AUTHOR=Cao Mengqi , Chi Yanna , Yu Jinyang , Yang Yu , Meng Ruogu , Jia Jinzhu TITLE=Adverse drug reaction signal detection via the long short-term memory model JOURNAL=Frontiers in Pharmacology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1554650 DOI=10.3389/fphar.2025.1554650 ISSN=1663-9812 ABSTRACT=IntroductionDrug safety has increasingly become a serious public health problem that threatens health and damages social economy. The common detection methods have the problem of high false positive rate. This study aims to introduce deep learning models into the adverse drug reaction (ADR) signal detection and compare different methods.MethodsThe data are based on adverse events collected by Center for ADR Monitoring of Guangdong. Traditional statistical methods were used for data preliminary screening. We transformed data into free text, extracted text information and made classification prediction by using the Long Short-Term Memory (LSTM) model. We compared it with the existing signal detection methods, including Logistic Regression, Random Forest, K-NearestNeighbor, and Multilayer Perceptron. The feature importance of the included variables was analyzed.ResultsA total of 2,376 ADR signals were identified between January 2018 and December 2019, comprising 448 positive signals and 1,928 negative signals. The sensitivity of the LSTM model based on free text reached 95.16%, and the F1-score was 0.9706. The sensitivity of Logistic Regression model based on feature variables was 86.83%, and the F1-score was 0.9063. The classification results of our model demonstrate superior sensitivity and F1-score compared to traditional methods. Several important variables “Reasons for taking medication”, “Serious ADR scenario 4”, “Adverse reaction analysis 5”, and “Dosage” had an important influence on the result.ConclusionThe application of deep learning models shows potential to improve the detection performance in ADR monitoring.