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Introduction: Non-small cell lung cancer (NSCLC) constitutes the majority of
lung cancer cases and exhibits marked heterogeneity in both clinical presentation
andmolecular profiles, leading to variable responses to chemotherapy. Emerging
evidence suggests that mitochondria-derived RNAs (mtRNAs) may serve as novel
biomarkers, although their role in predicting chemotherapy outcomes remains to
be fully explored.

Methods: In this study, peripheral blood mononuclear cells were obtained from
NSCLC patients for analysis of themtRNA ratio (mt_tRNA-Tyr-GTA_5_end tomt_
tRNA-Phe-GAA), while thoracic CT images were processed to derive an AI-driven
BiomedGPT variable. Although individual clinical factors (Sex, Age, History_of_
smoking, Pathological_type, Stage) offered limited predictive power when used
in isolation, their integration into a random forest model improved sensitivity in
the training set, albeit with reduced generalizability in the validation cohort. The
subsequent integration of the BiomedGPT score and mtRNA ratio significantly
enhanced predictive performance across both training and validation datasets.

Results: An all-inclusive model combining clinical data, AI-derived variables, and
mtRNA biomarkers produced a risk score capable of discriminating patients into
high- and low-risk groups for progression-free survival and overall survival, with
statistically significant differences observed between these groups.

Discussion: These findings highlight the potential of integrating mtRNA
biomarkers with advanced AI methods to refine therapeutic decision-making
in NSCLC, underscoring the importance of combining diverse data sources in
precision oncology.
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Introduction

Non-small cell lung cancer (NSCLC) remains a global health
challenge, constituting approximately 85% of all lung cancer cases
and exhibiting extensive heterogeneity both clinically and
molecularly (Pathak et al., 2004; Chen et al., 2024). Although
targeted therapies, immunotherapeutic agents, and improved
surgical techniques have enhanced patient outcomes, systemic
chemotherapy remains a key component for many individuals
with advanced disease (Tan et al., 2016). Nonetheless, responses
to chemotherapeutic regimens vary widely, reflecting the need to
identify biomarkers capable of predicting patient-specific efficacy
and to discover novel drug targets that could refine treatment
strategies (Stewart et al., 2007). Traditional molecular biology
approaches—employing high-throughput omics (e.g.,
transcriptomics, proteomics) and pathway-focused
interrogation—have robustly identified important oncogenic
drivers and prognostic indicators in NSCLC. However, these
methods alone often struggle to capture the intricate interplay
among diverse molecular and clinical variables, especially as the
volume and complexity of biological data continue to escalate.

In parallel, mitochondria-derived RNAs (mtRNAs) have
garnered increasing attention as potential biomarkers and
therapeutic leads in cancer (Shafiei Asheghabadi et al., 2024).
Mitochondria are central to cellular metabolism, apoptosis, and
oxidative stress, rendering their genetic and transcriptomic
signatures highly relevant to tumor initiation and progression.
Mitochondria-derived RNAs (mtRNAs) have shown promise in
oncology, with recent studies highlighting their diagnostic value
and potential role in predicting treatment outcomes. Peripheral
blood mononuclear cells (PBMCs), serve as a minimally invasive
source for capturing systemic biomarkers associated with immune
and metabolic modulations influenced by the tumor
microenvironment. This allows for dynamic longitudinal
monitoring, enabling the exploration of mtRNA ratios as
predictors of chemotherapy response. Our previous study
highlighted the diagnostic potential of mitochondria-derived
RNAs (mtRNAs) in lung cancer by employing a ratio-based
expression framework, specifically focusing on mt-tRNA-Tyr-
GTA-5 and mt-tRNA-Phe-GAA, to enhance detection accuracy
(Yu et al., 2023). These mtRNAs have demonstrated significant
promise as diagnostic markers and potential therapeutic targets due
to their involvement in mitochondrial function and cancer
progression. However, despite their established roles, their ability
to predict chemotherapy resistance and clinical outcomes has not
been explored. Understanding the prognostic value of these mtRNA
ratios could provide critical insights into mechanisms of
chemotherapy resistance, offering new avenues for precision
medicine in non-small cell lung cancer (NSCLC).

Given the multifaceted nature of lung tumors, artificial
intelligence (AI) and machine learning (ML) techniques offer
powerful tools for data integration and hypothesis generation
(Ahmed et al., 2020). By rapidly processing and extracting
insights from large-scale multi-omic datasets, AI-driven models
expedite the discovery of new drug targets and facilitate refined
prognostic modeling in oncology (Biswas and Chakrabarti, 2020).
Yet such methodologies are not without limitations, including
concerns about reproducibility, model interpretability, and

clinical validation. To address these challenges, hybrid
approaches that combine the mechanistic rigor of conventional
experimental methods with the pattern-recognition capabilities of
AI can capitalize on the strengths of each paradigm (Ţîrcovnicu and
Haţegan, 2023). Classical machine learning algorithms, such as
logistic regression or random forest, deliver interpretable outputs
and straightforward implementations, whereas deep learning
architectures enable sophisticated mapping of high-dimensional,
heterogeneous data (Pedro, 2023; Onoja, 2023).

Within the realm of deep learning, transformer-based
architectures—notably those employing attention
mechanisms—have demonstrated remarkable success in language
modeling, natural language processing, and complex sequence
analysis (Singh and Mahmood, 2021). Leveraging self-attention,
these models excel at identifying long-range dependencies within
the data, making them ideal for biomedical tasks involving large
transcriptomic or proteomic datasets. BiomedGPT, a domain-
tailored evolution of the GPT (Generative Pretrained
Transformer) family, builds on these breakthroughs by
integrating an expansive corpus of clinical, molecular, and textual
data (Zhang et al., 2023). Through transfer learning and specialized
fine-tuning, BiomedGPT is particularly adept at analyzing multi-
modal inputs to uncover subtle gene expression patterns that may
correspond to chemotherapeutic response, thereby augmenting the
accuracy and speed of biomarker identification relative to
classic pipelines.

In this study, we harness both machine learning and AI-driven
analytics—exemplified by BiomedGPT—to explore the role of
mtRNAs, initially shown to hold diagnostic value in lung cancer,
for their previously untested ability to predict chemotherapy
outcomes in NSCLC and identify additional novel drug targets
associated with patient response. By comparing the performance
of transformer-based analytics against conventional ML models, we
aim to elucidate any reproducibility issues, address interpretability
constraints, and validate predictions using independent cohorts.
Ultimately, we seek to demonstrate how the analysis of mtRNA
expression signatures, integrated into a broader AI pipeline,
enhances our capacity to predict chemotherapy efficacy in
NSCLC, facilitating precision oncology approaches that may
improve patient stratification and outcomes.

Methods

Patient enrollment and sample collection

Patients with advanced non-small cell lung cancer (NSCLC)
scheduled to receive standard chemotherapy were prospectively
recruited between January 2020 and December 2022 from the
Department of Oncology at the Fourth Affiliated Hospital of
Guangxi Medical University and Laibin People’s Hospital.
Chemotherapy regimens followed institutional protocols and adhered
to standard guidelines for NSCLC. Patients received cisplatin or
carboplatin, combined with either paclitaxel, gemcitabine, or
pemetrexed as the second agent. These regimens were administered
every 21 days for up to four to six cycles, consistent with established
clinical practice and evidence-based guidelines (Scagliotti et al., 2008;
Schiller et al., 2002).Inclusion criteria comprised: age ≥18 years,
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histologically confirmed NSCLC (stage IIIB, IIIC, or IV), measurable
lesions on CT imaging, and an Eastern Cooperative Oncology Group
(ECOG) performance status of 0–2. Exclusion criteria included prior
systemic therapy within 3 months, concomitant malignancies,
significant cardiopulmonary comorbidities, or refusal to provide
written informed consent. All patients provided peripheral blood
samples prior to their first chemotherapy cycle; peripheral blood
mononuclear cells (PBMCs) were isolated by density-gradient
centrifugation using Ficoll-Paque PLUS (Cytiva) and stored in
RNAlater Stabilization Solution (Invitrogen) at −80°C until analysis.
Chemotherapy regimens were administered per institutional protocols
(commonly platinum-doublet therapies), and response was determined
after two treatment cycles via Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1. Patients classified as having complete or
partial responses were assigned to the responder group, while stable or
progressive disease indicated non-response. Ethical approval for this
study was granted by the Institutional Review Board of the Fourth
Affiliated Hospital of Guangxi Medical University (KY2023329), and all
participants provided written informed consent according to the
Declaration of Helsinki.

BiomedGPT fine-tuning and CT
image analysis

Thoracic CT scans were obtained from all enrolled subjects at
baseline for diagnostic assessment. Imaging protocols varied slightly
but generally included spiral CT with slice thickness of ≤5 mm.
DICOM data were anonymized and processed using Python 3.9 and
OpenCV (version 4.5) to ensure consistent resolution and contrast
normalization.

The full CT scans were systematically divided into smaller non-
overlapping tiles of 224 × 224 pixels to match the input dimensions
required by BiomedGPT, facilitating uniform data processing. This
tiling process allowed the model to analyze localized radiomic
features across the entire lung field, capturing variations in tumor
size, shape, texture, and spatial heterogeneity. These features are
critical for predicting treatment responses and progression-free
survival (PFS), as they reflect underlying tumor biology and
phenotypic diversity. BiomedGPT—a domain-specific Generative
Pretrained Transformer—was initially pretrained on large-scale
biomedical text corpora and further fine-tuned on a dedicated
archive of lung cancer CT scans curated. The fine-tuning phase
involved 86−ΔΔCT images from archival datasets, each labeled with a
corresponding clinical outcome (response vs. non-response).
During this step, the final layer of BiomedGPT was replaced with
a custom classification head, and the network’s learning rate was set
to 1e-5, with batch size 8. Training continued for 20 epochs or until
validation loss plateaued. Model outputs were then distilled into a
single numeric probability indicating the likelihood of
chemotherapy response. These response probabilities were used
as the “AI” variable for subsequent machine learning integration.

RNA isolation and quantitative PCR

Total RNA was extracted from PBMC samples using TRIzol
reagent (Thermo Fisher Scientific) following the manufacturer’s

instructions. RNA concentration and purity were assessed by
NanoDrop 2000 (Thermo Fisher Scientific), ensuring an A260/
A280 ratio between 1.8 and 2.0. For reverse transcription, 1 μg of
total RNA was used with the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). The mtRNA ratio of
interest—mt_tRNA-Tyr-GTA_5_end to mt_tRNA-Phe-
GAA—was quantified by quantitative PCR on a QuantStudio
3 Real-Time PCR System (Applied Biosystems). Primers were
designed using Primer-BLAST (NCBI) and synthesized by
Integrated DNA Technologies (IDT). Each reaction (10 μL total
volume) contained 5 μL of PowerUp SYBR Green Master Mix
(Applied Biosystems), 0.4 μM of forward and reverse primers,
and 1 μL of cDNA template. PCR cycling parameters were 95°C
for 2 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
Relative expression levels were computed by the 2̂(-ΔCt) method,
using β-actin as the endogenous control. For ratio calculation, mt_
tRNA-Tyr-GTA_5_end expression was normalized to that of mt_
tRNA-Phe-GAA.

Machine learning model development

Clinical variables (Sex, Age, History_of_smoking, Pathological_
type, and Stage) were first evaluated individually to predict
chemotherapy response using logistic regression implemented in
Python’s scikit-learn (version 1.0). A random forest classifier
(1000 decision trees, Gini impurity as splitting criterion) was
then constructed to integrate these five features into a combined
clinical model. Separately, two single-factor models were built for
the AI output (BiomedGPT response probability) and for the
mtRNA ratio (mt_tRNA-Tyr-GTA_5_end/mt_tRNA-Phe-GAA).
Next, these two features (AI and mtRNA) were merged into a
random forest (Model A). An expanded model (Model B)
included the same two variables plus the five clinical factors.
Hyperparameters (e.g., tree depth, minimum samples split) were
tuned via 5-fold cross-validation on the training set. Probabilistic
outputs (predict_proba) of each model were used to compute the
area under the ROC curve (AUC). Finally, the best-performing
integrated model’s output was converted into a continuous risk
score for downstream survival analysis.

Statistical analyses

All data processing and statistical evaluations were carried out
using R (version 4.1.2) and Python (version 3.9) (Guijarro, 2023).
Continuous variables were summarized as medians and
interquartile ranges; categorical data were expressed as
frequencies or percentages. Differences in predictive performance
were assessed by AUC comparisons via the DeLong test, considering
p < 0.05 as statistically significant. Kaplan-Meier survival analyses
were conducted with the survival package (R), dividing subjects into
high- or low-risk groups based on the integrated model’s median
risk score (Therneau and Lumley, 2013). Log-rank tests determined
the significance of survival differences between groups; p-values
below 0.05 were interpreted as significant. Figures were generated in
matplotlib (Python). Where relevant, p-values were adjusted for
multiple comparisons using the Benjamini–Hochberg procedure.
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Results

Clinical factor analysis

A total of 86 patients (19 female, 67 male) were assigned to the
training set, and 58 patients (18 female, 40 male) to the validation
set. All individuals underwent chemotherapy, with median ages of
63 and 64 years, respectively (training range 37–82; validation range
49–87). Baseline clinical characteristics, including smoking history,
tumor histology, and disease stage, are summarized in the Table. We
first assessed the predictive value of individual clinical factors—Sex,
Age, History of smoking, Pathological type, and Stage for
chemotherapy response in non-small cell lung cancer (NSCLC).
In the training set (Figure 1A), Stage showed the highest area under
the curve (AUC = 0.614), followed by History_of_smoking (AUC =
0.560), while the remaining factors exhibited relatively modest
performance (AUC range 0.509–0.547). When applied to the
validation cohort (Figure 1D), none of these single-factor models
exceeded an AUC of 0.576. Subsequently, a random forest classifier
combining all five clinical variables (“Combined Model”) achieved
an AUC of 0.669 in the training cohort (Figure 1C), but only 0.431 in
the validation set (Figure 1B), indicating limited generalizability
using clinical features alone.

AI and mtRNA ratio as independent
predictors

Next, we evaluated whether an AI-based metric derived from
BiomedGPT’s analysis of CT images (“AI”) and a novel mtRNA
ratio (mt_tRNA-Tyr-GTA_5_end/mt_tRNA-Phe-GAA) could
improve prediction of chemotherapy outcomes. As shown in
Figure 2A, the mtRNA ratio alone (blue line) achieved an AUC
of 0.658 in the training set, whereas the AI predictor (red line)
reached 0.792. Similar findings emerged in the validation cohort
(Figure 2B), with AUCs of 0.642 (mtRNA ratio) and 0.755 (AI). Both
metrics outperformed most individual clinical factors, suggesting
that AI-derived features and mtRNA-based biomarkers capture
additional biologically relevant signals not accounted for by
standard clinical data.

Integrated models combining AI,
mtRNA ratio, and clinical information

To capitalize on these complementary predictors, a random
forest approach was employed tomerge the AI output (considered as
a continuous numeric variable) and the mtRNA ratio into a single

FIGURE 1
Clinical Factor Analysis for Chemotherapy Response (A) Receiver operating characteristic (ROC) curves for individual clinical factors (Sex, Age,
History_of_smoking, Pathological_type, and Stage) in the training set. Stage shows the highest area under the curve (AUC = 0.614), followed by History_
of_smoking (AUC=0.560). (B)Corresponding ROC curves in the validation set, where none of the single-factor models exceed an AUCof 0.576. (C) ROC
curve of the random forest “Combined Clinical Model” in the training cohort (AUC = 0.669). (D) Validation set performance of the combined clinical
model (AUC = 0.431), indicating limited generalizability of clinical-only features.
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model (Model A). In the training group (Figure 3A), Model A
yielded an AUC of 0.857, and its validation performance remained
strong at 0.804 (Figure 3B). Building on this, a more comprehensive

model (Model B) included the same two factors plus the five clinical
variables. As shown in Figure 3C, the resulting training-set AUC for
Model B rose to 0.877, while the validation-set AUC reached 0.846

FIGURE 2
AI (BiomedGPT) andmtRNA Ratio as Independent Predictors (A) ROC curves in the training set for the BiomedGPT-based AI variable (red line, AUC =
0.792) and the mtRNA ratio (blue line, AUC = 0.658). (B) Validation set ROC curves illustrate a similar trend, with the AI predictor (red line, AUC = 0.755)
outperforming the mtRNA ratio (blue line, AUC = 0.642). Both strategies exceed the accuracy of most single-factor clinical models shown in Figure 1.

FIGURE 3
Integrated Models Combining AI, mtRNA Ratio, and Clinical Factors (A) Performance of Model A (AI + mtRNA) in the training set (AUC = 0.857). (B)
Model A retains strong predictive power in the validation set (AUC = 0.804). (C) Model B (AI + mtRNA +5 clinical variables) achieves a higher AUC of
0.877 in the training cohort, indicating synergistic effects of integrating multiple predictors. (D) Validation set performance of Model B (AUC = 0.846)
confirms improved generalization compared to clinical-only models.
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(Figure 3D). These integrated strategies substantially outperformed
the clinical-only model (Figure 1) and underscore the value of
combining AI-derived features, mtRNA data, and classical
clinical predictors in NSCLC.

Survival analysis based on the
combined model

Lastly, we converted the combined predictor (clinical + AI +
mtRNA, i.e., Model B) into a single risk score and stratified
patients into high- and low-risk groups. In Kaplan-Meier curves
for progression-free survival (PFS), high-risk patients in the
training cohort (Figure 4A) showed significantly worse
outcomes (p < 0.05) than their low-risk counterparts, and an
even more pronounced difference was noted in the validation
group (Figure 4B, p = 2.883e−04). A similar trend appeared for
overall survival (OS): high-risk individuals in the training set
(Figure 4C) experienced significantly shorter survival (p < 0.05),
which was confirmed in the validation cohort (Figure 4D, p <
0.05). Overall, these results demonstrate that an integrated risk
score incorporating clinical factors, AI-driven features, and
mtRNA ratio effectively segregates patients into distinct

prognostic groups, supporting its potential utility for
chemotherapy decision-making in NSCLC.

Discussion

The present study investigated an integrative framework that
incorporates clinical factors, an AI-based prediction variable
(BiomedGPT), and a mitochondria-derived RNA (mtRNA) ratio
to enhance the stratification of chemotherapy responses in non-
small cell lung cancer (NSCLC). Our key finding was that neither
traditional clinical variables nor mtRNA ratio alone provided robust
predictive power across both training and validation cohorts, while
the BiomedGPT model approached higher performance levels but
still benefited substantially from the inclusion of mtRNA data. The
final, combined model showed the most reliable predictions for
chemotherapy efficacy and successfully identified two prognostically
distinct risk groups. These results extend earlier observations that
mtRNAs, already suggested to be useful diagnostic markers, may
also serve as potential predictive indicators of therapeutic outcomes.

One plausible explanation for the improved performance of
the integrated approach is that each data source captures distinct
yet complementary aspects of tumor biology (Boehm et al., 2022).

FIGURE 4
Survival Analysis Based on the Combined Predictor (A) Kaplan-Meier curve for progression-free survival (PFS) in the training cohort, stratified by the
integrated model’s risk score (clinical + AI + mtRNA). High-risk patients demonstrate significantly worse PFS (p < 0.05). (B) PFS in the validation cohort,
similarly, showing a notable difference between high- and low-risk groups (p < 0.05). (C) Overall survival (OS) in the training set reveals significantly
shorter survival among the high-risk group (p < 0.05). (D) OS in the validation set, confirming the prognostic value of this combined risk score (p <
0.05). All p-values are based on log-rank tests.
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Clinical variables reflect patient demographics, pathology, and
disease stage, while mtRNAs may reflect metabolic or apoptotic
adaptations that influence tumor response to cytotoxic agents.
Meanwhile, AI-driven insights from BiomedGPT could reveal
complex image-based phenotypes, such as subtle radiomic
features, that correlate with therapeutic susceptibility. By
integrating these diverse predictors, the model achieves a
synergy that transcends single-modality assessments,
addressing the inherent heterogeneity of NSCLC. Moreover,
the superior AUCs obtained by merging these factors suggest
that advanced learning algorithms can effectively integrate multi-
dimensional data, offering a more comprehensive biological
understanding.

We acknowledge the relatively modest sample size of this study,
which, while adequate for proof-of-concept and preliminary
modeling, limits the generalizability of the findings. To address
this limitation, future studies must include larger, multi-institutional
datasets with diverse patient demographics to validate the model’s
performance across varied clinical contexts. Despite the small
sample size, the observed trends align with prior research,
lending support to the validity of the conclusions. We further
propose that multi-center collaborations and broader patient
cohorts in future studies will refine and validate the
generalizability of the integrated approach. To enhance the
translational potential of this research, future work must focus
on external validation through prospective clinical trials.
Additionally, developing user-friendly AI tools that integrate
seamlessly into clinical workflows will be critical to adoption.
Such tools should allow clinicians to leverage the predictive
power of the model without requiring extensive computational
expertise. By embedding this framework into real-time clinical
decision-support systems, the model could significantly enhance
personalized treatment planning and improve patient outcomes.

In conclusion, our approach highlights the benefits of
combining traditional clinical features, advanced AI-driven
imaging analyses, and mtRNA biomarkers to predict
chemotherapy response more accurately in NSCLC. By
streamlining the discovery of novel drug targets and refining
patient risk stratification, this integrated paradigm exemplifies a
practical step toward more personalized, mechanism-focused
treatment strategies. Further research should focus on larger-scale
prospective trials, mechanistic studies of mtRNA function, and
enhanced interpretability frameworks for AI-based models to
propel these findings toward clinical translation.
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