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Introduction: The genus Alistipes consists of anaerobic, Gram-negative bacteria
with 13 species that colonize the entire gastrointestinal tract and are a serious
health concern. They contribute to gut dysbiosis, intestinal inflammation,
colorectal cancer, and depression.

Methods: To explore potential therapeutic targets and inhibitors, we filtered
the core genome of Alistipes strains through subtractive genomics for non-
host homology, gene essentiality, PPI, KEGG pathways, virulence, cellular
localization, and druggability. The potential targets were docked against
two drug-like libraries (ZINC, n = 11,993) and TCM (n = 36,043). ADMET
profiling for best hits and MD simulation for apo/complex structures were
performed, followed by physicochemical and pharmacokinetic evaluation and
complex stabilities.

Results and Discussion: A set of 39 potential proteins was drastically reduced
to only two targets after sequential data mining. The 3D structures of the
selected targets (LpxA and KdsB) revealed good druggability scores. The top
hits (ZINC85530940, ZINC05161112, ZINC95911713, and ZINC05566415) for
both targets showed maximum H-bond interactions. The RMSD and RMSF
values exhibited compactness with minimum fluctuation in ligand-bound
complexes. The β-factor of ZINC05161112 at 327th residue and 352nd residue
exhibited higher thermal instability, consistent with the RMSF results. The
globularity of the complexes and apo structures remained consistent,
whereas the LpxA complexes exhibited lower solvent-accessible surface
area. For the KdsB, the surface area for ZINC5566415 increased
significantly, with a steep decrease for ZINC95911713, establishing rather
stable protein-ligand complexes. The results highlight the importance of
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identifying novel inhibitors and therapeutic targets. They are crucial for
establishing better treatment regimes for human health and to aid in
controlling the pathogenicity of Alistipes species.

KEYWORDS

Alistipes genera, subtractive genomics, druggable targets, TCM/ZINC inhibitors,
pharmacokinetics, thermodynamics evaluation

1 Introduction

Humans acquire microbiota at birth, and during their life span,
their gut is colonized by trillions of microorganisms, primarily
bacteria. A broad array of bacterial phyla has been revealed using
16 S rRNA gene sequencing, with Firmicutes and Bacteroidetes being
the most abundant (Goodrich et al., 2017). The human gut
microbiota is important for immune response regulation,
pathogen defense, digestive assistance, neurologic signaling, and
vascularization (Lynch and Pedersen, 2016). An imbalance, or
dysbiosis, in the gut microbiota has been linked to various
disorders, including cardiovascular diseases (Halfvarson et al.,
2017), inflammatory bowel disease (Yoshida et al., 2018), cancer
(Vivarelli et al., 2019), and neurological disorders (Petra et al., 2015).
Researchers have investigated various microbial genera and species
within the microbiome to determine their role and identify specific
bacterial species that influence disease progression and
treatment response.

Among the diverse gut microbial populations, the genus
Alistipes has gained attention due to its dual role in gut
homeostasis and disease progression. This relatively new genus of
bacteria from the Bacteroidetes phylum represents a group of Gram-
negative, rod-shaped, anaerobic, and non-spore-forming bacteria. It
has 13 species as of April 2020, according to the taxonomy database
at the National Center for Biotechnology Information (NCBI)
(Basson et al., 2020). While Alistipes species are primarily
commensals in the gastrointestinal tract (GIT), their presence has
been reported in appendicular, abdominal, perirectal, and brain
abscesses, as well as in the bloodstream, urine, and peritoneal fluid,
suggesting opportunistic pathogenicity (Shkoporov et al., 2015).

Alistipes species have also been implicated in gut dysbiosis and
inflammatory disorders. For example, Alistipes putredinis has been
identified in patients with appendicitis and abdominal abscesses,
while Alistipes onderdonkii and Alistipes shahii were isolated from
appendix tissue and urine samples (Rautio et al., 2003; Song et al.,
2006). Several new Alistipes species have been identified in human
fecal samples, including Alistipes communis, Alistipes dispar,
Alistipes megaguti, and Alistipes provencensis (Bellali et al., 2019).
The metabolic adaptability of Alistipes, including unique lipid
biosynthesis pathways such as sphingolipid and sulfonolipid
production, further distinguishes this genus from other gut
microbes (Geiger et al., 2010).

Chronic intestinal inflammation, including inflammatory bowel
diseases (IBD), is commonly treated with antibiotics,
immunosuppressants, and biologic therapies. Antibiotics like
metronidazole, ciprofloxacin, and rifaximin help regulate gut
microbiota but face increasing resistance in gut bacteria,
including Alistipes, which challenges their long-term effectiveness.
Immunosuppressants (azathioprine, methotrexate, corticosteroids)

control inflammation but do not address gut dysbiosis, while
biologics (infliximab, adalimumab, vedolizumab) target immune
pathways without eliminating opportunistic pathogens that may
contribute to disease recurrence (Parker et al., 2020; Zhang
et al., 2024).

Recent studies have highlighted the antibiotic resistance profiles
of Alistipes species, demonstrating resistance to vancomycin,
kanamycin, colistin, clindamycin, cefoxitin, and tetracycline,
among others. Their metabolic adaptability and resistance
mechanisms make them an emerging concern in antimicrobial
research. Despite their clinical relevance, limited research has
focused on identifying potential drug targets for therapeutic
intervention (Rautio et al., 2003; Mishra et al., 2012; Lagier et al.,
2012; Pfleiderer et al., 2014; Jousimies-Somer, 2002).

The primary phase in the vaccine, drug, and diagnostic
biomarker development process is the identification of targets of
interest. For that purpose, an in silico subtractive proteomic
approach is commonly used (Wisal et al., 2024; Hassan et al.,
2018; Irfan et al., 2023; Basharat et al., 2022; Kalhor et al., 2023;
Alqurashi et al., 2024). Many advantages of such approaches include
cost-effectiveness, reduced time and labor, reproducibility, and
robustness to yield broad-spectrum therapeutic candidates (Barh
et al., 2010a; Barh et al., 2010b). This study employs in silico
subtractive genomics to identify potential druggable targets in
Alistipes species. Using core-genome analysis, essential gene
filtering, protein-protein interaction (PPI) analysis, and
druggability assessments, we aim to pinpoint novel antibacterial
targets. Furthermore, molecular docking, ADMET profiling, and
molecular dynamics simulations are utilized to evaluate promising
inhibitors, ensuring their stability, pharmacokinetics, and binding
affinity. This study provides a computational framework for
developing targeted therapies against Alistipes-associated gut
dysbiosis while minimizing disruption to the broader gut
microbiome.

2 Approaches and methodologies

2.1 Strains selection and identification of
core genome

In the present work, 9 Alistipes strains with complete genomes
were included for the core-genome analysis. We selected complete
genomes to ensure comprehensive core-genome and accurate data
analysis. This allows us to capture the full genetic information,
ensuring no data is missed and enhancing the reliability of our
findings for a thorough investigation of unique, essential, and non-
homologous proteins across Alistipes strains. For this study, nine
Alistipes strains with complete genomes were randomly chosen, and
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the DNA, protein, and general genome statistics were acquired from
the National Center for Biotechnology Information (NCBI), a public
database freely available to the scientific community (https://www.
ncbi.nlm.nih.gov/). This database contains manually curated protein
sequences under the UniProtKB/Swiss-Prot and automatically
annotated protein sequences under the UniProtKB/TrEMBL
(Boutet et al., 2007). After the retrieval of complete genomes, the
core genome was discovered through the pangenome approach in
the PATRIC web server (Wattam et al., 2014). For the identification
of the core genome, the PATRIC software provides a robust
comparative analysis environment, allowing us to perform
detailed comparisons of gene content, sequence variations, and
functional annotations. The selection criteria in PATRIC are as
follows: one strain is randomly chosen as the reference strain
(Alistipes finegoldii), and the remaining strains are compared to it
using the modified parameters, from which the core genes (shared
by all strains) are filtered. The PATRIC employs the Basic Local
Alignment Search Tool algorithm for protein sequences (BLASTp)
with the standard scoring matrix BLOSUM62 and the following
cutoff values: e = 1 × 10−5, % coverage ≥ 90%, and % identity ≥ 95%
(Mahram and Herbordt, 2015; Eddy, 2004).

2.2 Identification of essential and non-
homologous genes

The Database of Essential Genes (DEG) server was used to
eliminate the redundant proteins (Luo et al., 2021). The identified
proteins were compared to Prokaryotes, Eukaryotes, and Archaea,
using default settings such as e-value = 0.0001, bit score = 100, and %
identity 35. Only proteins that did not show a significant match to
any of the Prokaryotes, Eukaryotes, and Archaea protein datasets
were considered for inclusion (Luo et al., 2021). For homologous
sequences exclusion, pathogen-specific and non-host homolog drug
targets were filtered by subjecting the resultant sequences to the
BLASTp (http://blast.ncbi.nlm.nih.gov/Blast.cgi) against human
proteome (TaxID: 9,606) (e-value: 10-4), a step to avoid any
cross-reactivity in a possible host (Kerfeld and Scott, 2011).

2.3 Cellular localization and PPI prediction

The subcellular localization of the unique, essential, and non-
homologs was predicted using the CELLO2GO (v2.5) (http://cello.
life.nctu.edu.tw/cello2go/) (Yu et al., 2014) and the PSORTb (v3.0.2)
(http://www.psortb.org/psortb/) (Yu et al., 2010). The protein
sequences were submitted in FASTA format with the organism
type set to bacteria and Gram stain set to negative. For bacteria,
protein subcellular localization prediction is the accurate tool, and it
applies Support Vector Machines (SVMs) that assign a possible
localization site to a protein. Furthermore, it assigns the five
subcellular locations, i.e., Periplasm, extracellular, cytoplasm,
inner membrane, and outer membrane, to Gram-negative
bacteria. Parallel to the PSORTb, the CELLO2GO takes the
functionality of the SVMs at two levels. The initial classification
of a protein subcellular location is performed based on sequence-
derived molecular descriptors, followed by a final decision centered
on the probability of the subcellular location. Subcellular localization

analysis was performed to refine target selection by identifying
proteins based on their accessibility and functional relevance. We
prioritized cytoplasmic proteins for further analysis, including
protein-protein interaction (PPI) mapping and target selection.
Cytoplasmic proteins were selected due to their essential roles in
metabolic and regulatory pathways, making them viable candidates
for small-molecule inhibitors. This approach ensured the selection
of high-confidence therapeutic targets that are both functionally
significant and pharmacologically accessible (Yu et al., 2004).

Protein-protein interaction (PPI) was performed using the
STRING (Search Tool for the Retrieval of Interacting Genes/
Proteins) database (v11.5) (https://string-db.org/), applying a
minimum interaction confidence score of 0.7 (high confidence)
to ensure reliable functional associations (Szklarczyk et al., 2019).
STRING is a protein-protein interaction platform that contains both
known and anticipated interactions. The interactions arise from
computational prediction, information transfer between species, and
interactions gathered from other (primary) databases, and they
comprise both direct (physical) and indirect (functional)
relationships. Only interactions supported by experimental
evidence, database annotations, and computational predictions
with a combined score above 0.7 were considered for further
analysis. Additionally, nodes with fewer than three interactions
were excluded to refine the interaction network and focus on
biologically significant targets. This filtering approach ensured the
selection of highly connected and functionally relevant proteins for
downstream analysis (Szklarczyk et al., 2021).

2.4 Drug target prioritization for
target selection

Several variables, including molecular function, molecular
weight, pathway analysis, cellular localization, and virulence, were
taken into consideration when determining prospective drug targets
(Agüero et al., 2008). The ProtParam tool2 calculates the molecular
weight (MW) (Gasteiger et al., 2005) for targets, and an MW ≤
100 kDa is regarded as an ideal (Hossain et al., 2016; Mondal et al.,
2015). In bacteria, any biological function of proteins is defined in
the context of their location and function, where inhibition of such
function requires the downregulation of molecular interaction
partners due to the promiscuous nature of a target protein,
which might impact their activity. On the other hand, for the
physiological function of hypothetical and novel proteins,
understanding protein function and virulence factors is often
critical (Scott et al., 2005).

The potentially druggable proteins brought forth by the genomic
screening carried information about their subcellular location and
the metabolic pathways involvement, the UniProtKB was used to
gather information regarding the function of the protein, catalytic
requirements for enzymatic activity, and active isoforms
(dependency on cofactors, subunit’s structure, and associated
post-translational modifications) (Consortium, 2015). The VFDB
tool (Virulence Factor Database) was employed to determine the
virulence of target proteins (Chen et al., 2005a), while theMHOLline
biological workflow (http://www.mholline2.lncc.br) was employed
to group the proteins based on template similarity scores to identify
the top drug candidates for 3D modeling (Hassan et al., 2014). All
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these steps allowed the choice of the current targets for CADD
analysis (computer-aided drug design).

2.5 KEGG metabolic pathway analyses

Mining of potential drug targets depends highly on the
categorization of proteins involved in pathogen-specific metabolic
pathways. The KEGG Automatic Annotation Server (KAAS) was
utilized to screen out the essential proteins for metabolic pathway
analysis (Moriya et al., 2007). Kyoto Encyclopedia of Gene and
Genome (KEGG) pathway database then further maps out proteins
involved in host-specific pathways by comparative analysis of host
and pathogen metabolic pathways (Kanehisa and Goto, 2002). The
output files by the KAAS server comprised information such as the
enzyme names, the Enzyme Commission (EC) numbers, alternative
pathways, the KEGG Orthology (KO) list assignment, and the
metabolic pathways. The obtained dataset symbolizes the non-
homologous proteins involved in crucial pathways of A. finegoldii
(Kanehisa et al., 2017; Kanehisa et al., 2017). The anticipated
pathogen pathways were manually compared to human
pathways, unique and common, where unique were and exclusive
to the bacterium and, hence, the focus of the current work, where
common pathways were those present in both the bacterium
and the host.

In addition to the KEGG, the MetaCyc or BioCyc tools also
provide comprehensive databases and precise and detailed
annotations and have been used in some of our previous works
(Shah Hassan et al., 2012; Pereira et al., 2013). However, in this work,
we selected the KAAS due to its ability to map the KEGG pathways
specific to bacterial species, which aligns with our focus on
pathogen-specific pathways. It offers a comprehensive database
and precise KO (KEGG Orthology) assignments, integrating data
from the KEGG GENES database and providing reliable and
detailed annotations. This approach provides a more consistent
and comprehensive view compared to other tools like the MetaCyc/
BioCyc. Furthermore, the final targets were blasted against the gut
microbiota (a manually assembled fasta file containing 52,618 genes)
to avoid impact on the gut microbiota using the following
parameters: e-value = 10, bit score = 200, and identity = 35%.

2.6 3D structure modeling and energy
minimization

The three-dimensional structures of the potential drug targets,
LpxA and KdsB (locus IDs: Alfi_0084, Alfi_2459), were not available
in the RCSB-PBD database (https://www.rcsb.org). Therefore, we
followed the comparative homology modeling to predict the 3D
structures using the respective amino acids or nucleotide sequences
from the reference genome of A. finegoldii. The selected sequences
were then subjected to a BLASTp search against the PDB database
for the selection of a suitable template with the best sequence
identity and coverage. Templates with sequence identity and
query coverage of ≥90% were selected for structure modeling.

To identify the best therapeutic candidates, protein sequences
were sorted based on their similarities to the templates using the
MHOLline (v2.0) biological workflow (http://www.mholline2.lncc.

br) as adapted from Hassan et al. (2014). This workflow performed
quality-based sequence sorting, and the highest quality sequences
were subjected to the SWISS-MODEL server (Arnold et al., 2006).
The 3D structure models for the filtered protein targets were then
generated and visualized using the molecular graphics tool PyMOL
(https://pymol.org/2/). To check the reliability of the generated
model, a validation step is crucial; hence, all models were
evaluated using PDBSum (Laskowski, 2001), ERRAT value (Dym
et al., 2012), Verify3D (Eisenberg et al., 1997), and ProSA
(Wiederstein and Sippl, 2007). All these measurements were used
in the selection of the best 3D model.

The selected models (LpxA and KdsB) were subjected to energy
minimization to improve their qualities for further use in docking,
etc., studies. A powerful visualization tool, UCSF Chimera, was used
to analyze the structures (Pettersen et al., 2004) for minimized
energy. Gasteiger charges were assigned to protein, and structural
constraints were removed by 1,500 rounds of minimization runs
(750 steepest descent followed by 750 conjugate gradients) with a
step size of 0.02 Å, under ff03. rl force field (Pettersen et al., 2004).

2.7 Druggable and catalytic
pocket detection

The filtered targets were subsequently examined for potential
binding pockets by calculating the druggable score using the
DoGSiteScorer programme (https://proteins.plus). Protein +
contains several automated tools, including a pocket detection
technique used to assess the druggability of protein cavities. To
utilise Protein+, the target of interest must be in 3D format (.pdb).
Consequently, structures obtained from SWISS-MODEL alongside
MHOLline were employed in this phase. DoGSiteScorer was then
applied to evaluate the druggability of these 3D structures, which
provides the pocket residues and druggability scores (ranging from
0 to 1). A protein cavity with a score closer to one is considered to be
a highly druggable protein cavity.

2.8 Retrieval of ligand libraries, molecular
docking, and ADMET profile

To get druggable compounds with a Tanimoto threshold level of
60%, the ZINC database was queried for (n = 11,993) druggable lead
molecules (Sterling and Irwin, 2015; Sterling and Irwin, 2015),
additionally, compounds retrieved from the TCM database
(Traditional Chinese Medicine) (http://ZINC.docking.org/) (n =
36,043) were also screened for top lead compounds selection
through the MOE (Molecular Operating Environment) (Vilar
et al., 2008). In the next step, partial charges were added, and
their energies were reduced using an energy minimization method
(default parameters). Following their binding energies, chemicals
that had been docked were sorted in ascending order of their binding
energies. All best structure conformations with the least amount of
energy were selected. A docking study was conducted by using the
MOE to transform the 3D structure of the proposed drug targets
into receptor molecules for virtual screening. The entire docking
procedure concluded with the selection of the best-docked chemical
compounds, which were analyzed using the ligand interaction mode
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ofMOE (Molecular Operating Environment) (Chemical Computing
Group, Inc., 2013) to understand the interaction that contributed to
the binding of the ligands (Vilar et al., 2008).

To find appropriate inhibitors, they must pass Lipinski’s drug-
like test while still requiring the least amount of energy (Lipinski,
2000; Barker and Khossravi, 2001; Lipinski et al., 2001). We
conducted ADME/Tox analysis on the top-scoring compounds
using an ADMET prediction server (http://lmmd.ecust.edu.cn/
admetsar2) (Yang et al., 2019) alongside the SwissADME server
(http://www.swissadme.ch/) to validate further physicochemical
characteristics of selected hits for further skin permeation values
(Daina et al., 2017).

2.9 Molecular dynamics (MD) simulation of
the predicted targets

Molecular dynamics (MD) simulation was used to study the
ligand-receptor interactions over time, providing insights into
particle movement and complex stability within the system. MD
simulations rely on classical and Newtonian mechanics, including
Molecular Mechanics/Quantum Mechanics (MM/QM) methods,
among others. Using GROMACS v4.1.5 and the GROMOS
54a7 force field, simulations captured the dynamic behavior of
these complexes (Páll et al., 2020; Michaud-Agrawal et al., 2011).
A triclinic periodic boundary box with 10 Å extensions surrounded
the protein structures, allowing ample space for solvation and
minimization.

Using the PyMol program, the ligands were first saved in. mol
format before being converted to. pdb format. The MD simulation
process involved four stages: minimization (1,500 steps, including
steepest descent and conjugate gradient to remove steric clashes),
heating to the target temperature, NVT and NPT equilibration for
temperature and pressure stabilization, and a 100 ns production run.
The RESPA integrator managed motion integration and covalent
bonds with hydrogen atoms (Ma et al., 2003). TIP3P water
molecules and 0.15 M Na+ and Cl− ions ensured system stability
and charge neutrality (Jorgensen et al., 1983).

After the simulation, the root mean square deviation (RMSD),
root mean square fluctuation (RMSF), solvent-accessible surface
area (SASA), hydrogen bonds (H-bonds), and the radius of gyration
(Rg) were calculated to assess stability and conformational behavior.
Built-in GROMACSmodules and XMgrace generated these outputs,
which provide insights into the structural dynamics of the
complexes (Michaud-Agrawal et al., 2011).

3 Results and discussion

3.1 Genome retrieval and identification of
core genomes

The genome assembly and annotation report of the selected
strains were checked using the NCBI (National Center for
Biotechnology Information), a database resource that provides
access to biomedical and genomic information. The complete
genome sequence of A. finegoldii was obtained from the NCBI
database and was randomly used as “the reference strain” to ensure

the correctness of the results. To implement the subtractive
genomics approach, only the complete genomes were selected
for all Alistipes strains (Figure 1). The core genome was
explored to discover pharmacological targets that were
orthologs across all strains. For the most part, only the core
genes of organisms, which are defined as the genes that are
consistently present in all populations of an organism in all
sorts of harsh conditions, were retracted. The core genome was
discovered via the PATRIC program, and the overall number of
genes discovered in the pangenome was 3,018, with 2,875 of them
being non-redundant genes (Figure 2). After genome retrieval, the
redundant gene removal was performed using a PATRIC
application. This led to the identification of 143 redundant
genes, and the remaining set was subjected to further genome
subtraction analysis. Genome statistics like genome size, number
of proteins, % GC content, bio-project information, and genome
assembly data, among others, of all the selected strains are
tabulated in Supplementary Table A.

3.2 Identification of non-host homologous
and essential proteins

It is necessary to parse the file produced by the NCBI-BLASTp of
the A. finegoldii core genome against the human genome. In total,
2,875 core genes were identified, and 2,571 proteins were found to be
non-homologous with the human proteome. 344 genes were found
to be host-homologous genes and were removed to avoid the
resulting side effects. The BLASTp search was performed against
prokaryotes, eukaryotes, and archaea for the host non-homologous
proteins to determine the DEG essentiality (e-value = 10-4, bit score =
100 and sequence identity = ≥ 30%) (Luo et al., 2014). The results
showed that out of the non-homologous set, 490 proteins are
essential to Alistipes finegoldi. These steps are important for
mining essential targets that are reportedly involved in
performing vital cellular functions and avoiding cross-reactivity/
binding of the drugs to undesired host protein sites.

3.3 Subcellular localisation and PPI for drug
target prioritization

The essential targets were further processed for subcellular
localisation prediction to refine the selection of potential drug
targets, where 325 were cytoplasmic proteins, 150 were
cytoplasmic-membrane proteins, 6 were inner-membrane
proteins, and 1 was a periplasmic protein. Cytoplasmic proteins
were selected as they are crucial for bacterial growth and
metabolism and play essential roles in regulation, making them
viable candidates for small-molecule inhibitors. Deciphering the
protein-protein interactions network is very important in
understanding the role of individual proteins and, thereby, in
their classification and prioritisation as targets. After drug
target prioritisation, a set of 39 proteins was submitted to the
STRING database to identify hub proteins showing multiple
interactions. The STRING database determines the interrelation
between proteins, which is essential for proper functioning and
gives detailed knowledge about proteins involved in single or
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multiple pathways. In total, nine proteins were shown to have
numerous interactions and were thus classified as hub proteins and
were considered for KEGG analyses (Figure 3).

The cytoplasmic proteins were prioritised based on properties
like molecular weight, virulence factor, druggability score, and
pathway analysis. All the predicted potential proteins were also

FIGURE 1
The general workflow of the step-by-step methodology followed in this study is based on subtractive genomics for the identification of druggable
therapeutic targets.
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screened against the virulence factor database (VFDB) (Chen
et al., 2005b), which predicted them to be involved in pathogen
virulence. The molecular weight of all proteins was less than
100 kDa, according to ProtParam; thereby, these molecules fulfill
the Lipinski threshold. Figure 4 displays how the total number of
core genes was reduced and allocated during the subtractive
genomic approach. Theoretically, the Lipinski’s rule of five
applies to oral active drugs, which make up the biggest class
of medicinal compounds. A maximum of one violation is
permitted. This rule was intended to be a general guideline for
the chemist to take care of these factors to avoid any issues rather
than to specifically exclude molecules or compounds that violated
these principles. Nevertheless, it was still possible to biologically

analyse the tested compounds. Lenacapavir, an HIV medication,
and hepatitis C virus medications like ledipasvir, velpatasvir, and
voxilaprevir are excellent examples. Nonetheless, the rule of five
continues to offer medication designers helpful limits. For
optimal oral bioavailability, the Veber’s rule restricts the
surface area to 140Å and the number of rotatable bonds to 10.
The GI absorption and impaired permeability of the chosen
compounds of interest across the membrane’s bilayer would
generally be affected by any medicine that deviates from both
of these guidelines. While more rotatable bonds can improve
solubility and drug absorption, they can also decrease
permeability (Lipinski, 2000; Lipinski et al., 2001; Caminero
Gomes Soares et al., 2023; Hartung et al., 2023).

FIGURE 2
Circular genome representation of Alistipes generated through the PATRIC server. Among strains of the species Alistipes, varying hues and
intensities indicate the existence or absence of distinct genes, genic islets, genomic islands, or other genetic elements.
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3.4 Metabolic pathway analyses via KEGG

The query nine proteins were submitted to a pathway analysis
using the KEGG database (Kanehisa et al., 2017). It is quite evident

from the obtained results that most of the targets were engaged in
multiple metabolic pathways, such as lipopolysaccharides
biosynthesis and fatty acid biosynthesis, among others. In
contrast, only one protein was involved in resistance pathways,
such as the cationic antimicrobial peptide resistance pathway
(CAMP) (Table 1; Figure 5).

3.5 Proteins 3d structure modeling and
druggability assessment

From the set of nine proteins, only two cytoplasmic proteins
were chosen as prospective therapeutic targets based on the
metabolic pathways they are involved in and the % identity with
their respective templates (RCSB-PDB, ≥25%). The 3D structure
availability of a protein is the starting point for CADD analysis. The
structure of identified druggable receptor proteins, i.e., the LpxA and
KdsB, were generated through the SWISS-MODEL (Figure 6). The
information on the active site residues was retrieved from the
respective template structures for each putative target and was
useful during the docking step for best inhibitor selection
(Table 2). After cross-checking the stereochemical properties, the
best 3D model structure was selected. Model 1 from the SWISS-
MODEL was subjected to further analysis based on good
physicochemical and quality measures. Besides significant
coverage, it showed strong stereochemistry with no residue in the
disallowed region and the lowest Z score. Energy minimisation was
carried out to relax the structure and remove the steric clashes of the

FIGURE 3
The STRING network of protein-protein interactions of the potential protein targets in Alistipes. The nodes and edges represent the proteins and
their interactions, respectively, where the edge color represents the nature of the predicted interaction (experimentally curated or computationally
predicted). The nodes are either shown as colored circles (query proteins and first shell of interactors) or white circles (second shell of interactors) and
either empty circles (proteins of unknown 3D structure) or filled circles (3D structures are known or predicted). While line color reflects the type of
interaction evidence and line width shows the strength of data support, the edges show both functional and physical protein interactions. Of the known
interactions, those in purple have been determined experimentally, whereas those in cyan are from carefully selected databases. Gene neighborhood
analyses are shown by green in expected interactions, gene fusion events by red, and gene co-occurrence by blue. The remaining relationships are navy
blue = protein homology, black = co-expression, and olive = text-mining.

FIGURE 4
An overview of the screened proteins at the end of each
subtractive genomics approach. The X-axis represents the total
number of genes in all selected genomes, whereas the Y-axis
represents the different steps of the subtractive genomics
workflow towards compartmentalisation of genome portions based
on their cellular function and localization.
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side chain. The physicochemical and Ramachandran properties of
both models, where maximum residues are present in the most
favored regions, are given in Table 3.

The DoGSiteScorer was used to establish a link between the
drug-binding ability of the predicted targets based on their binding
pocket structure and activity. The DoGSiteScorer does functional
characterisation, druggability estimate, and automatically predicts
pockets and sub-pockets in a target protein’s 3D structure. A
protein that exhibits the highest contact affinity with a drug
molecule is said to be highly druggable. On a scale of 0–1, the
druggability measurement is scored as follows: ≥0.6 for medium-
to-high druggable proteins and ≥0.8 for highly druggable proteins.
Even though a protein of interest may have multiple anticipated
druggable pockets, docking analyses typically only take into
account the highly druggable pockets. The druggable pockets
with their corresponding druggability statistics were identified

for both LpxA and KdsB (Alfi_0084 and Alfi_2459), and are
given in Table 4, only the highly druggable pockets are shown
in Figure 7.

3.6 Molecular docking and ADMET profiling
of top compounds

A total of 11,993 ZINC compounds were screened against two
targets using the MOE docking pipeline. Based on known ligands of
the template structures and their active site residues reported in the
literature, lead compounds were identified for LpxA (Alfi_0084) and
KdsB (Alfi_2459). The active site residues from the template
structures were cross-validated with the druggable cavities
identified using DoGSiteScorer and further analyzed using MOE
and PyMOL tools to ensure precise ligand placement.

TABLE 1 Specific drug target prioritization criteria induced and functionally annotated for 9 non-host homologous proteins. Each identifier corresponds to
a protein locus tag assigned by NCBI rather than specific protein names, which are given in a separate column.

Protein locus
tags

Protein name (GenBank) Protein function KEGG pathways

Alfi_0084 1. acyl-acyl-(acyl-carrier-protein) --UDP-N-
acetylglucosamine O-acyltransferase
2. UDP-N-acetylglucosamine acyltransferase

involved in the biosynthesis of lipid A, a
phosphorylated glycolipid that anchors the
lipopolysaccharide to the outer membrane of the
cell

1. Afd00540 Lipopolysaccharide (LPS)
biosynthesis
2. Afd01100Metabolic pathways
3. Afd01503 Cationic antimicrobial peptide
(CAMP) resistance

Alfi_0259 3-deoxy-D-manno-octulosonic-acid transferase Lipopolysaccharide (LPS) biosynthesis. Catalyzes
the transfers of 3-deoxy-D-mannoz-octulosonatez
(Kdo) residues(s) from CMP- Kdo to lipid IV(A),
the tetraacyldisaccharide-1,4′-bisphosphate
precursors of lipid A

1. Afd00540 LPS biosynthesis
2. Afd01100 Metabolic pathways

Alfi_1617 lipid-A-disaccharide synthase Condensation of UDP-2,3-diacylglucosamine and
2,3- diacylglucosamine-1-phosphate to form lipid
A disaccharide, a precursor of lipid A, a
phosphorylated glycolipid that anchors the
lipopolysaccharide to the outer membrane of the
cell

1. afd00540 LPS biosynthesis
2. afd01100Metabolic pathways

Alfi_2460 1.1. 3-Deoxy-8-phosphooctulonate synthase 2-
dehydro-3-deoxyphosphooctonate aldolase (KDO
8-P synthase)

Belongs to the KdsA family 1. Afd00540 LPS biosynthesis
2. Afd01100 Metabolic pathways

Alfi_2461 1. KpsF/GutQ family protein
2. Arabinose-5-phosphate isomerase

Belongs to the SIS family. GutQ/KpsF subfamily 1. afd00540 LPS biosynthesis
2. afd01100Metabolic pathways

Alfi_2459 (KdsB) 3-deoxy-D-manno-octulosonate
cytidylyltransferase (CMP-KDO synthetase)

Activates KDO (a required 8-carbon sugar) for
incorporation into bacterial lipopolysaccharide in
Gram-negative bacteria

1. afd00540 LPS biosynthesis
2. afd01100Metabolic pathways

Alfi_0083 (lpxC) 1. Beta-hydroxyacyl- (acyl carrier protein)
dehydratase FabZ
2. UDP-3-O-[3-hydroxymyristoyl]
N-acetylglucosamine deacetylase/3-hydroxyacyl-
[acyl-carrier-protein] dehydratase

Catalyzes the hydrolysis of UDP-3-O-myristoyl-N-
acetylglucosamine to form UDP-3-O-
myristoylglucosamine and acetate, the committed
step in lipid A biosynthesis

1. Afd00061 Fatty acid biosynthesis
2. Afd00540 LPS biosynthesis
3. Afd01100 Metabolic pathways
4. Afd01212 Fatty acid metabolism

Alfi_0445 (lpxD) UDP-3-O-(3-hydroxymyristoyl) glucosamine
N-acyltransferase

Catalyzes the N-acylation of UDP-3-O-
acylglucosamine using 3- hydroxyacyl-ACP as the
acyl donor. Is involved in the biosynthesis of lipid
A, a phosphorylated glycolipid that anchors the
lipopolysaccharide to the outer membrane of the
cell

1. Afd00540 LPS biosynthesis
2. Afd01100 Metabolic pathways

Alfi_2490 (lpxK) 1. Lipid-A-disaccharide
1. Lipid-A-disaccharide kinase
2. Tetraacyldisaccharide 4′-kinase

Transfers the gamma-phosphate of ATP to the 4′-
position of a tetraacyldisaccharide 1-phosphate
intermediate (termed DS-1-P) to form
tetraacyldisaccharide 1,4′-bis-phosphate
(lipid IVA)

1.afd00540
Lipopolysaccharide biosynthesis
2.afd01100
Metabolic pathways
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After uploading and preparing the receptor/protein models,
MOE provided multiple cavity selection options, allowing us to
confirm that docking was performed in the most biologically
relevant and druggable sites. This step ensured that docking
occurred within functionally significant binding pockets while
also aligning with the druggability predictions. To maximize
inhibitor screening, a second compound library from Traditional
Chinese Medicine (TCM, n = 36,043) was also evaluated.

The top hits for each receptor were docked, and the five best
compounds from each library were further analyzed based on
binding affinity, hydrogen bonding interactions, and structural

orientation within the receptor’s active sites. The docking poses
were carefully examined in MOE to ensure that the best-ranked
molecules occupied functionally critical residues, reinforcing the
accuracy of the docking process (Table 5).

For convenience and simplicity, only the LpxA and KdsB terms
will be used hereafter for the two identified targets. The ligand
confirmation of the five top compounds from each library was
performed according to the binding affinities with the receptor
targets, the LpxA and the KdsB. The modeled structures of the
LpxA and the KdsB which are active in lipopolysaccharide’s
metabolism and other critical pathways were docked against five

FIGURE 5
Important pathways of final targets (A) Alfi_0084 and (B) Alfi_2459. For a detailed description, the readers are referred to the online KEGG database
for the genus Alistipes. Metabolites are shown by nodes, metabolite class is indicated by shape, and reactions are represented by lines.
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TCM hits with scores −10.2535 kcal/mol, −10.1223 kcal/
mol, −10.1162 kcal/mol, −10.0993 kcal/mol and −10.0465 kcal/
mol and −10.0063 kcal/mol, −9.84735 kcal/mol, −9.83038 kcal/
mol, −9.59031 kcal/mol, −9.54473 kcal/mol, respectively.
Amongst the ZINC12k library, the top hits exhibited scores
of −6.9723 kcal/mol, −6.89379 kcal/mol, −6.86195 kcal/
mol, −6.85966 kcal/mol, −6.82012 kcal/mol, and −37.1697 kcal/
mol, −36.861 kcal/mol, −30.278 kcal/mol, −29.8498 kcal/
mol, −27.9232 kcal/mol for the LpxA and the KdsB receptors.
Notably, the stability of the complexes in terms of the binding
energy scores for the ZINC12k componds was observed as the lowest
one, ranging between −27 kcal/mol and 37 kcal/mol. (Table 5;
Figures 8; Figure 11).

Colistin and CHIR-090 are the reported potent inhibitors of the
newly identified target LpxA of Alisipes, whereas Colistin again and
CMP-KDO are the reported potent inhibitors of KdsB. The 2D/3D

FIGURE 6
3D structures of target proteins generated using SWISS-MODEL
(A) LpxA (Alfi_0084) and (B) KdsB (Alfi_2459).

TABLE 2 Detailed description of 3D structures and active site residues of final 2 target proteins.

S. No. NCBI Accession
Number/s

Protein Name/s Template Identity Active site residues

LpxA (Alfi_0084)

1 WP_014774337.1 acyl-acyl-(acyl-carrier-protein) --UDP-N-
acetylglucosamine O-acyltransferase

5DEP 35.69% LEU65, GLN64, ILE130, ILE148, PHE166,
ASN194, ARG201

KdsB (Alfi_2459)

2 WP_014776009.1 3-deoxy-D-manno-octulosonate
cytidylyltransferase (CMP-KDO synthetase)

3DUV 39.59% LYS74, GLN98, ARG157, HIS185, GLU 214,
GLN 215

TABLE 3 Stereochemical and Ramachandran properties of comparative homology structures.

Targets Most favored Allowed Disallowed ERRAT VERIFY3D Bad contacts G factors

LpxA (Alfi_0084) 92.75% 5.93% 1.32% 92.25 92.16 (pass) 0 −0.03

LpxA (Alfi_2459) 95.14% 8% 1.62% 92.79 82.73 (pass) 0 0.09

TABLE 4 DoGSiteScorer pockets and druggability scores for the Alfi_0084 (LpxA) and the Alfi_2459 (KdsB). Only the highly druggable pockets (bold) were
considered further as the best binding sites.

LpxA(Alfi_0084) pockets Volume Å3 Surface Å2 Druggability score Simple score

P_0084_2 802.99 746.69 0.86 0.5

P_0084_1 2006.14 2,379.46 0.81 0.63

P_0084_3 148.14 334.27 0.42 0.0

P_0084_4 147.92 290.53 0.33 0.0

KdsB (Alfi_2459) Pockets

P_24559_2 475.56 844.92 0.77 0.31

P_24559_1 628.35 745.17 0.63 0.37

P_24559_4 226.71 410.35 0.52 0.03

P_24559_3 235.12 252.23 0.51 0.1

P_24559_5 206.15 502.74 0.35 0.12

The best binding sites are the highly druggable pockets with different druggability parameters (in bold) as predicted by the online DoGSiteScorer platform.
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structures of these compounds were retrieved from the public
databases and were docked as the reference compounds in the
druggable cavities of the two target proteins. The number of
H-bonds and the interacting residues, the S energy scores of the
inhibitor-bound complexes and their 2D and 3D structural
information are presented (Table 5; Figures 9; Figure 10). The
binding affinities of the top TCM compounds are higher than

the reference antibiotics with varying numbers and types of
amino acid residues in the druggable cavities of both targets.
However, the reference compounds exhibited higher affinities
towards the druggable targets than the top ZINC compounds.
On the other hand, the docked reference compounds for the
KdsB have the lowest binding energy scores than the top
compounds of both the TCM and ZINC databases. Again, the
nature and number of the residues of the druggable cavities that
made Hydrogen bond interactions remained different; in some
cases, even higher numbers of interactions were observed for the
reference antibiotic inhibitors (Table 5).

Further, the physicochemical properties of the top hits were
checked, including the Lipinski rule of 5 (LR-5), a prime condition to
fulfill the rational drug design, and the bioactivity scores for putative
drugs of oral use. The ZINC compounds revealed no violations for
the LR-5, i.e., no more than five hydrogen bond donors, no more
than ten hydrogen bond acceptors, logP (partition coefficient) not
more than five, rotatable bonds less than 10, polar floor location not
extra than 140 and a molecular weight less than 500 g/mol. The Log
Po/w information are also included in Table 6 for all selected
inhibitors, where the consensus Log Po/w value of compound
ZINC95911713 is 6.53, which violates the LR-5 somehow, yet it
can be observed that the consensus Log Po/w values of other three
best hits from ZINC and TCM libraries are much lower than 3.5.
However, the TCM compound ZINC85530940 exhibited three
violations of the Lipinski rule and one of the Veber rule, even as
ZINC95911713 confirmed violations for each rule. Different

FIGURE 7
Highly druggable pockets of the final targets (A) LpxA (Alfi_0084),
(B) KdsB (Alfi_2459). Only one highly druggable pocket is shown for
each target protein in yellow mesh form as predicted by the
DoGSiteScorer (druggable pocket ≥0.6, highly
druggable pocket ≥0.8).

TABLE 5 Docking results of inhibitors arranged in descending order with corresponding binding affinities within the LpxA (Alfi_0084) and the KdsB (Alfi_
2459) binding sites.

LpxA (Alfi_0084)

TCM
compounds

Binding
affinity

Hydrogen bond interactions ZINC 12k
Compounds

Binding
affinity

Hydrogen bond
interactions

ZINC85530940 −10.2535 His153, Val152, Ser133, Leu69, Gln67 ZINC05161112 −6.9723 Gly166, Gly148, Ala135

ZINC95919154 −10.1223 Gly148, Gln154, Val152 ZINC06507895 −6.89379 Asn130, Gln67, Ser133

ZINC85505096 −10.1162 Gly166, Gln67, Asp68, Ala135 ZINC58356220 −6.86195 Val152

ZINC95913537 −10.0993 Asn130, Arg198, Arg181, Asp68, Ser137,
Gly148, Gln154

ZINC79002834 −6.85966 Gln67

ZINC85645304 −10.0465 Asn130, Arg197, Arg198, Ala135, Gln165,
His153, Gln154

ZINC77524163 −6.82012 Ser133, Val152

Colistin −8.0146 Asp68, Lys70, Met111, Gly147

CHIR-090 −8.3480 Gly148, His153, Gln154, Gln172, Thr184

KdsB (Alfi_2459)

ZINC95911713 −10.0063 Lys72, Arg77, Gln96, Glu99, Glu210 ZINC05566415 −37.1697 Lys72, Asp76, Glu204

ZINC95918704 −9.84735 Pro8, Arg10 ZINC05557850 −36.861 Ser208, Glu210

ZINC95912877 −9.83038 Pro8, Gln96, Ser208, Glu210 ZINC05517668 −30.278 Lys72, Ser208, Gln211

ZINC85648570 −9.59031 Arg10, His71, Arg77 ZINC05669511 −29.8498 Arg158, Glu210

ZINC95913839 −9.54473 Pro8, His71, Gly74, Arg77, Gln96, GluA210 ZINC05731403 −27.9232 Lys72, Ser208

Colistin −8.0343 Arg10, Lys72, Arg158, Ser208, Glu210

CMP-KDO −5.2954 Glu99, Pro143, Asp234
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analyses carried out for the top hit compounds are shown below
in Table 6.

Among the top five hits from TCM and ZINC12K libraries,
ZINC85530940 and ZINC05161112 for LpxA and
ZINC95911713 and ZINC05566415 for KdsB were selected,
respectively, based on their least binding energies, the number of
hydrogen bonds and an adequate orientation within the active site
cavity. The goal of the study was to screen two different compound
databases using a similar approach to identify potential inhibitors.
The large differences in binding affinity predictions were the top
compounds from TCM were the best candidates for LpxA, and the
best compounds from ZINC 12 were the best for KdsB. In addition,

since there is no reference for a binding affinity threshold, remarkable
differences in the binding affinity of these inhibitors were observed.
The interaction of inhibitors with their target binding sites could be
attributed in terms of binding affinities, i.e., high affinities in inhibitor-
receptor complexes result from greater attractive forces between the
ligand and its receptor and vice versa.

According to the results, the top hits possess good bioactivity
and drug-like properties, as shown in Table 6. The identified best
docking pose revealed the most interacting residues in the active
sites of the LpxA and the KdsB. The pose view within the druggable
pockets showing interactions between the selected compounds and
their respective individual targets are shown in Figures 8; Figure 11.

FIGURE 8
Top two inhibitors, each from TCM and ZINC libraries, respectively, are docked in the druggable cavity of the LpxA, representing hydrogen bond
interactions (A, C) as 3D and 2D representation for ZINC85530940 and (B, D) as 3D and 2D representation for ZINC05161112).
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3.7 Molecular dynamic simulation

The most fundamental element associated with the function of
proteins is their conformational dynamics. Functional information
of protein molecules is encrypted in its structure. To unravel its

functional variability, a comprehensive understanding of the
structure is needed. Here, the MD simulation was performed as
per the available computational facilities at the time this study was
conducted to explore the conformational aspect of protein-ligand
interactions and to evaluate the stability of the homology model and

FIGURE 9
The two commonly used potent antibiotics are docked in the druggable cavity of the LpxA, representing hydrogen bond interactions (A, C) as 3D and
2D representation for Colistin and (B, D) as 3D and 2D representation for CHIR-090) and binding affinities of −8.0146 for Colistin and −8.3480 for CHIR-
090, respectively.
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enzyme inhibitor complex. Data analysis like root mean square
deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg) and β-factor values, solvent-accessible surface area

(SASA), and Binding energies were used to determine the
conformational changes and stability index of secondary
structure elements of the simulated complexes.

FIGURE 10
The two commonly used potent antibiotics are docked in the druggable cavity of the KdsB, representing hydrogen bond interactions (A, C) as 3D and
2D representation for Colistin and (B, D) as 3D and 2D representation for CMP-KDO) and binding affinities of −8.0343 for Colistin and −5.2954 for CMP-
KDO, respectively.
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3.7.1 Root mean square deviation (RMSD)
RMSD explains the backbone analysis and Cα atoms dynamics

over some time of docked protein (Figure 12). For both the LpxA
and the KdsB, minor fluctuations were observed initially at the start
of the simulation, but as the simulation proceeded, stability was
observed for the apo and the docked complexes. The average RMSD
value for the LpxA-apo was 3.7Å with an SD of 0.4; for
ZINC05161112, the RMSD value was 3.67Å with an SD of 0.48,
and for ZINC85830940, the value stabilized at 3.49 Å with an SD of
0.58. The average RMSD value for the KdsB was 4.59Å with an SD of
0.56; for ZINC5566415, the value was 4.51Å with an SD of 0.40,
while ZINC95911713 exhibited an RMSD of 3.4 Å with an SD of 0.2,
exhibiting more stability than any other docked or apoprotein
structure. Overall, the pattern of the RMSD graph does not
support any major domain shifts within the structural framework
of the protein-ligand complex. The placement of ligands was well-
complemented within the binding site during the simulation and
stabilized the protein significantly Figure 12.

3.7.2 Root mean square fluctuations (RMSF)
Structure flexibility and fluctuation of Cα residues over time

were observed by the RMSF graph analysis. The RMSF values of the
apo LpxA protein calculated were highly in line with the RMSF
values obtained for the docked complexes. Some major fluctuations
were observed for ZINC05161112 at 327th residue having 4.1Å and
352nd residue exhibiting 2.9 Å that was unique to this docked
complex. For ZINC85830940, residue 607th exhibited a 3.2Å RMSF
value that was stable for the other docked and apoprotein. The
RMSF of the remaining residues depicted comparably more
compactness of the ligand-bound protein than the apo LpxA
protein. For the KdsB protein, the RMSF values were much
lower, depicting more compactness than the apoprotein. The
loop region of the ZINC95911713-bound KdsB protein at the N
terminal region exhibited more fluctuations. However, overall, the
RMSF graph represented much more compactness in the ligand-
bound KdsB protein compared to the apoprotein (Figure 13).

3.7.3 β-Factor analysis
β-Factor explains the thermal stability and flexibility of the protein

over some time. The quantity of β-factor is measured in RMSF. Its
value on the level of localized atomic fluctuation collectively
contributes to the global vibrational movement of the protein and
its thermal stability. The β-factor value for ZINC05161112 at 327th
residue and 352nd residue exhibited higher thermal instability that
was exactly in line with the RMSF results. Similarly, for
ZINC85830940, residue 607th demonstrated higher thermal
instability in that region. Few residues lying between
450th – 460th position for both ZINC compounds also showed a
certain degree of thermal instability and thermal flexibility and were
cross-checked with the corresponding RMSF observations and were
found similar. In contrast, the protein KdsB-apo and the
ZINC5566415-bound KdsB exhibited fewer elevated thermal
instabilities at around the 170th residue and at the 235th residue.
Interestingly, the ZINC95911713-bound KdsB exhibited
comparatively global vibrational and thermal stabilities at the
aforementioned position as well as at other positions during the
whole simulation period. Collectively, the β-factor and the RMSF
values are in line, showing the accuracy of the simulation (Figure 14).T
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3.7.4 Radius of gyration (Rg)
The radius of gyration was calculated to evaluate the structural

compactness as a function of time for apo and protein-ligand
complex. The average Rg value for apoprotein was recorded as
28.1Å with an SD of 0.3 while ZINC05161112 bound the LpxA
protein exhibited an average Rg value of 28.05 with an SD of 0.3 and
ZINC85830940 exhibited an average Rg score of 27.93 with Sd of 0.4.
For theKdsB apo protein, the Rg value was recorded as 18.73 with an
SD of 0.16, while ZINC5566415 bound KdsB exhibited 18.99 with an

SD of 0.16 and ZINC95911713 exhibited 18.77 with an SD of 0.1.
These values suggest that the overall globularity of the protein upon
ligand binding was neither decreased nor increased but remained
consistent with the apoprotein structure (Figure 15).

3.7.5 Evaluation of hydrogen bonds
Hydrogen bond analysis provides an essential understanding of

the intramolecular hydrogen bond network of apo and the ligand-
bound LpxA and the KdsB proteins. Figure 16 provides deep insights

FIGURE 11
Top two inhibitors, each from TCM and ZINC libraries, respectively, are docked in the druggable cavity of the KdsB, representing hydrogen bond
interactions (A, C) as 3D and 2D representation for ZINC95911713 and (B, D) as 3D and 2D representation for ZINC05566415).
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into the Hydrogen bond network of both the apoproteins structures
and ligand binding. Careful evaluation of the number of H-bonds
revealed that the average number of H-bonds for the apo LpxA
protein was 702.9, while upon binding of ZINC05161112, the

average number of H-bonds increased to 709.7, and upon
binding of ZINC85830940, the average H-bonds decreased to
701.8. The results depict that upon ligand binding, the number
of H-bonds significantly varied between both the LpxA proteins. For

FIGURE 12
RMSD plot of the LpxA (A) and the KdsB (B) for apo and ligand-bound complex over 100ns simulation run.

FIGURE 13
RMSF plot of the LpxA (A) and the KdsB (B) for apo and ligand-bound complex over 100ns simulation run.

FIGURE 14
β-Factor plot of the LpxA (A) and the KdsB (B) for apo and ligand-bound complex over 100ns simulation run.
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the KdsB protein, the apo form exhibited 200.6 average H-bonds,
while the ligand-bound KdsB protein recorded the average number
of H-bonds as 203.10 and 206.48 for ZINC5566415 and
ZINC95911713, respectively (Figure 16B). The H-bond number
significantly increased upon ligand binding which depicts that
the KdsB protein achieved stability and favors the complex form
rather than the apo form.

3.7.6 Solvent-Accessible Surface Area
The SASA (Solvent-accessible surface area) parameter

determines how much of the protein surface is accessible to the
aqueous solvent. The SASA formula can be used to estimate the
magnitude of conformational fluctuations that occurred during
contact. The plot of SASA values vs time for all complexes is
shown in Figure 17. Through molecular dynamic simulations, the
average SASA of apo-LpxA is 32,324.7, while for ZINC05161112 bound
protein complex was 32,088.23 and ZINC85830940 bound LpxA was
recorded as 31,323.2. On the other hand, the apo-KdsB protein
exhibited 13,025, while ZINC5566415 and ZINC95911713 exhibited
13,225.8 and 12,315.7, respectively. All of the ligand-bound bound-
LpxA complexes exhibited lower SASA values, while for the KdsB, the
SASA values for ZINC5566415 showed inconsistent increase at
different time intervals while having a steep decrease for
ZINC95911713. As a result of our SASA research, we have observed

that the LpxA protein-ligand complex is rather more stable than the
KdsB complex.

LpxA: LpxA (UDP-N-acetylglucosamine O-acyltransferase) is
essential for lipid A synthesis, a core component of
lipopolysaccharide (LPS) in Gram-negative bacteria, including
Alistipes. LPS forms a protective outer layer that enables bacterial
evasion of immune responses and triggers strong inflammatory
responses by activating Toll-like receptor 4 (TLR4) in host cells,
a mechanism associated with chronic intestinal inflammation and
gut dysbiosis (Raetz and Whitfield, 2002). By inhibiting LpxA, lipid
A biosynthesis can be disrupted, weakening the bacterial cell
membrane and enhancing susceptibility to immune clearance
(Hornef et al., 2002). Studies have shown that targeting LpxA can
significantly reduce bacterial viability and virulence, making it a
promising therapeutic target for controlling bacterial infections
(Emiola et al., 2015; Wang and Quinn, 2010).

KdsB: KdsB (3-deoxy-D-manno-octulosonate cytidylyltransferase)
is another crucial enzyme in LPS biosynthesis (Schmidt et al., 2011). It
facilitates the incorporation of Kdo (3-deoxy-D-manno-octulosonic
acid) into lipid A, which is vital for bacterial viability. Inhibiting
KdsB disrupts LPS integrity, making the bacterial outer membrane
more susceptible to immune responses and reducing virulence.
Mutations in KdsB are lethal for bacteria, indicating its essential role
in maintaining LPS structure and function (Alfahemi, 2020). Research

FIGURE 15
Radius of gyration (Rg) plot of the LpxA (A) and the KdsB (B) for apo and ligand-bound complex over 100ns simulation run.

FIGURE 16
H-bonds plot of the LpxA (A) and the KdsB (B) for apo and ligand-bound complex over 100ns simulation run.
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supports the development of small-molecule inhibitors for KdsB,
demonstrating its potential as a drug target for antimicrobial
therapies (Schmidt et al., 2011; Ahmad et al., 2019).

It is important to note that in the present work, the identified
compounds are from ZINC and TCM libraries, which are
commercially available and are ready to “prepare on demand”.
Furthermore, the ADMET and pharmacokinetic profiling of the
selected identified compounds/inhibitors primarily elucidate their
safety measures, which renders them “best hits” for futuristic in vitro
and other mechanistic analyses. The overall interaction scores,
number of H-bonds, and other thermodynamic parameters are
good predicted indicators and thus hypothesize the inhibitory
effectiveness of all the final hits.

4 Conclusion

The increasing resistance of bacterial pathogens to antibiotics
underscores the urgent need for novel drug targets and therapeutic
strategies. In this study, we employed a subtractive genomics and
pangenome analysis approach to identify potential therapeutic
targets in Alistipes, a gut-associated opportunistic pathogen.
Through a systematic computational pipeline, LpxA and KdsB
were identified as essential, non-host homologous, and druggable
proteins, making them promising targets for antibacterial drug
development. Further molecular docking and ADMET profiling
of these targets against two extensive compound libraries, the
ZINC database (n = 11,993) and the Traditional Chinese
Medicine (TCM) database (n = 36,043), led to the identification
of ZINC05161112, ZINC85530940, ZINC05566415, and
ZINC9591171 as potential inhibitors. Molecular dynamics (MD)
simulations further confirmed the stability and binding efficacy of
these compounds within the active sites of LpxA and KdsB,
suggesting their potential as lead drug candidates.

While this study provides a strong computational framework for
robust drug discovery that addresses an urgent need for novel
antimicrobial strategies, there are certain limitations. The lack of
experimental validation remains a key point at this stage, and future
studies are required that should focus on in vitro and in vivo
assessments to confirm the biological efficacy of the identified
inhibitors. Additionally, structural refinement of the lead
compounds may enhance their pharmacokinetic properties and

therapeutic potential. Further exploration of Alistipes metabolic
pathways could also uncover additional druggable targets to
complement the inhibition of LpxA and KdsB.

In conclusion, with a certain degree of modifications, this
research and other similar approaches lead directly or indirectly to
fulfill the objective of identifying novel drug targets in Alistipes
and provide a comprehensive computational strategy for
structure-based drug discovery (Hassan et al., 2012; 2018; 2023;
Pethick et al., 2012b; 2012a; Dorella et al., 2013; Basharat et al.,
2022; Afzal et al., 2023; Fatima et al., 2023; Kalhor et al., 2023;
Alqurashi et al., 2024). The findings serve as a foundation for
future experimental validation and clinical investigations aiming
to develop targeted therapeutic interventions against Alistipes-
associated infections.
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