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Introduction: Drug safety has increasingly become a serious public health
problem that threatens health and damages social economy. The common
detection methods have the problem of high false positive rate. This study
aims to introduce deep learning models into the adverse drug reaction (ADR)
signal detection and compare different methods.

Methods: The data are based on adverse events collected by Center for ADR
Monitoring of Guangdong. Traditional statistical methods were used for data
preliminary screening. We transformed data into free text, extracted text
information and made classification prediction by using the Long Short-Term
Memory (LSTM) model. We compared it with the existing signal detection
methods, including Logistic Regression, Random Forest, K-NearestNeighbor,
and Multilayer Perceptron. The feature importance of the included variables
was analyzed.

Results: A total of 2,376 ADR signals were identified between January 2018 and
December 2019, comprising 448 positive signals and 1,928 negative signals. The
sensitivity of the LSTM model based on free text reached 95.16%, and the F1-
score was 0.9706. The sensitivity of Logistic Regression model based on feature
variables was 86.83%, and the F1-score was 0.9063. The classification results of
our model demonstrate superior sensitivity and F1-score compared to traditional
methods. Several important variables “Reasons for taking medication”, “Serious
ADR scenario 4”, “Adverse reaction analysis 5”, and “Dosage” had an important
influence on the result.

Conclusion: The application of deep learningmodels shows potential to improve
the detection performance in ADR monitoring.
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Introduction

Drugs may cause harmful and unexpected adverse reactions at normal dosages, known
as adverse drug reaction (ADR) (Edwards and Aronson, 2000). Drug safety imposes
significant public health and socioeconomic burdens. Severe ADRs can worsen patients’
outcomes and even lead to mortality. Death due to ADRs has become the fifth most
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common cause of in-hospital mortality (Nguyen et al., 2021;
Krähenbühl, 2015). The review showed that worldwide, ADRs
impose an annual cost of $ 75 billion on healthcare systems
(Margraff and Bertram, 2014). Under-reporting is its major
limitation drug safety monitoring (Lopez-Gonzalez et al., 2009).
Consequently, how to effectively identify and predict ADRs, prevent
them, and improve drug safety is currently a research focus (Al
Meslamani, 2023).

Traditional approaches to drug safety regulation mainly include
spontaneous reporting systems, such as VigiBase (the World Health
Organization’s global database of individual case safety reports), and
the National Adverse Drug Reaction Surveillance System of China
(Hou et al., 2016). Currently, common ADR signal detection
methods based on spontaneous reporting systems integrate the
reporting odds ratio (ROR), proportional reporting ratio (PRR),
the multi-item Gamma-Poisson Shrinker (MGPS), and the Bayesian
Confidence Propagation Neural Network (BCPNN)
(Northardt, 2024).

These detection methods generally have high false positive rates
(Rothman et al., 2004). In addition, these methods utilize only a
limited subset of variables from the self-reporting system, leading to
insufficient data utilization (Jiao et al., 2024). Studies have
demonstrated that incorporating additional information, such as
the timing of ADR occurrences, can enhance detection specificity
and identify signals undetectable by traditional methods (Jiao et al.,
2024; Liu et al., 2019). Furthermore, traditional approaches require
direct monitoring and organization of relevant information from
large datasets, which demands significant time and human resources
(Yamamoto et al., 2023).

The rapid development of deep learning provides a good
solution to these shortcomings (Lee et al., 2024). The time-series
processing model based on deep learning can identify and process
variables related to occurrence timing to improve the monitoring
and early warning capability of ADR signals (Gao et al., 2022;
Munkhdalai et al., 2018). Research (Sarker and Gonzalez, 2015)
indicate that using advanced natural language processing techniques
for generating information rich features from text can significantly
improve classification accuracies. Deep learning models can also
incorporate more data and variables to maximize the use of
information from the reporting system without requiring
extensive manual effort. The application of deep learning models
in healthcare highlights their public health significance (Al
Meslamani, 2023).

Materials and methods

Data sources

ADR reports were collected by the Center for ADR Monitoring
of Guangdong from 2018 to 2019. The 2018 dataset contained
143,406 reports, and the 2019 dataset contained 137,708 reports.
Positive cases were manually validated by ADR experts through on-
site investigations.

In 2018 dataset, 283 positive cases (0.197% of the total reports)
were confirmed, while 165 positive cases (0.120% of the total
reports) were confirmed in 2019 dataset. Negative cases for
model training were selected using the PRR, ROR, BCPNN, and

MGPS methods. The results of these methods were ranked by
descending p-values. Negative cases were sampled at a ratio of
3–6 times the number of positive cases. Ultimately,
1,031 negative cases were selected from the 2018 dataset and
897 from the 2019 dataset. Data from 2018 to 2019 were merged
into a combined dataset.

Data preprocessing

Each signal in the dataset initially contained 72 feature variables.
Variables not associated with ADR signals, recurring variables, and
those with a missing data rate exceeding 20% were excluded (details
of excluded variables are provided in Supplementary Table S1). After
exclusions, 48 variables were retained for model calculations. The
classification and inclusion criteria for these variables are
summarized in Table 1.

Prior to model application, the retained data underwent
preprocessing. The variables included categorical, numerical, and
descriptive types. Time-dependent variables were converted to
numerical representations, while numerical variables retained
their original values. Variables with a missing data rate below
20% or illogical values were filled according to the basic
information of institutions and similar entries; unverifiable
entries were replaced with “unknown”. Categorical variables were
encoded via one-hot rule and the medical terms therein were
combined into free text. Special symbols (e.g., punctuation, non-
alphanumeric characters) were removed. Positive and negative cases
were labeled as 1 and 0, respectively.

Disproportionality analysis

Currently, disproportionality analysis is widely employed in
post-marketing drug safety surveillance. This method assumes
that if a drug is causally linked to specific adverse events (AEs),
the observed frequency of the drug-AE combination will exceed its
expected frequency, leading to an imbalance (Gosho et al., 2017). A
potential safety signal is identified when this imbalance surpasses a
predefined threshold.

Disproportionality analysis methods are categorized into
frequency-based and Bayesian approaches (Northardt, 2024; Jiao
et al., 2024). Frequency-based methods include the ROR and PRR.
The ROR calculates the ratio of the observed frequency of the target
drug-AE combination to the frequency of other drug-AE
combinations. Similarly, the PRR compares the proportion of the
target drug-AE combination with that of other drug-AE
combinations. Bayesian methods include the BCPNN and MGPS.
The BCPNN evaluates the strength of association between drugs and
AEs using the information component (IC) and its confidence
interval. In contrast, the MGPS employs the empirical Bayes
geometric mean (EBGM) as its primary measure.

In this study, the ROR, PRR, BCPNN, and MGPS methods were
applied to the dataset to identify ADR signals. The signal
detection criteria for each method were defined as follows:
(1)ROR−1.96SE>1;(2)PRR−1.96SE>1;(3)IC−2SD>0;and(4)
EB05>2. Additionally, the number of events of interest for the
target drug (N11) was required to be ≥3 .
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Methods based on feature variables

Logistic regression (LR) is a statistical method used to estimate
the probability of a binary outcome. It assumes a linear relationship
between predictor variables (independent variables) and the log-
odds of the target variable. The model converts these log-odds into
probabilities via the logistic (sigmoid) function. Parameters are
estimated using maximum likelihood estimation, which identifies
coefficients that maximize the likelihood of the observed data.

Random Forest (RF) is an ensemble technique for classification
and regression tasks. It constructs multiple decision trees during
training, with outputs determined by majority voting (classification)
or mean prediction (regression). To enhance diversity and reduce
overfitting, the algorithm randomly selects subsets of data and
features for each tree. At each split, a random subset of features
is evaluated, and the optimal split is chosen using metrics such as
Gini impurity or mean squared error reduction. Trees are grown
fully without pruning to capture complex patterns. Predictions are
aggregated across trees, improving accuracy and stability.

The k-nearest neighbors (KNN) algorithm is a straightforward
yet effective method for classification in machine learning. It
classifies new data points by comparing them to training
instances using distance metrics (e.g., Euclidean distance). For an
unseen instance, distances to all training points are computed, and
the k nearest neighbors are identified (k is user-defined). The class
label is assigned via majority vote or weighted vote, where closer
neighbors have greater influence.

The Multilayer Perceptron (MLP), a feedforward neural
network, is widely used for classification and regression. It
comprises an input layer, hidden layers, and an output layer.
Neurons in hidden and output layers apply activation functions
to weighted inputs. During training, weights and biases are
initialized randomly, and input data is processed through the
network. Loss (e.g., cross-entropy for classification, mean squared
error for regression) is calculated between predictions and targets.
The backpropagation algorithm with gradient descent optimizes
weights and biases iteratively to minimize loss. Once trained, the
network generates predictions (class labels) by processing new data
through its network.

Model based on time-series and text
processing

First, all feature variables for each entry were concatenated
and converted into long free text as model input. The

‘occurrence time of adverse reactions’ was standardized to
the YYYY-MM-DD format and incorporated as a time-
series variable.

The Long Short-Term Memory (LSTM) network, a specialized
recurrent neural network (RNN), addresses the gradient vanishing
issue inherent in traditional RNNs (Yu et al., 2019). The LSTM
architecture comprises memory cells regulated by input gates,
forget gates, and output gates. These gates enable persistent
information flow across time steps, allowing hidden states to
retain long-term dependencies (Li and Yu, 2020). LSTMs are
widely adopted for text and sequence modeling due to their
capacity to capture long-range semantic patterns (Liu et al.,
2022). In this study, LSTM model was employed to process
ADR reports containing free-text narratives, medical
terminology (Jagannatha and Yu, 2016), and time-dependent
features (Santiso et al., 2019).

The LSTM equations are defined as:

it � σ Wiixt + bii +Whiht−1 + bhi( )
ft � σ Wifxt + bif +Whfht−1 + bhf( )

ot � σ Wioxt + bio +Whoht−1 + bho( )
~Ct � tanh Wicxt + bic +Whcht−1 + bhc( )

Ct � ft ⊙ Ct−1 + it ⊙ ~Ct

ht � ot ⊙ tanh Ct( )
Where σ denotes the sigmoid activation function; it, ft and ot

represent input, forget, and output gate computations at time t; W*
and b* are weight matrices and bias vectors;Ct is the cell state at time
t; ⊙ indicates the Hadamard product; and ht is the hidden state
output at time t.

The dataset was partitioned into training, testing, and validation
sets in a 7:2:1 ratio, with stratified sampling applied to maintain the
balance between positive and negative entries across all subsets.
Technical details of the training and hyperparameter tuning
processes for the all models are provided in Supplementary
Appendix S2. All model training processes were conducted on
the Python 3.8 platform using version-compatible
software packages.

Feature importance

The chi-square value quantifies the discrepancy between
observed and expected frequencies. A higher chi-square value for
a feature variable indicates a greater discrepancy, reflecting stronger

TABLE 1 Inclusion and classification of variables.

Classification Variable

Categorical Variable Adverse Reaction Status, Unit type, Department, Gender, ethnicity, Family ADR, Past ADR, Adverse reaction result, Impact on primary
disease, Adverse reaction occurrence abroad, Reporting evaluates, Reporting unit evaluates, the Municipal ADR monitoring institution,
Adverse reaction analysis 1~5, Serious ADR scenario 1~7, Suspected concomitant drug, Trade name, Common name, Dosage form, Reasons
for taking medication, Manufacturer, Batch number, Frequency, Usage, Drug classification, Pharmacological effect, Hospital level, Provincial
bureau evaluation, Drug standards

Numerical Variable Date of birth, Weight, Adverse reaction occurrence time, Start time, Dosage, Dosage unit

Describe or explain ADR System, Adverse reaction event name, Primary disease
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association between the variable and the outcome (Gosho et al.,
2017). We used the chi-square value as a measure of feature
importance to the outcome.

Results

Key results of the models

The LSTM model integrating time-series and text processing
achieved a sensitivity of 95.16% and an F1-score of 0.9706,
significantly outperforming comparative models in overall
performance metrics. Among feature-based models, the LR
model demonstrated the highest sensitivity (86.83%) and F1-
score (0.9063), while the MLP exhibited the lowest sensitivity
(54.57%) and F1-score (0.5494). Detailed performance metrics for
all models are summarized in Table 2.

The receiver operating characteristic (ROC) curves and
corresponding area under the curve (AUC) values for all
models are shown in Figure 1. The LSTM model achieved the
largest AUC (0.98), whereas the MLP model exhibited the lowest
AUC (0.59).

Results of disproportionality analysis

Among the disproportionality analysis methods, BCPNN
achieved the highest sensitivity (73.80%), while MGPS showed
the lowest sensitivity (44.92%). MGPS exhibited the highest
specificity (84.82%), whereas PRR had the lowest specificity
(58.46%). In terms of the composite metric Youden’s Index (YI),
BCPNN yielded the highest value (0.3464), and PRR the lowest value
(0.2691). In contrast, the LSTM model demonstrated a specificity of
96.31% with a notably low false positive rate (3.69%), resulting in a
YI of 0.9147. Detailed performance metrics for these methods are
summarized in Table 3.

Feature importance score

The top 15 variables with the highest feature importance scores
are shown in Figure 2. The highest-scoring variable was “Reasons for
taking medication,” followed by “Serious ADR scenario 4,” “Adverse
reaction analysis 5,” and “Dosage.” Here, “Serious ADR scenario 4”
refers to whether the adverse reaction caused permanent impairment
of physiological functions, while “Adverse reaction analysis five”
indicates whether the reaction resolved or diminished after drug
discontinuation or dose reduction.

Discussion

This study explores the effectiveness of several different models
for ADR signal detection. The results show that the LSTM model
based on free text achieves the best predictive performance among
the models evaluated. The LSTMmodel achieved superior predictive
performance (sensitivity: 95.16%, F1-score: 0.9706) compared to
traditional methods such as ROR, PRR, BCPNN, and MGPS, which
are widely used in current monitoring systems but exhibit

TABLE 2 Performance of LSTM and comparison models.

Models Sensitivity Precision Accuracy F1-score

LR 86.83% 94.78% 95.85% 0.9063

RF 83.06% 90.17% 94.01% 0.8647

KNN 70.43% 76.05% 88.45% 0.7313

MLP 54.57% 55.32% 86.64% 0.5494

LSTM 95.16% 99.04% 98.62% 0.9706

Bold values means the maximum value of the indicators.

FIGURE 1
The ROC of LSTM and comparison models.
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limitations in variable selection, bias control, and handling extreme
values. While traditional methods remain useful for preliminary
signal screening (as applied to negative data selection in this study),
the LR method also performed robustly, likely due to its alignment
with the proportional imbalance assumption inherent in
disproportionality analyses (Sommer et al., 2024). However, other
models (RF, KNN, MLP) showed suboptimal results, potentially due
to class imbalance, high dimensionality, or overfitting risks
(Carracedo-Reboredo et al., 2021; Deimazar and Sheikhtaheri,
2023). The This study also encourages us that implementation of
innovative methods is essential to encourage ADR reporting
(Joaquim et al., 2023).

The analysis highlights the critical role of specific variables, such
as ‘Reasons for taking medication’, ‘Serious ADR scenario 4’, and
‘Adverse reaction analysis 5’, in signal detection. These findings
underscore the importance of enhancing data quality through

standardized reporting protocols and improved analytical
capabilities at monitoring institutions. For instance, logical
inconsistencies, missing data, and non-standardized
entries—though partially addressed via technical imputation and
variable exclusion—may still introduce bias, emphasizing the need
for systematic data curation (Liu and Zhang, 2019).When reporting,
some systems lack standardization, or data entry personnels need to
fill in descriptive or explanatory language. Furthermore, class
imbalance (predominance of negative samples) likely contributed
to reduced sensitivity, as models tended to favor majority-class
predictions (Arku et al., 2022).

Notably, the LSTM model’s insensitivity to sparse or irregular
text inputs—a common issue in ADR reports—positions it as a
scalable solution for processing free-text narratives (Edrees et al.,
2022), especially with advancements in natural language processing.
Nevertheless, several limitations must be acknowledged. First, the

TABLE 3 Performance of disproportionality analysis methods.

Methods Sensitivity False negative rate Specificity False positive rate Youden’s Indexa

ROR 68.45% 31.55% 58.62% 41.38% 0.2707

PRR 68.45% 31.55% 58.46% 41.54% 0.2691

BCPNN 73.80% 26.20% 60.84% 39.16% 0.3464

MGPS 44.92% 55.08% 84.82% 15.18% 0.2974

LSTM 95.16% 4.84% 96.31% 3.69% 0.9147

aYouden’s Index = Sensitivity + Specificity-1.

FIGURE 2
Feature importance score of variables.
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model was trained on data from a single province in China, limiting
its generalizability to other regions or populations with divergent
reporting practices or demographic profiles. Second, negative
samples were selected using traditional disproportionality
methods, which may exclude novel or atypical ADR patterns,
introducing potential selection bias. Third, while technical
imputation mitigated missing data, residual heterogeneity (e.g.,
inconsistent causality assessments) could affect model robustness
(Yan et al., 2022).

To address these challenges, future work should prioritize
multicenter validation across diverse healthcare systems,
integration of active learning to capture atypical cases, and
collaborative data sharing initiatives to enrich feature
representation (Jiao et al., 2024). Specifically, incorporating data
from diverse healthcare systems (including those within the same
country and internationally) could assess the model’s generalizability
to varied demographic and reporting practices, as demonstrated in
recent multi-center pharmacovigilance studies (Hu et al., 2022;
Saseedharan et al., 2024). Additionally, standardizing ADR
reporting frameworks and raising public awareness of proactive
reporting could further enhance data quality and model utility in
public health (Liu and Zhang, 2019; Goldstein et al., 2013). The future
path in drug safety solely depends on proactive pharmacovigilance
approaches carried out by all stakeholders, where patients play a vital
role in ADR reporting (Joaquim et al., 2023).

Conclusion

This study demonstrates that deep learning models, particularly
the LSTM network, significantly enhance adverse drug reaction
(ADR) signal detection compared to traditional statistical and
machine learning methods. Key variables emerged as pivotal
predictors, underscoring the value of structured data fields and
standardized reporting. These findings highlight the transformative
potential of integrating natural language processing and deep
learning into pharmacovigilance systems to improve drug safety
monitoring.
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