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Aims: Elabela (ELA) is a ligand of the APJ receptor and exhibits anti-heart failure
activities. However, the short half-life of the ELA limits its clinical applications. Our
previous study recombined the short peptide ELA-21 and the Fc fragment of
human IgG into a long-acting Fc-ELA-21 fusion protein and has shown that Fc-
ELA-21′half-life inmice is 44 h and retained activation of the APJ receptor to exert
anti-heart failure activity However, the anti-heart failure mechanisms of Fc-ELA-
21 are still unclear, and its optimal dose range and long-term in vivo safety profile
remain undefinedThis study aimed to investigate the anti-heart failure
mechanisms of Fc-ELA-21, dose range, and in vivo safety.

Methods and results: We investigated the effects of different doses of Fc-ELA-
21 on cardiac function and potential signaling pathways and liver and kidney
function by subcutaneous administration of Fc-ELA-21 in mice with myocardial
infarction (MI)over 4 weeks. We found that Fc-ELA-21 significantly improved
cardiac systolic dysfunction, mitigated pulmonary congestion, slowed down
weight gain, activated vascular endothelial growth factor receptor 3 (VEGFR3)
and APJ-mediated extracellular signal-regulated kinase (ERK) 1/2 signaling, and
promoted endothelial cell proliferation in post-infarct mice. Moreover, the
structure and function of the liver and kidney were normal in Fc-ELA-21-
treated mice.

Conclusion: Our results demonstrate that Fc-ELA-21 improves systolic heart
failure by activating VEGFR3 signaling and suggest a mechanism for cross-talk
between the APJ receptor and VEGFR3 inmyocardial infarctionMI. Moreover, Fc-
ELA-21 is safe in vivo. Hence, the administration of Fc-ELA-21 fusion protein
could be a novel therapeutic for systolic heart failure.
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1 Introduction

Heart failure is the end-stage manifestation of cardiovascular
diseases. Although there are various therapeutics for heart failure,
the overall mortality from heart failure remains high (Jaarsma et al.,
2018). Therefore, the development of new and more effective anti-
heart failure therapeutics has been a research hotspot in this field.
APJ, a G protein-coupled receptor, is widely expressed in human
tissues and organs such as the central nervous system, heart, lung,
kidney, adipose tissue, and muscles (O’Dowd et al., 1993). Studies
have confirmed that APJ receptors play an important role in the
physiological and pathological processes of the cardiovascular
system and participate in a variety of cardiovascular diseases,
such as atherosclerosis, coronary heart disease, pulmonary
hypertension (PAH), hypertension, myocardial ischemia and
reperfusion injury (Huang et al., 2019)[3]. APJ has long been
considered an orphan receptor and it was not until 1998 that
Apelin was found to be an endogenous ligand (Tatemoto et al.,
1998). The Apelin/APJ signaling pathway regulates the physiological
and pathological effects of the cardiovascular system (Hu et al., 2016;
Xie et al., 2017), and Apelin activated APJ has a strong positive
inotropic effect on the heart (Bertrand et al., 2018).

Recent studies have found that Elabela (also known as Toddler
or Apela, ELA) is a new endogenous ligand for the APJ receptor, but
it has little similarity to Apelin’s sequence (Chng et al., 2013; Pauli
et al., 2014). Human ELA is a peptide containing 54 amino acids,
including a signal peptide and a peptide containing 32 amino acids
(ELA-32). To date, some studies have reported interactions between
the ELA and APJ in the body and downstream signaling pathways
and concomitant physiological responses that are similar and
distinct from those of the Apelin/APJ signaling. Treating APJ-
overexpressing HEK293T cells with ELA can internalize APJ
receptors, inhibit cAMP production, occur phosphorylation of
extracellular signal-regulated kinase (ERK) 1/2 and weak
intracellular calcium flux (Wang et al., 2015). ELA plays an
important role in the development of the zebrafish embryonic
heart (Paskaradevan and Scott, 2012; Huang et al., 2017; Lu
et al., 2017). In addition, it was found that ELA activated APJ
can reduce arterial pressure and have positive inotropic effect
(Murza et al., 2016). In animal experiments, ELA/APJ can
prevent stress overload-induced heart failure by inhibiting the
expression of angiotensin-converting enzyme (ACE) and
pathological angiotensin II signaling pathway (Sato et al., 2017).
Another study reported that ELA can increase cardiac contractility
and induce coronary artery dilation by activating ERK 1/2 signaling
pathway in adult rats (Perjés et al., 2016). It was found that the
cardioprotective effects of ELA act as a ligand for APJ receptors, and
APJ knockout mice do not respond to treatment with ELA. Pregnant
mice with ELA knockout showed preeclampsia, including
hypertension and proteinuria, while exogenous ELA infusion
significantly improved hypertension and proteinuria (Ho et al.,
2017). ELA can also inhibit the activity of renin-angiotension
system by downregulating the expression of FoxM1 and ACE, so
as to play a cardioprotective role (Kuba et al., 2019). The expression
of ELA was decreased in lung tissues of patients and rat models with
PAH, and administration of exogenous ELA in PAH rats reduced
right ventricular systolic pressure and mitigated right ventricular
hypertrophy (Yang et al., 2017).

However, ELA as a short peptide has an intrinsic defect, that is, a
short in vivo half-life. Thus, ELA can only be administrated
continuously subcutaneously with a mini pump or
intraperitoneally in previous studies, which is not suitable for
clinical applications. Therefore, our research team first
recombined the short peptide ELA-21 and the Fc fragment of
human IgG into a long-acting Fc-ELA-21 fusion protein and
demonstrated that Fc-ELA-21′half-life in mice was 44 h, and
retained activation of the APJ receptor to exert anti-heart failure
activity, while the short peptide ELA-21 had a half-life of only
13 min in mice (Xi et al., 2019).

At this time, the signaling mechanisms underlying the anti-heart
failure of Fc-ELA-21 remain to be fully elucidated, and its dose range
and in vivo safety are unknown. A recent study demonstrated that G
protein–coupled receptors and vascular endothelial growth factor
receptor 3 (VEGFR3) can potentially coordinate their signaling to
regulate endothelial function (Ma et al., 2019). Coincidentally, the
APJ receptor is also the G protein-coupled receptor. We
hypothesized that the anti-heart failure effect of Fc- ELA-21
would be mediated by APJ receptor signaling and
VEGFR3 signaling. Thus, the aim of this study was to investigate
the novel anti-heart failure mechanisms of Fc-ELA-21, dose range,
and in vivo safety, providing the evidence for its clinical
transformation as a novel therapeutic for heart failure.

2 Methods

2.1 Synthesis of Fc-ELA-21 fusion protein

The Fc-ELA-21 fusion protein was designed as shown in
Figure 1 and synthesized by WuXi AppTec (Wuxi, China). The
ELA-21 peptide was synthesized by GenScript (New Jersey,
United States). Both were dissolved in autoclaved phosphate-
buffered saline (PBS). For vehicle control experiments, PBS was
added in volumes equivalent to those used for drug dilution in
parallel experiments. For convenience, ELA-21 and Fc-ELA-21 were
prepared at a concentration of 50 μL/10 g body weight for the
targeted dose.

FIGURE 1
Fc-ELA-21 fusion protein design structure. Schematic
representation of the Fc-ELA-21 construct, illustrating the N-terminal
to C-terminal architecture: human IgG Fc fragment, a triple glycine-
serine linker (3×GGGS), and the ELA-21 peptide (amino acid
sequence: L-R-K-H-N-C-L-Q-R-R-C-M-P-L-H-S-R-V-P-F-P). This
structure was previously developed in our laboratory (Xi et al., 2019)
and serves as the long-acting therapeutic agent in this study.
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2.2 Animal studies

Animal studies were approved by the Institutional Animal
Care and Use Committee of the University of Maryland School of
Medicine. The investigation conformed to the Guide for the Care
and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised 1985).
Male C57/BL6 wild-type mice (8 weeks old; Charles River
Laboratories, Wilmington, MA, United States) were housed in
a temperature- and light-controlled environment with free access
to water. Myocardial infarction (MI) mouse models were
established as follows: Mice were anesthetized via 2%
isoflurane inhalation, and a pericardial incision was performed
via thoracotomy. The left anterior descending coronary artery
was permanently ligated at a site 2–3 mm from its origin using a
6–0 silk suture. Carprofen (5 mg kg-1) was administered as
postoperative analgesia for 3 days.

MI mice were randomized into five groups (with 10 mice
per group):

1. Vehicle/PBS (control),
2. ELA-21 (2 mg kg-1·d-1),
3. Fc-ELA-21 (4 mg kg-1·d-1),
4. Fc-ELA-21 (1 mg kg-1·d-1),
5. Fc-ELA-21 (0.1 mg kg-1·d-1).

Fc-ELA-21 and ELA-21 were administered subcutaneously at
alternate sites daily for 4 weeks. At the end of the fourth week, MI
mice were euthanized, and serum was immediately separated.
The heart, lung, liver, and kidneys were harvested for
further analysis.

2.3 Histology

The tissues of lung, liver, and kidney were fixed with 10% neutral
buffered formalin (Sigma) and then were embedded in paraffin.
4 μm thick sections were prepared and stained with Hematoxylin
and Eosin (HE). Three non-overlapping images were obtained per
slide with a Olympus IX50 inverted microscope.

2.4 Echocardiography

Echocardiography in mice was described previously (Chen et al.,
2010). Briefly, Cardiac function was evaluated by transthoracic
echocardiography using Vevo 2,100 high-frequency, high-
resolution ultrasound system with a 40-MHz linear transducer
(MS-550 S; Visual Sonics, Toronto, Ontario, Canada) under 1.5%
isoflurane inhalation anesthesia. Left ventricle morphology and
systolic function were evaluated by two-dimensional
M-mode recording.

2.5 Western blotting

Frozen heart and lung tissues were grinded and were
dissolved and homogenized in ice-cold RIPA buffer (Thermo

Fisher Scientific). Samples were then centrifuged at 12,000 g for
10 min at 4°C, and then the supernatant was collected. Protein
concentrations were measured by the method of BCA (Thermo
Fisher Scientific). Equal amounts (50 μg) of protein samples were
loaded onto 10% SDS-PAGE and transferred to PVDF
membranes (0.2 μm, Bio-Rad Laboratories). Protein levels
were detected using Immobion Forte Western HRP Substrate
(United States) with Image Lab system (United States).
Quantification of the blots was measured by the Image Lab
software (version 5.2.1, United States). The primary antibodies
used were anti-phospho-ERK1/2 (1:1000, Cell Signaling), anti-
ERK1/2 (1:1000, Cell Signaling), anti-proliferating cell nuclear
antigen (PCNA) (1:1000, Cell Signaling), anti-VEGFR3 (1:1000,
R&D Systems), purified ELA-21 immuno-rabbit serum (1:1000),
and anti-β-actin (1:6000, R&D Systems). The second antibodies
used were goat anti-rabbit IgG (1:5000, Invitrogen), goat anti-
mouse IgG (1:5000, Jackon ImmunoResearch), and rabbit anti-
goat IgG (1:5000, SeraCare).

2.6 Liver and kidney function

The levels of serum alanine aminotransferase (ALT) and
aspartate transaminase (AST) were measured by using Reagent
Kits (C164-0A, C154-0A, Catachem, United States) for evaluating
liver function in MI mice treated with different drugs for 4 weeks
according to the manufacturer’s instructions. The serum creatinine
concentration in MI mice was measured by using QuantiChrom™
Creatinine Assay Kit (DICT-500, BioAssay Systems, United States)
for evaluating kidney function according to the manufacturer’s
instructions.

2.7 Data analysis

All data were presented as mean values ±SEM. Statistical
significance between two experimental groups was determined
using Student’s two-tailed t-test. Comparisons of parameters
among more than three groups were analyzed by one-way
ANOVA. When a comparison was done for groups with two
factors, two-way ANOVA was used. A P value <0.05 was
considered statistically significant. GraphPad Prism 7.00 Software
(United States) was used for statistical analysis.

3 Results

3.1 Effective subcutaneous absorption of Fc-
ELA-21 into circulation

We injected MI mice subcutaneously once daily for 4 weeks
with different doses of Fc-ELA-21, and the serum was collected at
the end of the fourth week. It was found that different doses of Fc-
ELA-21 were able to be absorbed into circulation, whereas no
ELA-21 was found in the blood circulation of MI mice
administered with PBS or ELA-21 (Figure 2). These data
support that the half-life of Fc-ELA-21 is significantly longer
than that of ELA-21.
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3.2 Fc-ELA-21 improves cardiac systolic
dysfunction

The left ventricular ejection fraction (LVEF) and cardiac output
(CO) per unit weight of MI mice treated with different doses of Fc-
ELA-21 was significantly higher than that of mice treated with PBS
or ELA-21. However, there was no significant dose response
relationship between the different doses of Fc-ELA-21 (Figures
3A–C). These results demonstrate that Fc-ELA-21 improves
cardiac systolic dysfunction.

3.3 Fc-ELA-21 mitigates pulmonary
congestion

MI mice treated with different medications were sacrificed at the
end of the fourth week. HE staining of lung tissues showed that both
PBS and ELA-21 treated mice had pulmonary congestion appearance,
while high-dose Fc-ELA-21 treated mice had no significant pulmonary
congestion (Fgure 4A–B), indicating that Fc-ELA-21 can mitigate
pulmonary congestion. Moreover, we found that the weight of mice
treated with high-dose Fc-ELA-21 increased more slowly than that of
mice treated with PBS or ELA-21, suggesting that Fc-ELA-21 may have
diuretic effect (Figure 4B).

3.4 Fc-ELA-21 activates ERK1/2 signaling

MImice treated with different medications were sacrificed at the
end of the fourth week. Western blot analysis showed that the
expression of phosphorylated ERK 1/2 in the myocardium of high-
dose Fc-ELA-21 treated mice was significantly higher than that of
mice treated with PBS (Figures 5A–D), indicating that Fc-ELA-
21 activates the ERK 1/2 signaling pathway in MI mice.

3.5 Fc-ELA-21 upregulates
VEGFR3 and PCNA

Western blot analysis showed that the expression of
VEGFR3 and PCNA in the myocardium of the high-dose Fc-
ELA-21 treated mice was significantly higher than that in the
PBS-treated mice, and VEGFR3 expression in the lung was also
higher than that in PBS-treatedmice (Figures 5A–D). These findings
demonstrate that Fc-ELA-21 activates VEGFR3 signaling in MI
mice which leads to endothelial cell proliferation, contributing to
lymphangiogenesis or angiogenesis.

3.6 Effect of Fc-ELA-21 on liver and
kidney functions

We found that there was no significant changes in the levels of
AST and ALT, and the creatine concentration in the serum of MI
mice treated with different doses of Fc-ELA-21 compared with those
of mice treated with PBS or ELA-21 at the end of the fourth week.
Furthermore, nomorphological abnormalities were observed in liver
and kidney tissues (Figures 6A–D). These results suggest that the
current Fc-ELA-21 dosage is safe in vivo.

4 Discussion

Our previous functional study of Fc-ELA-21 and ELA-21
used a dose of 0.3 mg kg-1. d-1 (Xi et al., 2019). In order to clarify
the dose-response relationship of Fc-ELA-21, we subcutaneously
injected MI mice using 4 mg kg-1. d-1, 1 mg kg-1. d-1, and
0.1 mg kg-1. d-1 of Fc-ELA-21, and used 2 mg kg-1. d-1 of ELA-
21 as the control. In this study, we found that Fc-ELA-21 with a
low dose of 0.1 mg kg-1. d-1 could also be absorbed into the

FIGURE 2
Fc-ELA-21 absorbed subcutaneously into blood circulation. (A) Representative Western blot analysis of serum samples from MI mice treated with
high-dose Fc-ELA-21 (4 mg kg-1·d-1, Fc-ELA-H) for 4 weeks. Lanes include protein standards (500 ng Fc-ELA-21 and 60 ng ELA-21). The 36 kDa band
corresponds to the intact Fc-ELA-21 fusion protein, while the 2.5 kDa band in the Fc-ELA-H lane is likely a degradation product or non-specific binding.
(B) Western blot validation of Fc-ELA-21 absorption at medium (1 mg kg-1·d-1, Fc-ELA-M) and low (0.1 mg kg-1·d-1, Fc-ELA-L) doses. ELA-21 was
undetectable in PBS control or ELA-21-treated groups, confirming the fusion protein’s prolonged systemic exposure.
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circulation as those with a medium and high dose. The existence
of Fc-ELA-21 in circulation was found by Western blotting
technology, which laid a foundation for the fusion protein to
play its role. However, ELA-21 was not found in the circulation of

MI mice a few hours after administration, which further
demonstrates that as a short peptide, it has an inherent defect,
namely, a brief in vivo half-life, thus limiting its sustained anti-
heart failure activity.

FIGURE 3
Fc-ELA-21 improves cardiac systolic dysfunction in MI mice. (A) Representative M-mode echocardiograms of the left ventricle (LV) in MI mice after
4 weeks of treatment: Top: MI + PBS group showing impaired LV systolic function (enlarged LV end-systolic dimension). Middle: MI + Fc-ELA-H group
demonstrating improved LV remodeling with reduced cavity size. Bottom: MI + Fc-ELA-M and Fc-ELA-L groups showing intermediate improvements in
LV dimensions. (B)Quantitative analysis of left ventricular ejection fraction (LVEF). Data are presented as mean ± SEM (n = 8). *p < 0.05 vs. PBS (one-
way ANOVA with Tukey’s post hoc test). (C) Cardiac output (CO) normalized to body weight, showing dose-independent enhancement of systolic
function by Fc-ELA-21.

FIGURE 4
Fc-ELA-21 (A)Histopathological evaluation of lung tissues via HE staining. MI + PBS andMI + ELA-21 groups exhibit widened alveolar septa indicative
of congestion, whereas MI + Fc-ELA-21 (4 mg kg-1·d-1) mice show normal alveolar architecture. Scale bar = 50 μm. (B) Longitudinal body weight
measurements over 4 weeks. Fc-ELA-21-treated mice (4 mg kg-1·d-1) exhibit significantly slower weight gain, suggesting a potential diuretic or anti-
edema effect. Data are mean ± SEM (n = 8–10).
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This study showed that Fc-ELA-21 at different doses could
improve the left ventricular systolic dysfunction and cardiac
output in MI mice, but there was no significant dose-response
relationship. Thus, this study proposes for the first time that the
lowest effective dose of Fc-ELA-21 is 0.1 mg kg-1. d-1.
Simultaneously, we found that with the improvement of cardiac
contractile function in Fc-ELA-21 treated MI mice, myocardial ERK
1/2 signaling was activated. A recent study demonstrated that
Elabela binded to APJ receptors in the heart, increased cardiac
contractility, and induced coronary vasodilation. The inotropic
effect was accompanied by a significant increase in ERK 1/
2 phosphorylation. Pharmacological inhibition of ERK 1/
2 activation markedly attenuated the Elabela-induced inotropy
(Perjés et al., 2016). Thus, this study demonstrates that Fc-ELA-
21 can activate ERK 1/2 signaling like the short peptide ELA, thereby
improving left ventricular systolic dysfunction in MI mice.

Importantly, we found a novel mechanism of Fc-ELA-
21 against heart failure in this study, that is, Fc-ELA-
21 activates VEGFR3 signaling leading to endothelial cell
proliferation, which is beneficial to promotion of
cardiopulmonary lymphangiogenesis or angiogenesis. VEGFRs
belong to the family of receptor tyrosine kinases and play a
central role in endothelial function, including cell proliferation
and survival, angiogenesis, and lymphangiogenesis (Olsson et al.,
2006). VEGFRs are activated by several closely related vascular
endothelial growth factors (VEGFs) (Wirzenius et al., 2007; Coso

et al., 2014), among which VEGF-C and VEGF-D preferentially
recognize and activate VEGFR3, whose expression is mainly
limited to lymphatic endothelial cells after embryonic
development (Karkkainen et al., 2004; Milasan et al., 2019).
VEGFR3 was also recently found to be expressed in the
endothelial tip cells during angiogenesis and in tumor
vasculature (Smith et al., 2010; Benedito et al., 2012).
Lymphatic system regulates cardiac physiology and pathology,
such as infammatory reactions (Kim and Song, 2017), tissue fluid
balance (Breslin, 2014), reverse cholesterol transport (Martel
et al., 2013) and atherosclerosis (Vuorio et al., 2014; Milasan
et al., 2015) which can eventually influence heart function. In
these studies, the obstruction of lymphatic flow led to
subepicardial edema, depressed left ventricle (LV) contractile
function, hemorrhages and arrhythmias (Cui, 2010). In addition,
lymphangiogenic therapy with VEGFR3-specifc VEGF-C
improved LV function in MI mice (Klotz et al., 2015). and
enhanced cardiac edema and fibrosis in rats (Henri et al.,
2016). VEGFR3 is the primary lymphangiogenic receptor for
VEGF-C (Joukov et al., 1996). And VEGF-D (Achen et al., 1998)
MI causes decreased cardiac lymph flow leading to edema both in
humans (Nilsson et al., 2001) and in large animals (Ludwig et al.,
1997). Cardiac edema can strongly regulate cardiac function and
lead to dangerous arrhythmias [35] that are typically the main
cause of sudden death post MI (Ludwig et al., 1997). In a recent
clinical trial, the activation of both angiogenesis and

FIGURE 5
Fc-ELA-21 activates ERK 1/2 and VEGFR3 signalings and upregulates PCNA in MI mice. (A–D) Western blot analysis of myocardial and lung tissues:
(A) Phosphorylated ERK1/2 (p-ERK1/2) expression inmyocardium, indicating activation of the APJ-mediated ERK signaling pathway. (B,C)Upregulation of
VEGFR3 and proliferating cell nuclear antigen (PCNA) in myocardium, suggesting promotion of endothelial cell proliferation and lymphangiogenesis. (D)
Elevated VEGFR3 expression in lung tissue, reflecting systemic effects of Fc-ELA-21 on vascular endothelial function. Densitometric quantification of
protein bands normalized to β-actin (n = 3–4). *p < 0.05, **p < 0.01 vs. PBS (Student’s t-test).
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lymphangiogenesis with adenoviral VEGF-D therapy was shown
to be benefcial for myocardial perfusion and might have also
improved cardiac fluid balance (Hartikainen et al., 2017).
VEGFR3 plays an important role in cardiac lymphatic vessel
morphology. The decreased VEGFR3 signaling makes mice face
higher mortality, hemorrhage and structural changes of infarcted
area, which suggests the importance of lymphatic vessel function
in the healing post MIA recent study demonstrated that cardiac
lymphatic system can influence the regenerative potential of the
myocardium (Harrison et al., 2019). Furthermore, a recent study
demonstrated that common therapeutic targets, such as G
protein–coupled receptors and VEGFRs, can potentially
coordinate their signaling through the adapter protein β-
arrestin1 (ARRB1) to regulate endothelial function. In this
study, we demonstrate that Fc-ELA-21 activates APJ receptor-
mediated ERK 1/2 and VEGFR3 signalings in MI, suggesting a
mechanism for cross talk between the APJ receptor and
VEGFR3 in MI.

Moreover, this study found that Fc-ELA-21 attenuated
pulmonary congestion in MI mice, which may be related to the
improvement of cardiac contractile function leading to increased
cardiac output. Secondly, Fc-ELA-21 activated the
VEGFR3 signaling in MI mice which may promote the
lymphangiogenesis. Previous studies indicated that ELA can

balance body fluids (Santoso et al., 2015). APJ knockout mice
exhibit abnormal fluid homeostasis (Murza et al., 2016). ELA
affected fluid homeostasis by increasing diuresis (Deng et al.,
2015). Interestingly, this study found that Fc-ELA-21 slowed
down the weight gain of MI mice, indicating that it may produce
diuresis. Furthermore, our results demonstrate that there is no toxic
effect of Fc-ELA-21 on liver and kidney in vivo.

There are some limitations in this study. First of all, we found a
novel mechanism of Fc-ELA-21’s anti-systolic heart failure, that is, it
activated both APJ receptor and VEGFR3 signaling pathways, but we
did not clarify the signal hub of the cross talk. Secondly, our current
study on the anti-heart failure effect and mechanisms of Fc-ELA-21 is
only carried out in small animals. As there are great differences between
small animals and human beings, we need to further clarify the
mechanisms of Fc-ELA-21’s anti-heart failure in large animals, as
well as the effective dose range, administration interval, and in vivo
safety, so as to promote its clinical transformation.

In summary, we have identified a novel role for Fc-ELA-21 in
anti-heart failure through VEGFR3 signaling that explains in part
the endothelial cell proliferation we found in MI mice. Moreover,
these results demonstrate that there is a cross talk between
VEGFR3 and APJ receptors. Importantly, Fc-ELA-21 is safe in
vivo. Hence, Fc-ELA-21 fusion protein may be a novel
therapeutic for systolic heart failure.

FIGURE 6
Effect of Fc-ELA-21 on the structure and function of liver and kidney in MI mice. (A–C) Serum biomarkers of hepatic (ALT, AST) and renal (creatinine)
function, showing no significant differences between Fc-ELA-21-treated groups and PBS control (n = 8). (D)HE-stained sections of liver and kidney from
MI + Fc-ELA-21 (4 mg kg-1·d-1) mice, displaying normal histological architecture without signs of inflammation or necrosis. Scale bar = 100 μm (n = 3).
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