatment-cycle-specific costs as inputs, incorporating
probability distributions to comprehensively assess cost
uncertainty. By using the model-cycle-specific state probabilities
obtained from PSM as weights and discounting with a discount rate,
we derived the final costs. In theory, our algorithm should yield costs
much higher than average costs, as initial treatment phases typically

FIGURE 2
State probability per treatment cycle. (A,B) Average probabilities of PFS (A) and OS (B) over 10 years based on 1,000 simulations. (C) State probability
per treatment cycle in the experimental and control groups. (D) State-weighted cost per treatment cycle in the experimental and control groups.
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incur higher direct drug costs, which are reflected in the discounted
costs. In addition to addressing the challenges of cost calculation, we
also integrated the entire cost-effectiveness analysis process,
including IPD reconstruction, parametric survival function fitting,
PSM construction, and ICER calculation. Furthermore, our tool
incorporates a series of quality control metrics at key stages,
including RSEM for IPD reconstruction effectiveness, AIC for
parametric survival function fitting effectiveness, and probability
sensitivity analysis, and uncertainty visualization. Moreover, we
visualized the entire process, enabling researchers to intuitively
evaluate the analysis results.

In the CHOICE-01 study, we validated the performance of our
tool.We arrived at a conclusion consistent with other studies (Zhang
M. et al., 2023; Wang H. et al., 2023; Huo et al., 2023), indicating the
cost-effectiveness of toripalimab combined therapy. However, we
differed significantly from previous research in three key aspects.
Firstly, our effect analysis utilized the latest and mature OS data,
whereas previous studies relied on mid-term and immature OS data,
leading to a higher calculated incremental effect (Zhang M. et al.,
2023;WangH. et al., 2023; Huo et al., 2023). Secondly, we conducted
statistical indicator calculations and visualizations at two critical
analysis stages, IPD reconstruction and parametric survival function
fitting, enabling researchers to assess study accuracy logically and
intuitively. Thirdly, and the most importantly, in our cost analysis,
the unit price of toripalimab was 1,884.86 RMB/240 mg, obviously
lower than in many previous studies (2003 RMB/240mg inWangH.
et al. (2023); 2,717 RMB/240 mg in Huo et al. (2023); 2,780 RMB/
240 mg in ZhangM. et al. (2023), yet our calculated incremental cost
was only slightly lower than in previous studies. This discrepancy is
evidently due to differences in cost analysis methodologies. We
provided clarity at every step of the cost analysis and visualized state-
weighted costs, enabling researchers to intuitively judge the accuracy
of the cost analysis, which was somewhat lacking in previous studies.
Furthermore, we tested calculating ICER using the average cost of all
cycle (2,162 RMB in the experimental group, 1,778 RMB in the
control group), yielding an ICER of 3,308 RMB (with corresponding
incremental cost of 1,138 RMB). This result aligned with our

expectations, as average cycle costs significantly underestimated
actual costs. We further tested calculating ICER using the cost of
first-line treatment (4,907 RMB in the experimental group,
3,023 RMB in the control group), assuming patients would
continue with the experimental treatment until progression,
resulting in an ICER of 11,282 RMB (with corresponding
incremental cost of 3,905 RMB). This finding was somewhat
unexpected, as the ICER calculated using the cost of first-line
treatment was lower than that obtained by calculating costs per
cycle. Upon investigation, we discovered that maintenance therapy
accounted for the most significant and longest-lasting cost difference
between the experimental and control groups (maintenance therapy
costs were 3,411 and 1,527 RMB in the experimental and control
groups, respectively). This underscores the complexity of cost
analysis, where neither the cost of first-line treatment nor
maintenance therapy costs alone suffice to reflect true treatment
costs; calculating costs per cycle emerges as the optimal choice.

Given that this tool is primarily developed for oncology research,
it may not necessarily be suitable for other types of studies. Firstly,
we utilize PSM, which is only applicable to clinical trials with
survival as the endpoint. Other clinical trials with disease
outcomes as the endpoint may use state transition models such
as cDTSTM, iDTSTM, etc. Secondly, to facilitate researchers’ quick
adoption, we have set some default options commonly used in
oncology clinical trials in the tool, including treatment cycles every
3 weeks (Q3W). Meanwhile, users can also customize cycle lengths,
and the lifetime horizon is dynamically calculated based on the
inputted cycle length and the number of treatment cycles, enhancing
flexibility for diverse research scenarios. Thirdly, and most
importantly, our cost analysis requires researchers to customize
the cost for each treatment cycle, including both direct drug costs
and indirect costs such as imaging, examinations, and supportive
care. Therefore, if costs do not vary with treatment cycles, there may
be no need to use this model, and conventional R software like
heemod and hesim may be more propriate.

The tool, originating from the need to address cost analysis in
oncology clinical trials, integrates the entire process of cost-

FIGURE 3
Uncertainty assessment. (A) Cost-effectiveness planes. Each point represents the result of one simulation, with the yellow line indicating 3 times
GDP and the gray line indicating 1 time GDP. (B) Cost-effectiveness acceptability curves. The red curve indicates higher cost-effectiveness for the
experimental group, while the blue curve indicates higher cost-effectiveness for the control group. (C) Expected value of information plot.
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effectiveness analysis, considering numerous factors that influence
QALYs and costs. However, there are still some areas that require
improvement. Firstly, we have adopted a default treatment cycle of
Q3W. If there is a significant demand from users to set custom
treatment cycles in practice, we will consider opening up
customization options. Secondly, the PSM consumes considerable
memory. With a simulation count of 1,000, the average memory
consumption approaches 150 GB. This may cause lagging when a
large number of users are using the tool simultaneously. We will
refinememory consuming to improve this in the future. Considering
that there may be some aspects we have not fully considered, we have
also provided access to all data during the analysis process, including
key parameters of the parametric survival function, iNMB, and other
parts not extensively explained in our article.

We have developed and validated OncoPSM, an interactive tool
specifically tailored for conducting cost-effectiveness analyses in
oncology clinical trials. OncoPSM addresses the intricacies of cost
analysis arising from complex treatment regimens, thereby
enhancing the accuracy and user-friendliness of CEA. By
integrating a comprehensive analysis pipeline and enabling real-
time analysis, OncoPSM aims to empower users to make more
informed decisions regarding the adoption of new cancer therapies.
Future research is needed to validate the reliability and
generalizability of OncoPSM by comparing its performance with
established CEA methods and widely used tools.
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