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Turmeric, also referred to as Curcuma longa, is a commonly used spice,
recognized for its demonstrated effects in reducing inflammation, combating
microbes, providing antioxidant benefits, slowing the aging process, and
exhibiting anticancer potential. The process of skin aging is intricate, with
ultraviolet radiation being a significant extrinsic factor. Increasing evidence
suggests that curcumin, the active component of turmeric, can prevent
ultraviolet radiation-induced skin photoaging and related inflammation. Its
effects include inhibition of melanin production, wrinkle reduction, antioxidant
and anti-inflammatory actions. This review primarily focuses on the specific
signaling pathways involved in skin photoaging and the mechanisms by which
curcumin mitigates photoaging. Key topics include the antioxidant and anti-
inflammatory properties of curcumin, regulation of matrix metalloproteinase,
regulation of autophagy and apoptosis, improvement of pigmentation, and
regulation of microbial balance. Additionally, addressing the critical issue of
curcumin’s low bioavailability, the review summarizes the latest advancements
in curcumin formulation improvements. This article aims to provide a
comprehensive overview of curcumin’s progress of skin photoaging research
and offer evidence for its further clinical application in dermatological treatments.
The review contributes to a deeper understanding of the potential molecular
mechanisms of curcumin in combating photoaging and presents new insights for
the development of curcumin-based anti-photoaging products.
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1 Introduction

1.1 Skin photoaging

Human skin is a complex and dynamic organ with a highly specialized structure as
shown in Figure 1. It consists of various cell types and different functional areas. Among
them, the dermis, which provides structural support, nutrient supply and circulatory
function to the skin, changes in all layers of the skin with age, which is reflected in the
alteration of skin structure and function (McLafferty et al., 2012; Tobin, 2017). Skin aging
can be categorized into two types: intrinsic aging and extrinsic aging (Poljšak et al., 2012).
Intrinsic aging is driven by inevitable physiological processes within the body, progressing
slowly and being difficult to modulate. In contrast, extrinsic aging is significantly influenced
by external factors and lifestyle habits, with key accelerators including ultraviolet radiation
(UVR), air pollution, psychological stress, and smoking (Koohgoli et al., 2017). Among
these external factors, ultraviolet radiation is the primary contributor to skin aging, leading
to what is known as photoaging (Bosch et al., 2015). Ultraviolet radiation consists of three
wavelengths: Ultraviolet A (UVA) (320–400 nm), Ultraviolet B (UVB) (280–320 nm), and
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Ultraviolet C (UVC) (100–280 nm) (Kim B-H. et al., 2015) is
entirely absorbed by the Earth’s atmosphere, leaving only UVA
and UVB to reach the surface (with UVA accounting for
approximately 95% and UVB about 5%). Nearly all UVB
photons are captured by large molecules within the epidermis,
while UVA rays can permeate the epidermis, reaching into the
dermal layer (Holick, 2016). These two types of UV radiation are the
major causes of skin damage and accelerated aging. Although UVB
has higher energy and is the main cause of sunburn, its shorter
wavelength means it is mostly absorbed by the epidermis, with only
a small fraction penetrating the dermis. On the other hand, UVA can
penetrate deeper into the skin layers and is therefore widely
recognized as the key factor in photoaging (Kammeyer and
Luiten, 2015). Photoaging typically manifests as dryness,
roughness, deepening wrinkles, skin laxity, vascular changes, and
hyperpigmentation in sun-exposed areas (Zouboulis and
Hoenig, 2019).

1.2 Curcumin and biological effects

Diet plays a crucial role in the aging process. Recent studies have
demonstrated that dietary polyphenols, such as phenolic acids and
flavonoids, can delay aging by mitigating oxidative stress, modulating
signaling pathways, and influencing gene expression (Samarghandian
et al., 2017). Curcumin (CUR) is an active polyphenol extracted from
the rhizomes of turmeric, a member of the zingiberaceae family.
Historically, curcumin has been highly regarded for its potent anti-
inflammatory properties. Modernmedicine has extensively validated its
therapeutic potential, leading to its widespread use in the prevention
and treatment of various conditions, including inflammatory diseases,
infectious diseases, respiratory disorders, cardiovascular diseases,

neurological disorders, cancers, mental health issues, and metabolic
disorders (Hatcher et al., 2008).

Curcumin, or (1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione, is a symmetric molecule known as
diferuloyl methane (MW368.38 g mol−1) (Priyadarsini, 2014). Its
structure includes two omethoxyphenol groups linked by a seven-
carbon chain with an α,β-unsaturated diketone, facilitating electron
transfer reactions (Moustapha et al., 2015; Sala de Oyanguren et al.,
2020). Curcumin exhibits high lipophilicity, and according to the
study by Moustapha team (Moustapha et al., 2015), it is rapidly
internalized by cells at a ratio of 1/20 relative to its external
concentration. Additionally, curcumin has been detected within
the endoplasmic reticulum and lysosomes.

Due to its biphasic dose-response profile in inducing stress response
pathways, curcumin is categorized as a hormetin (Demirovic and Rattan,
2011). According to Rainey (Rainey et al., 2015), extremely low doses
(≤1 μM) of curcumin act as potent antioxidants. However, at moderate
doses (5–10 μM), curcumin primarily functions as an autophagy inducer,
which is associated with its ability to reduce cytoplasmic protein
acetylation and induce cell cycle arrest (Pietrocola et al., 2012).
Finally, at higher doses (exceeding 25 μM), curcumin induces cell
death, with all experiments conducted over a 48-h period. This paper
further summarizes the mechanisms of curcumin in combating
photoaging and the advancements in research on this topic.

2 Materials and methods

2.1 Search strategy

An online literature search was carried out at PubMed, Web of
Science, Embase, Wanfang Data and CNKI, covering 2014 until

FIGURE 1
The manifestations of photoaging in the skin. Photoaged skin primarily manifests as dryness, roughness, deepening wrinkles, skin laxity,
telangiectasia, and hyperpigmentation.
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April 2025. The following keywords were used: “curcumin” and
“skin photoaging”, or “anti-oxidation”, or “anti-inflammation”, or
“matrix metalloproteinases”, and “apoptosis”, or “autophagy”, or
“melanogenesis”, or “microorganism”, or “formulation”, or
“bioavailability”, or “drug delivery systems, or “nanoparticles”.
The references of all retrieved articles were also reviewed to
include relevant literature. The same selection criteria were
applied to all databases, and duplicate studies across databases
were identified and removed using Zotero and manual
cross-checking.

2.2 Selection criteria

The inclusion criteria are as follows: curcumin and its
compounds are the subjects of the study; the diseases and
physiological processes targeted by curcumin interventions are
related to aging and photoaging; the study design is clear, and
the study results involve the exploration of relevant mechanisms; the
latest research on curcumin’s clinical applications and formulations
is included; the literature was published within the past 10 years,
unless it holds significant historical value; the research must
explicitly describe molecular mechanisms or signaling pathways
and provide detailed information on curcumin formulations or
delivery systems (e.g., nanoparticles, liposomes) and their effects
on bioavailability or efficacy.

The exclusion criteria are as follows: studies in literature reviews
with unclear subjects, methods, or mechanisms; studies with a very
small sample size; studies with poor methodology, unreliable results,
or low quality; duplicate publications of the same research content;
articles such as conference abstracts, editorials, or opinion pieces
that do not provide significant original data; unpublished or non-
peer-reviewed studies.

During the collation process, standardized data extraction forms
were used to ensure consistency in research data. Additionally, two
researchers independently screened and analyzed all the literature to
ensure the reliability of the study.

3 Mechanism of anti-photoaging effect
of curcumin

3.1 Anti-oxidation

Reactive oxygen species (ROS) drive skin photoaging by
oxidizing collagen, elastin, and DNA, leading to impaired barrier
function and wrinkle formation. UV radiation activates three key
oxidative stress pathways: the epidermal growth factor receptor
(EGFR)-mitogen-activated protein kinase (MAPK) cascade,
nuclear factor kappa B (NF-κB)-mediated inflammation, and the
nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant
response element (ARE) axis. Under physiological conditions,
Nrf2 binds to Kelch-like ECH-associated protein 1(Keap1) in the
cytoplasm, undergoing ubiquitination and degradation. ROS or UV
exposure disrupts Keap1’s conformation, releasing Nrf2 to
translocate into the nucleus, where it activates antioxidant
enzyme genes to establish cellular defense systems (Kovac et al.,
2015; Krajka-Kuźniak et al., 2017).

Curcumin targets the Keap1-Nrf2 pathway by modifying
Keap1’s thiol groups, destabilizing the Keap1-Nrf2 complex, and
blocking Nrf2 ubiquitination. This promotes Nrf2 nuclear
translocation and ARE binding, upregulating antioxidant
enzymes such as Superoxide Dismutase 1(SOD1), Heme
Oxygenase-1(HO-1), and Glutathione Peroxidase (GPx) (Wang
et al., 2020; Lin et al., 2019). Its effects are dose-dependent: low
concentrations (5–20 μM) enhance antioxidant capacity (e.g., 20 μM
curcumin increased SOD activity by 47% in RAW264.7 cells) (Lin
et al., 2019); moderate concentrations (20–60 μM) induce cell cycle
arrest and suppress telomerase activity; high concentrations
(≥80 μM) disrupt cellular structures and promote apoptosis
(Mollazade et al., 2013). Topically applied curcumin (5 mg in
Vaseline cream) significantly elevates Nrf2, HO-1, and SOD
levels in mouse skin (WU et al., 2023), while nanocarrier-loaded
curcumin (10 μg/mL) synergistically upregulates Glutathione
Peroxidase one and Nrf2 expression (Liakopoulou et al., 2025).
Additionally, curcumin restores UV-induced mutant p53 function
by modulating B-cell lymphoma 2 Associated X Protein/B-cell
lymphoma 2(Bax/Bcl-2)balance, reversing apoptosis resistance
and improving mitochondrial homeostasis (Rebel et al., 2012).

In summary, curcumin orchestrates a multi-dimensional anti-
photoaging network through Keap1-Nrf2 pathway regulation,
integrating antioxidant defense (low doses), cell cycle
intervention (moderate doses), and pro-apoptotic effects (high
doses). It concurrently repairs DNA damage, inhibits telomerase
activity, and enhances mitochondrial stability. Future research
should focus on elucidating its cross-scale mechanisms
(molecular-cellular-tissue) and synergistic interactions with other
antioxidants to optimize its clinical application in photodamage
prevention and treatment.

3.2 Anti-inflammation

Chronic inflammation is closely linked to the progression of skin
photoaging. UVR-induced DNA damage and alterations in the
extracellular matrix (ECM) disrupt homeostasis and trigger
cellular stress, leading to the activation of inflammatory
responses in the skin as shown in Figure 2. As previously
mentioned, the NF-κB and p38 MAPK pathways promote the
expression of cytokines and chemokines, which are crucial for
the recruitment of cells during the progression of inflammation
(Cavinato and Jansen-Dürr, 2017; Hasegawa et al., 2016; Fitsiou
et al., 2021). NF-κB is identified as a transcription factor with a
pivotal role in managing inflammation and immune responses, as
well as in the transcriptional control of various chemokines and
cytokines. It is instrumental in the regulation of immune reactions,
inflammation, cell proliferation, apoptosis, and cellular responses
(Zinatizadeh et al., 2021).

Curcumin exerts anti-inflammatory effects by targeting key
nodes of the NF-κB signaling pathway. In the initial phase
(1.5–5 μM), it activates peroxisome proliferator-activated receptor
γ(PPARγ) receptors and inhibits toll-like receptor 4/myeloid
differentiation primary response 88 (TLR4/MyD88) complex
formation, blocking inhibitor of nuclear factor kappa-B kinase
subunit β(IKKβ) phosphorylation (IC50 = 5.2 μM). This
stabilizes Inhibitor of NF-κB (IκBα) and reduces NF-κB nuclear
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translocation by 76% (Wang et al., 2018; Nguyen et al., 2022). At
elevated concentrations (5–10 μM), curcumin directly binds to the
DNA-binding domain of the NF-κB p65 subunit (Kd = 2.3 nM) and
the adenosine triphosphate (ATP)pocket of IKKβ (ΔG = −7.6 kcal/
mol), exerting steric hindrance to impair their functions (Wang
et al., 2018; Martín-Vázquez et al., 2023).

When concentrations reach 10–20 μM, its effects extend to
downstream inflammatory mediators, reducing cyclooxygenase-
2(COX-2), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α)
expression by over 60% while upregulating the anti-apoptotic protein
Bcl-2 (Lee et al., 2020). Notably, at 6 μM, curcumin synergistically
reduces interleukin-1β(IL-1β)/IL-6 secretion by 50% through inhibition
of extracellular signal-regulated kinases/c-Jun N-terminal kinases

(ERK/JNK) phosphorylation (EC50 = 8.4 μM) and targeting of the
signal transducer and activator of transcription 3 src homology 2
(STAT3 SH2) domain (ΔG = −7.1 kcal/mol) (Peng et al., 2021;
Martín-Vázquez et al., 2023).

This gradient mechanism—ranging from low-concentration
signaling blockade to high-concentration multi-pathway
synergy—exhibits concentration-dependent anti-inflammatory
activity in LPS-stimulated HaCaT keratinocytes (1.5–20 μM),
with no cytotoxicity observed below 6 μM (Nguyen et al., 2022).
Experimental data reveal that curcumin achieves comprehensive
pathway intervention through precise concentration windows,
spanning upstream activation suppression, midstream nuclear
translocation blockade, and downstream gene expression regulation.

FIGURE 2
Themechanisms of anti-photoaging effects of curcumin. This diagram shows six key signaling pathways. Nrf2: When ROS levels rise, Nrf2 detaches
from the Keap1 complex and enters the nucleus. There, it activates antioxidant enzymes like hemeoxygenase-1, SOD, CAT, andGR, which protect against
oxidative stress. NF-κB: Curcumin reduces inflammation by activating PPARγ, blocking TLR activation, and inhibiting IKK and IκB phosphorylation. This
prevents NF-κB from moving to the nucleus, reducing inflammation. MAPK: Curcumin blocks the UVB-induced phosphorylation of p38 and JNK,
stopping the activation of downstreammolecules. This suppresses inflammation and apoptosis, preventing skin aging by inhibiting MMPs like MMP-1 and
MMP-3. Autophagy: Curcumin regulates autophagy via Beclin-1, p53, and PI3K/AKT/mTOR. At low doses, it helps cell survival; at higher doses, it triggers
autophagy-related cell death and cycle arrest. Apoptosis: Curcumin promotes apoptosis in damaged or cancerous cells by increasing caspase-3 and Bax
expression, and inhibiting anti-apoptotic proteins like Bcl-2 and PI3K/AKT. In healthy cells, it prevents excessive apoptosis, protecting against UV-induced
skin damage. Symbols: Pointed arrow (↓): indicates promotion. The bold arrow (⊥): indicates inhibition.
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Curcumin has garnered attention for its remarkable anti-
inflammatory effects, primarily achieved by modulating key
signaling pathways such as NF-κB, MAPK, and activator protein
1 (AP-1). Although existing research has extensively described
curcumin’s effects on these pathways, its mechanisms of action
in the context of chronic UV-induced damage remain inadequately
understood. To assess the safety, efficacy, and optimal dosage of
curcumin, particularly for skin protection, more long-term in vivo
studies and clinical trials are necessary. Moreover, exploring the
synergistic effects of curcumin with other therapeutic approaches is
crucial. Future research should also investigate emerging areas of
application, such as epigenetic regulation and the impact on the skin
microbiome, to uncover its broader therapeutic potential.

3.3 MMPs regulation

Collagen is the predominant insoluble fibrous protein found in
the ECM and connective tissues, primarily synthesized by fibroblasts
within the dermis (Wen et al., 2012). Matrix metalloproteinases
(MMPs) are zinc-dependent endopeptidases with broad substrate
specificity, responsible for the degradation of various ECM
components as shown in Figure 2 (Pittayapruek et al., 2016; Kim
et al., 2011). Exposure to UVA and UVB radiation induces oxidative
stress in human skin, leading to chronic genetic damage,
upregulation of AP-1 activity, and increased Matrix
metalloproteinases (MMP) expression. In addition to AP-1, ROS
generation also induces NF-κB-mediated transcriptional activation.
It has been reported that the activation of NF-κB is responsible for
the upregulation of MMPs, such as MMP-1 and MMP-3, in dermal
fibroblasts (Vicentini et al., 2011; Lee et al., 2012). Consequently,
both AP-1 and NF-κB are involved in the process of photoaging.

Curcumin effectively counteracts MMP-mediated skin
photoaging through multi-target mechanisms. Its core actions
involve: (1) Direct binding to the catalytic domain of matrix
MMP-9(Kd = 8.4 nM) and active sites of MMP-1/3, with Ce6-
diPEG-curcumin conjugates (200 nM) combined with
photodynamic therapy reducing UVB-induced MMP-2
expression by 67% (Thapa Magar et al., 2023; Liu et al., 2024);
(2) Dual blockade of the NF-κB/AP-1 signaling axis via inhibition of
IKKβ phosphorylation (IC50 = 5.8 μM) to reduce NF-κB nuclear
translocation, coupled with suppression of JNK/ERK
phosphorylation (EC50 = 7.2 μM) to impede c-Jun/Fos complex
formation, thereby synergistically downregulating MMP-1/3/
9 transcription (Hwang et al., 2013; Liu et al., 2024); (3)
Activation of the transforming growth factor-β/small mothers
against decapentaplegic 2/3 (TGF-β/Smad2/3) pathway (5 μM) to
promote collagen synthesis, while scavenging ROS through the
Nrf2/HO-1 axis, reducing UVB-induced oxidative damage by
52% (Liu et al., 2018; Yuan et al., 2017).

Dose-response analyses reveal gradient regulatory characteristics of
curcumin within the 5–30 μM range: lower concentrations (5–10 μM)
preferentially repair the extracellular matrix, whereas therapeutic
concentrations (20–30 μM) achieve potent anti-photoaging effects
through multi-pathway synergy. Recent photodynamic strategies
further enhance efficacy via tissue-targeted delivery of
Ce6 conjugates, evidenced by a 3-fold increase in hepatic/pulmonary
fluorescence intensity (Thapa Magar et al., 2023).

Future research should focus on deciphering curcumin’s
regulatory network on MMP/tissue inhibitors of
metalloproteinases (TIMP) dynamic balance and developing
nano-delivery systems to overcome its bioavailability limitations
(current oral bioavailability <1%), thereby accelerating clinical
translation. This multimodal mechanism—encompassing anti-
inflammatory, antioxidant, and matrix remodeling
properties—establishes curcumin’s core advantages as a natural
photoprotective agent.

3.4 Autophagy interference

Emerging evidence highlights the critical role of autophagy
modulation in counteracting UV-induced photoaging, with
curcumin demonstrating dose-dependent bidirectional regulatory
effects through targeted molecular pathways. Recent studies (Tsang
et al., 2022; Zuo et al., 2021) reveal that autophagy mitigates UV-
induced oxidative stress, DNA damage, and aberrant cell proliferation
by orchestrating cellular repair and survival-death balance. Curcumin
exerts context-specific autophagy regulation through dual mechanisms:
At moderate concentrations (20–25 μM), it promotes cytoprotective
autophagy via inhibition of the mechanistic target of rapamycin
(mTOR)-AKT axis (Zhao et al., 2016), evidenced by decreased
p-AKT, p-mTOR, and p-P70S6K expression, coupled with increased
microtubule-associated protein 1A/1B-light chain 3- II/microtubule-
associated protein 1A/1B-light chain 3-I (LC3-II/LC3-I) conversion.
This facilitates cell cycle arrest at G2/M phase and enables cellular
recovery, as observed in Huh-7 cells treated with 20 μM curcumin (Sala
de Oyanguren et al., 2020). Conversely, higher concentrations
(50–75 μM) trigger autophagic cell death through Beclin-1 activation
and p53 modulation, independent of caspase pathways (Hasima and
Ozpolat, 2014; Zhao et al., 2016). The compound’s therapeutic synergy
is amplified when combined with photodynamic therapy-3.5 μM
curcumin with light irradiation enhances autophagic flux while
suppressing ERK/AKT-mediated oxidative stress, converting
reversible cell cycle arrest to irreversible senescence (Niu et al.,
2016). Notably, in vivo efficacy is maintained at 25 mg/kg dosage,
significantly reducing melanoma growth through coordinated
autophagy-proliferation regulation (Zhao et al., 2016).

Curcumin modulates photoaging through concentration-
dependent crosstalk between autophagy regulators and stress-
response pathways. It primarily inhibits the mTOR-AKT
signaling axis to activate pro-survival autophagy at lower doses,
while engaging Beclin-1 and p53 to drive autophagic cell death at
higher concentrations. Downstream effects involve LC3-mediated
autophagosome formation, G2/M phase arrest through cyclin
regulation, and suppression of oxidative stress via ERK/AKT
dephosphorylation. These multimodal actions position curcumin
as a promising candidate for precision interventions in UV-induced
skin damage and melanoma progression.

3.5 Apoptosis regulation

3.5.1 Apoptosis promotion
Ultraviolet radiation disrupts epidermal homeostasis by

concurrently activating pro-apoptotic pathways (e.g., p53/Bax
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upregulation, p38 MAPK activation) and pro-survival signals (e.g.,
COX-2-mediated proliferation) (Mlitz et al., 2016; Lee, 2019).
Curcumin counteracts UV-induced pathological proliferation by
selectively inducing apoptosis in photodamaged or malignant cells
through dose-dependent mechanisms. At higher concentrations
(10–100 μM), curcumin suppresses EGFR tyrosine kinase activity,
blocking downstream phosphoinositide 3-Kinase (PI3K)/AKT
survival signaling in melanoma cells (Chiu et al., 2022).
Concurrently, it activates caspase-3 expression and enzymatic
activity, amplifying apoptotic execution in SK-MEL-28 and
A375 cells (Manica et al., 2023). These actions collectively reduce
cell viability, inhibit migration, and eliminate premalignant clones,
thereby mitigating UV-driven carcinogenesis.

3.5.2 Apoptosis inhibition
In contrast, curcumin exhibits cytoprotective effects in non-

cancerous contexts by suppressing UV-induced apoptosis at lower
concentrations (0.1–10 μM). Pretreatment with 5 μM curcumin in
human dermal fibroblasts (HDFs) significantly downregulates caspase-
3 and upregulates anti-apoptotic Bcl-2, preserving cellular integrity under
UVA stress (Liu et al., 2018). Furthermore, curcumin modulates
adenosine metabolism by inhibiting CD39/CD73/adenosine deaminase
(ADA) expression (0.1–10 μM), thereby attenuating immunosuppressive
microenvironments in SK-Mel-28 cells (Manica et al., 2024). This dual
regulation—balancing pro-survival signals and anti-inflammatory
pathways (adenosine metabolism)—highlights its capacity to protect
normal skin cells from UV-induced damage while maintaining tissue
homeostasis.

This context-specific modulation enables curcumin to
selectively eliminate damaged or cancerous cells while shielding
healthy tissue, underscoring its potential as a dual-function agent
against photoaging. Clinical translation, however, requires advanced
delivery systems to enhance bioavailability and precision in targeting
skin-specific pathways.

3.6 Melanogenesis reduction

Ultraviolet radiation stimulates melanogenesis through
activation of the microphthalmia-associated transcription factor
(MITF)-regulated pathway, promoting tyrosinase (TYR)-
dependent melanin synthesis in melanosomes to protect against
DNA damage, while excessive production leads to
hyperpigmentation disorders (Kim et al., 2021). Curcumin and
its derivatives suppress melanogenesis through dual strategies:
direct tyrosinase inhibition and MITF-mediated transcriptional
regulation. In α-melanocyte stimulating hormon (α-MSH)-
stimulated B16F10 cells, curcumin (5–10 μM) and
bisdemethoxycurcumin (5–10 μM) downregulate melanogenic
genes, reducing melanin synthesis by 40%–60% (Jeon et al.,
2023). Structurally optimized derivatives like
CMC2.24 demonstrate enhanced efficacy, inhibiting tyrosinase
activity in MNT-1 human melanoma cells at 5–25 μM without
cytotoxicity (Goenka et al., 2021). Notably, curcumin’s effects are
redox-dependent: at 10 μM, it suppresses baseline melanogenesis in
B16F10 cells but exhibits biphasic behavior under oxidative
stress—promoting melanin at low H2O2 (<0.3 mM) while
inhibiting it at higher H2O2 levels (Wolnicka-Glubisz et al., 2015).

Curcumin targets melanogenesis by competitively binding
tyrosinase to block catalytic activity and disrupting the MITF-
TYR/Transient Receptor Potential (TRP) transcriptional axis.
Future research must optimize curcumin’s bioavailability via
nanoformulations and validate its dose-response relationships in
vivo. Addressing these challenges will unlock its potential as a dual-
function agent against photoaging and hyperpigmentation.

3.7 Restoring microbial homeostasis

The skin and gut microbiota collaboratively maintain cutaneous
homeostasis through metabolic and immune interactions. Resident
skin microbes secrete enzymes critical for barrier function: proteases
facilitate stratum corneum renewal, lipases degrade surface lipids,
and ureases regulate urea metabolism. Concurrently, bacteriocin
production, quorum sensing, and pH modulation establish a
microbial defense network n (Boxberger et al., 2021). The gut-
skin axis enables bidirectional communication, where dysbiosis
increases intestinal permeability, allowing bacterial metabolites
(e.g., lipopolysaccharides) to accumulate in the skin via systemic
circulation, disrupting epidermal differentiation and barrier
integrity (Dinan and Cryan, 2017; Szántó et al., 2019). UVR
disrupts microbial equilibrium through direct DNA damage and
indirect release of pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs), such as
oxidized lipids and porphyrins, promoting pathogenic
overgrowth (e.g., Staphylococcus aureus). These dysbiotic
communities activate IL-17/TNF-α signaling, upregulate MMP-1/
MMP-3 to degrade collagen, and suppress filaggrin and tight
junction proteins, driving a pathological cascade of oxidative
stress, chronic inflammation, and barrier dysfunction (Kim et al.,
2021; Seo et al., 2023).

Curcumin addresses microbial dysregulation through localized
and systemic mechanisms. Topically applied at
concentrations ≥50 μM, its hydrophobic structure disrupts
bacterial membrane integrity, inhibits virulence factor expression
in pathogens like S. aureus, and enhances photodynamic
antibacterial activity under blue light irradiation (Zheng et al.,
2020). Systemically, curcumin modulates the NF-κB/AP-
1 pathway to reshape gut microbiota composition, promoting the
proliferation of short-chain fatty acid (SCFA)-producing bacteria
while suppressing pathogenic colonization. This restoration of
Th17/Treg immune balance is critical for mitigating systemic
inflammation (Kasprzak-Drozd et al., 2024). SCFAs further
alleviate cutaneous photoaging by activating G protein-coupled
receptors (GPCRs), downregulating pro-inflammatory cytokines
(e.g., IL-1β, IL-6), and inhibiting MMP-1/MMP-3 expression,
thereby reducing collagen degradation (Peterson et al., 2019).

Emerging evidence highlights UV-induced microbial dysbiosis
as a key driver of photoaging through oxidative stress, inflammation,
and barrier impairment. Curcumin demonstrates therapeutic
potential via its dual antimicrobial and immunomodulatory
properties. Future research should prioritize identifying
photoaging-specific microbial biomarkers, optimizing curcumin’s
topical delivery systems to enhance bioavailability, and elucidating
the transport mechanisms of microbial metabolites across the
gut-skin axis.
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4 Limitations and countermeasures of
curcumin in clinical application

4.1 Limitations of curcumin application

However, the application of curcumin is limited by its
physicochemical properties, particularly its low water solubility
and poor intestinal permeability. Addressing these challenges is
essential for improving its efficacy. Extensive research has focused
on this issue, with nanotechnology emerging as a promising solution
to enhance curcumin’s bioavailability. Encapsulation of curcumin in
nanoparticles can help overcome delivery obstacles, thereby
improving its bioavailability and stability. This review explores
the mechanisms through which curcumin combats photoaging,
recent advancements in understanding the associated signaling
pathways, and summarizes the latest research aimed at enhancing
curcumin’s bioavailability. These insights provide new perspectives
on the application of curcumin in skin-related diseases.

Curcumin has not yet been approved as a therapeutic drug,
mainly due to its poor water solubility, inadequate intestinal
absorption, and rapid metabolism, which significantly limit its
effectiveness in the human body (Wen et al., 2023). After oral
administration, the majority of curcumin is excreted as
metabolites, with only a small fraction entering the bloodstream,
at concentrations well below those required to inhibit most of its
anti-inflammatory targets. Curcumin is a diketone pigment
composed of two ortho-methylated phenols and a β-diketone
functional group, with the β-diketone portion believed to be
responsible for its instability, rapid degradation, and low
bioavailability (Vargas-Mendoza et al., 2022).

4.2 Research progress on improvement of
curcumin clinical applications

In recent years, the preparation of curcumin has been
continuously explored. Recent clinical studies demonstrate
curcumin’s dual role in skin repair. A 2022 trial (N = 60) on
photoaging management showed that a 4-week regimen
combining oral 70 mg curcumin with topical 0.02% curcumin
cream significantly improved skin firmness (+11.2% vs. 5.5%, p <
0.01), elasticity (+12.7%, assessed by Cutometer®), and reduced
forehead wrinkle volume (−16.5%, measured via Visioface®)
compared to topical-only treatment. It also enhanced skin barrier
function (10.8% reduction in transepidermal water loss [TEWL],
3.5% increase in hydration) and increased collagen density
(validated by Dermascan® ultrasound imaging) (Di Lorenzo et al.,
2023). In a 2025 double-blind trial (N = 52) on breast cancer
radiotherapy patients, topical 2% curcumin gel applied for
4 weeks significantly outperformed placebo in reducing erythema
incidence (3.7% vs. 96%, p < 0.01), achieving pain-free rates (70.4%
vs. 28%), and lowering irritant reactions (37% vs. 84%, p < 0.01),
with no additional risk of itching or dryness. These studies validate
the clinical potential of curcumin’s “oral-topical” strategy (Heydari
et al., 2025).

Carrier design critically impacts drug penetration and stability.
Poly (lactic-co-glycolic acid)/hyaluronic acid (PLGA/HA)
microneedles using chitosan-PLGA composite nanocarriers

increased curcumin transdermal rate by 4.2-fold and extended
duration to 2 months (Chen et al., 2023). Cur-Res SLNs,
formulated with Compritol 888 ATO lipid cores (average particle
size 180.2 nm), achieved encapsulation efficiencies of 92% (CUR)
and 62.8% (Res), with over 70% of the drug bound to the skin in
transdermal experiments. Nanoencapsulation accelerated Res
release by 5-fold compared to free forms. Comparative studies
demonstrated that aqueous-based formulations underperformed
lipid carriers (ΔVISIA scores: −12.4vs. −19.7), highlighting carrier
selection as pivotal for efficacy (Palliyage et al., 2021). It should be
noted that some trials failed to detect any beneficial effects of
curcumin, and some trials also failed in elderly subjects and
patients with atopic dermatitis, despite the use of significant
doses for weeks or months, presumed to be related to
bioavailability (Lagoa et al., 2025). In terms of safety, the
optimization of the delivery system resulted in a significant
reduction of irritation in the compounded formulation, with the
main adverse effects identified in the trials being transient erythema
(5.2%) and dry skin (2.1%) (Palliyage et al., 2021). Curcumin
exhibits biphasic dose-response characteristics, where low doses
are beneficial but higher doses may lead to toxicity or reduced
efficacy (Gupta et al., 2020). Although high-efficiency nanocarriers
can enhance the efficacy of drugs, they may also increase the risk of
side effects due to their prolonged retention in the body. Future
studies should focus on the toxicity and long-term risks of drug
combination carriers, and track efficacy and safety changes
simultaneously.

Enhancing the bioavailability and stability of curcumin has
become a major focus in curcumin research and is fundamental
to the development of curcumin-related formulations. Current
research is primarily centered on curcumin derivatives and
prodrugs, pharmaceutical strategies, and combination therapies to
position curcumin at its target sites, thereby improving its
therapeutic efficacy. Curcumin-supported delivery systems
include nanoparticles, magnetic nanoparticles, solid lipid
nanoparticles, liposomes, nanostructured lipid carriers, microgels,
hydrogels, biopolymer nanoparticles, micelles, phospholipid
complexes, emulsions, microemulsions, nanoemulsions, and
metal complexes. Through these delivery systems, curcumin’s
water solubility, efficacy, stability, bioavailability, and target
concentration have been markedly improved (Flory et al., 2021;
Wen et al., 2023). The wide application of nanocarriers is largely
attributed to their ability to penetrate biological barriers and exert
therapeutic effects in the human body (Jarvis et al., 2019; Liu et al.,
2022; Wang et al., 2023).

Different nano-formulations have their own characteristics and
advantages. Lipid-based nanoparticles (LNPs), such as
nanostructured lipid carriers (NLCs) and solid lipid nanoparticles
(SLNs) (Amer et al., 2021; Kotb et al., 2023), have emerged as the
most promising formulations due to their high biocompatibility,
controlled release properties, significant collagen-enhancing effects,
and inhibition of MMPs. Nanoemulsions (Laksmiani et al., 2022),
characterized by small droplet sizes (20–200 nm), exhibit superior
skin penetration and versatility in encapsulating diverse actives (e.g.,
curcumin, resveratrol, thymol), synergistically amplifying anti-
inflammatory and antioxidant activities for clinical applications.
Metal nanoparticles (Rehman et al., 2023) particularly those coated
with plant extracts to reduce toxicity, offer dual protection against
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TABLE 1 Summary of case studies on topical administration of curcumin.

Components
incorporated

Formulation
developed

Characterization
techniques

Model Inference Ref

1 Cur/ZnO NPs Nanofibers Scanning Electron Microscope, X -
Ray Diffraction and Fourier

Transform Infrared Spectroscopy
(SEM, XRD and FTIR)

Rats Cur/Zinc Oxide/Polyvinyl
Alcohol (ZnO/PVA)

nanofibers showed the best
wound healing effect in rats: by
Day 12, the wound diameter
was significantly decreased
from 1.000 cm to 0.075 cm,

achieve 92.5% wound
contraction. It has stronger
antioxidant activity, 2,2

-Diphenyl-1-picrylhydrazyl
(DPPH) free radical

scavenging rate of 81.4%. In
vitro, it showed good

antibacterial activity against
E. coli and Staphylococcus

aureus, with inhibition zones
of 7 mm and 4 mm,
respectively, and no

cytotoxicity against L929 cells.

Nemati et al.
(2024)

2 Curcumin, succinic anhydride,
deoxycholic acid

Nanomicelles Proton Nuclear Magnetic Resonance
(H-NMR), FTIR, and XRD

Zebrafish Curcumin, loaded in
amphiphilic chitosan micelles
(91.7% entrapment, 196.4 nm),
showed markedly improved
water solubility and stability.
Compared to free curcumin,
antioxidant activity was
enhanced, with DPPH

scavenging reaching 85.1% vs.
45.6% at 20 μg/mL. The

micelles sustained over 80%
activity across concentrations,
confirming effective radical

scavenging.

Chen et al. (2024)

3 Chitosan, reduced graphene
oxide, curcumin, papain,

collagen peptide

Nanocomposites FTIR, Dynamic Light Scattering
(DLS), XRD, SEM

Rats The results showed that the anti-
inflammatory and cell viability of
Casein Plastic/ReducedGraphene
Oxide/Cellulose Propionate/

Curcumin/Polyamide (CS/RGO/
CP/Cur/PA) were improved by
99.7% and 395%, respectively,
which was higher than other

methods. Animal experiments in
rats showed that CS/RGO/CP/
Cur/PA increased wound healing

by 70%.

Elhami et al.
(2024)

4 Curcumin, methylacrylated
gelatin, dopamine, Zinc-doped
hollow mesoporous cerium

oxide

Nanoparticles SEM, FTIR Sprague Dawley male rats The GeIMD-Cur@ZHMCe
hydrogel exhibit potent

antibacterial activity (killing
rates >70% for E. coli and >80%

for S. aureus), antioxidant
properties (ROS

scavenging >80%), and anti-
inflammatory effects (reduced
IL-1β/IL-6 expression). In a rat

chronic wound model, it
achieved 98.5% ± 4.9% healing
within 14 days, outperforming

controls by promoting
neovascularization and acid-

responsive Cur release (>70% in
60 h under acidic conditions).

Zhao et al. (2024)

5 Curcumin, geranium oil, Tween
80, propylene glycol

Microemulsion Zeta, HI 2210 Hanna Rat with carrageenan-
induced paw edema (ex

vivo rat skin and
HEPG2 cells in vitro)

Among the several
formulations with different
compositions of geranium oil

and Tween80/propylene
glycol, the formulation with
the highest amount of oil

(20%) afforded the fastest skin
permeation ex vivo: a flux of
130.9 μg/cm2/h and a lag time

Hassan et al.
(2024)

(Continued on following page)
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TABLE 1 (Continued) Summary of case studies on topical administration of curcumin.

Components
incorporated

Formulation
developed

Characterization
techniques

Model Inference Ref

of 0.08 h. Enhanced
antioxidant activity compared
to pure curcumin. In vivo, the

emulsion reduced
inflammation more effectively
than pure curcumin, with

reductions of 93% versus 32%
at 6 h.

6 Citral, Nerolidol, Eucalyptol,
Curcumin, Soya

phosphatidylcholine, Carbopol
934, Ethanol Triethanolamine,

Methanol

Nanoinvasives Nano Zeta Sizer, Transmission
Electron Microscope (TEM),

FTIR-ATR

Balb/c mouse model of
psoriasis (and ex vivo
porcine ear skin)

Curcumin, encapsulated in
citral-based invasomes (85.8%
entrapment, 302 nm), showed
3*enhanced skin permeation

vs. conventional gel. In
psoriatic mice, the formulation
resolved symptoms within
10 days by suppressing

keratinocyte
hyperproliferation and

inflammation via NF-κB/
STAT3 inhibition, proving
invasomes as a potent

transdermal delivery system
for curcumin’s therapeutic

efficacy.

Kumar and
Sahoo (2023)

7 Curcumin, Fusidic Acid, Tween
80, Lecithin, Carbopol 934

Nanogel, Mixed
Micelles

Zeta, TEM, Differential Scanning
Calorimetry (DSC), FTIR

Sprague-Dawley rat model
of acne (and ex vivo rat

skin)

The permeability of Mixed
Curcumin-Fusidic Acid-
Micelles (Cur-FA-MM)

nanogels was increased by
2 times, and the skin

deposition (Cur: 562.07 μg/
CM2, FA: 405.47 μg/CM2) was
significantly higher than that
of ordinary gels. Ear thickness
was reduced by 70% in the
Cur-FA-MM group, and
histopathology showed

normalization of the epidermis
with minimal inflammatory
cell infiltration. Hybrid

micellar nanogels extend drug
residence time by sustained

release and enhanced
permeation.

Abdel-monem
et al. (2023)

8 Copper sulfide, curcumin,
methanol, F127-CHO micelles

nanoparticle SEM, XRD SD rats, Human umbilical
vein endothelial cells

CUR/CuS@F127 hydrogel
reached 53.1°C under 808 nm
NIR in 5 min and showed
strong antioxidant and

antibacterial activity. In vivo, it
achieved 95.3% wound closure

by day 10 with enhanced
collagen deposition and

angiogenesis.

Jia et al. (2023)

9 Polyamide 6, hyaluronic acid,
and curcumin

Nanofibers FTIR Male rats The optimized PA6/HA/
HNT@Cur nanofibrous

membrane with 1 wt% HNT@
Cur exhibited controlled pH-
sensitive curcumin release,

achieving 98% release at acidic
pH (5.4) and 85% at
physiological pH (7.4),

alongside strong antibacterial
activity against gram-positive/
negative pathogens and 70%
antioxidant activity. In vivo

studies demonstrated superior
wound healing, with 81%
wound contraction after

14 days compared to 40% in
untreated controls, and

enhanced tissue regeneration

Shakiba et al.
(2023)

(Continued on following page)

Frontiers in Pharmacology frontiersin.org09

Nie and Li 10.3389/fphar.2025.1559032

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1559032


TABLE 1 (Continued) Summary of case studies on topical administration of curcumin.

Components
incorporated

Formulation
developed

Characterization
techniques

Model Inference Ref

confirmed by histological
analysis.

10 Curcumin, Labrasol, Cremophor
RH 40, Transcutol P, isopropyl

myristate

Self-nano DLS, Polydispersity Index (PDI) HaCaT, Caco-2 The SN/MEDDS achieve high
drug loading efficiency
(93.11%–99.12%) and

sustained thermodynamic
stability. SNEDDS

demonstrated superior in vitro
curcumin release (over 80% at
180 min) and antioxidant
activity (52.66% DPPH
scavenging) compared to

SMEDDS and pure curcumin.
Additionally, Labrasol-based
SNEDDS reduced TNF-α and
IL-1β levels below 60% in
inflamed cells, showing

enhanced anti-inflammatory
effects and non-cytotoxicity at

5% w/v.

Józsa et al. (2022)

11 Curcumin, Graphene oxide
(GO) powder, alginate (ALG)
solution in double-distilled

water (ddH2O)

Nanosheet SEM, Atomic Force
Microscopy (AFM)

HBEpc, HPV-negative
VA, United States

The CUR/GO hybrid hydrogel
showed improved thermal

stability (20% vs. 30% weight
loss) and water resistance

compared to pure hydrogels.
At 2.5% loading, it reduced GO
toxicity in normal cells while
effectively killing squamous
cell carcinoma cells (SCC)
cells, with sustained CUR

release (~50% over 96 h) via π-
π interactions, indicating
potential for localized SCC

therapy.

Madeo et al.
(2022)

12 Curcumin, carboxymethyl
guargum, reduced graphene

oxide

Nanocomposite SEM, XRD, Thermogravimetric
Analysis (TGA), FTIR

Rabbits The nanocomposites achieved
complete wound closure
within 48 h due to the
proliferation of 3T3-L1

fibroblast cells and facilitated
controlled drug release.
Moreover, in vivo studies
indicated that the CMGG
nanocomposite, which

combines reduced graphene
oxide with curcumin, has

significant potential for wound
healing.

Orsu et al. (2021)

13 Curcumin, chitosan, PVA, nano
silver

Nanocomposite Curcumin, l-lactic acid, citrate
siloxane, polydopamine

Mice The PPCP scaffold achieved
93% bacterial killing, 94%
antioxidant activity, and

46.4°C photothermal heating,
enabling synergistic tumor
suppression and wound

healing. It accelerated tissue
repair with 74.5% curcumin
release, enhanced collagen
deposition, and reduced

inflammation (TNF-α/IL-6)
while maintaining
biocompatibility.

Xi et al. (2020)

14 Curcumin, ZnO Nps Nanoconjugates AFM, DLS, FTIR, Zeta Female Sprague-Dawley
rats

Cur-Zno Nanocomposite had
strong antioxidant activity

(82.6% ± 3.3%), and the wound
healing rate was 99.2%. In vivo,
topical application resulted in
96% wound contraction on day
14, accompanied by enhanced

collagen deposition and
reepithelialization.

Aslam et al.
(2022)

(Continued on following page)
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photoaging through combined antioxidant and UV-absorbing
capabilities. While ethosomes (Sallustio et al., 2023) demonstrate
strong permeation efficiency, their ethanol concentration requires
optimization to minimize skin irritation. Nanogels, featuring high
mucoadhesion and sustained release profiles (e.g., chitosan/alginate
gels achieving 5-day release), enhance localized therapeutic efficacy
when integrated with functional materials like carbon nanosponges
(Niu et al., 2023; Sideek et al., 2024).

Comparative analyses highlight liposomes and microemulsions
as research hotspots for their exceptional permeability, whereas
SLNs and nanogels excel in sustained release and localized
treatment. Critical challenges remain: LNPs require resolution of
long-term storage stability and scalable manufacturing processes
(Kotb et al., 2023); nanoemulsions demand balanced surfactant
safety to prevent skin barrier disruption and standardized clinical
efficacy metrics (e.g., long-term validation of photoaging
biomarkers). Nanogel formulations necessitate strict pH control
(5.7–6.2) to avoid cutaneous discomfort. Future directions
emphasize clinical translation of curcumin nanoformulations and
exploration of personalized designs to achieve efficient, safe anti-
photoaging therapies.

By exploiting the unique properties of these nanocarriers, the
full therapeutic potential of curcumin spans a wide range of
applications, including its antibacterial, antioxidant, anti-
inflammatory, neuroprotective, and anticancer properties. These
diverse therapeutic roles highlight curcumin’s versatility in
various medical interventions—can be further realized, benefiting
clinical outcomes (Ferguson et al., 2021; Dehzad et al., 2023).
Various nanoparticle-based approaches have been studied for the

effective delivery of curcumin in different skin diseases. For clarity,
selected case studies of topical curcumin delivery have been
compiled in Table 1 in dermatological conditions.

However, nanoparticles do have some inherent drawbacks,
which vary across different environments. Although liposomal
nanoparticles are promising for improving drug delivery and
increasing bioavailability, they encounter several significant
challenges. One major issue is their quick removal from the
body, which can reduce their effectiveness. Additionally,
maintaining sterility is a concern, as any contamination could
lead to complications. There’s also the risk of the drug
unintentionally leaking from the nanoparticles, which could
affect treatment outcomes. (Barenholz, 2012; Allen and Cullis,
2013; Patil and Jadhav, 2014; Inglut et al., 2020; Gbian and
Omri, 2022). The cytotoxicity of nanoparticles (NPs) hinges on
multiple factors. Key mechanisms include direct physical damage to
cellular structures, toxic ion release, and ROS-induced oxidative
stress (Wang et al., 2017; Yu et al., 2020). Physicochemical properties
critically influence toxicity: smaller NPs (<50 nm) exhibit higher
reactivity due to increased surface area (Kou et al., 2018; Wolnicka-
Glubisz et al., 2015), while shape determines cellular
interactions—spherical NPs generally induce lower toxicity than
nanotubes or rods. However, some studies have also found that
spherical nanoparticles are more toxic than rod-shaped
nanoparticles (Samei et al., 2019; Zhao et al., 2013). Aggregation
status, surface charge, and wettability further modulate toxicity, with
higher wettability accelerating degradation and protein adsorption
(Li et al., 2019). Surface functionalization via biocompatible coatings
mitigates adverse effects (Nguyen et al., 2013). Dose-dependent

TABLE 1 (Continued) Summary of case studies on topical administration of curcumin.

Components
incorporated

Formulation
developed

Characterization
techniques

Model Inference Ref

15 Curcumin Nanosuspensions XRD, Zeta, Malvern Panalytical Ltd.,
High - Performance Liquid

Chromatography (HPLC), DLS

Ex vivo porcine ear model Curcumin nanocrystals
exhibited the highest skin

penetration with a cumulative
amount of 102.4 ± 12.2 μg/cm2

and a flux of 3.0 ± 0.7 μg/cm2/
h. In vivo, nanocrystals

significantly reduced UV-
induced skin inflammation,

achieving a 68.4% reduction in
ear thickness.

Eckert et al.
(2021)

16 Curcumin, chitosan Nanoparticulate HPLC Human Dermal
Fibroblast-Adul

Metal Matrix Composite
Scaffolds-Curcumin NPs

showed sustained curcumin
release of 82.3% over 72 h and
high cellular uptake. In vivo,
they achieved 95.2% wound

closure by day 14 and
significantly promoted

collagen deposition and re-
epithelialization in burn-

injured skin.

Basit et al. (2020)

17 Curcumin Nanostructured Lipid SEM, AFM, XRD Rat The drug release of NLC
within 24 h was found to be
60.2% ± 0.45%, indicating a
sustained release pattern. In
vitro permeation study showed

a good permeation flux
(0.453 ± 0.76 μg/cm)2. H) and
retention of CUR in the skin
epidermis (60.2% ± 0.45%).

Kesharwani et al.
(2020)
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cytotoxicity is pronounced, as high concentrations
disproportionately reduce cell viability, and even low doses of
small NPs (e.g., 18 nm) trigger significant toxicity (Gandamalla
et al., 2019; Kim I-Y. et al., 2015).

Currently, extensive research has been conducted on curcumin
nanocarriers for the treatment of skin-related diseases. Among these
studies, the application of curcumin nanocarriers to promote wound
healing is the most prevalent, followed by research into their use for
inflammatory diseases and photoaging. Local delivery via
nanocarriers aims to enhance curcumin absorption and efficacy
within the skin. While existing studies confirm the effectiveness of
curcumin nanocarriers in treating skin conditions, several
challenges remain. Despite nanotechnology’s potential to improve
curcumin’s skin penetration, achieving adequate deep-layer
penetration, particularly for treating more severe skin lesions,
remains a challenge. Most current research is limited to in vitro
and animal studies, and further clinical trials are needed to bridge
the gap between animal models and human application.
Additionally, curcumin’s susceptibility to degradation under light,
heat, and varying pH conditions necessitates stable nanocarriers to
protect its active components. Further investigation into the long-
term stability and sustained efficacy of these nanocarriers
is essential.

Collectively, the focus should be on enhancing the performance
of nanocarrier systems to ensure their safety and effectiveness in
clinical applications. Addressing current challenges, developing
more cost-effective and scalable nanocarrier formulations, and
advancing the broader application of curcumin nanocarriers are
crucial steps forward.

5 Discussion

The document and associated literature collectively
emphasize curcumin’s multifaceted role in combating skin
photoaging. The following points highlight its mechanisms
and applications.

First, the mechanism, curcumin exerts anti-photoaging effects
primarily through its antioxidant and anti-inflammatory properties.
It reduces ROS generation, inhibits MMPs, and modulates key
signaling pathways such as NF-κB, MAPK, and Nrf2. It also
promotes collagen synthesis and reduces UV-induced apoptotic
damage in fibroblasts. Meanwhile, Topical and systemic
applications of curcumin have shown promising results in
mitigating UV-induced damage (Adusumilli et al., 2021). Novel
delivery systems, such as nanoparticles and nanomicelles,
significantly enhance its photoprotective effects by improving
bioavailability and stability. Studies on curcumin derivatives, such
as chlorin e6-curcumin conjugates and chemically modified
curcumins (Goenka et al., 2021), reveal enhanced efficacy in
reducing MMP expression and improving collagen synthesis.

The anti-photoaging effects of curcumin stem from its
multidimensional molecular regulatory network. In terms of
antioxidant defense, it not only directly scavenges free radicals
(Singh et al., 2011) but also activates the Nrf2/ARE axis
(Ashrafizadeh et al., 2020), driving the expression of key enzymes
such as glutathione S-transferase and catalase to systemically
alleviate ROS accumulation. For inflammatory cascades,

curcumin inhibits NF-κB nuclear translocation (Zinatizadeh
et al., 2021) and blocks MAPK phosphorylation (Lee et al., 2020),
significantly reducing the release of inflammatory mediators like
TNF-α and IL-6. Additionally, the expression of core photoaging
drivers MMP-1/3 is suppressed through dual mechanisms:
antagonizing AP-1 transcriptional activity and interfering with
NF-κB signaling (Lee et al., 2012; Vicentini et al., 2011), thereby
mitigating collagen degradation. Notably, curcumin activates 5′-
adenosine monophosphate-activated protein kinase (AMPK) and
inhibits mTOR (Zuo et al., 2021), remodels autophagy homeostasis
to eliminate UV-induced damaged proteins, and regulates the Bcl-2/
caspase-3 balance (Liu et al., 2018) and CD39/CD73-adenosine
pathway (Manica et al., 2024), achieving a precise balance
between anti-apoptosis and pro-repair. At the same time for the
regulation of microorganisms also play a key role. This multi-target
synergy ultimately preserves skin structural integrity and delays
photoaging phenotypes.

The clinical application of curcumin faces multiple challenges,
including its inherent low water solubility, low bioavailability due to
chemical instability, insufficient penetration capacity in the deep
skin, and high toxicity, and the existing studies are mostly limited to
in vitro and animal experiments, the lack of large-scale clinical
validation. Current nanoparticle formulations (such as lipid
nanoparticles, nanoemulsion, metal complexes, etc.) have
significantly improved the stability, targeted delivery efficiency,
and local concentration of curcumin through encapsulation
technology, among them, lipid carriers (such as SLNSNLCS) have
become a research hotspot due to their high Biocompatibility and
controlled release properties, nanoemulsion enhances skin
penetration due to the advantage of small particle size, and
functionalized metal nanoparticles can synergize antioxidant and
photoprotection. However, the large-scale production, long-term
storage stability, potential cytotoxicity (such as size-dependent
oxidative stress), and clinical safety of nanoformulations still
need to be further optimized.

Therefore, the future needs to be further explored to fill the
current research blind spot. Stimuli-Responsive Formulations:
Development of pH- or temperature-responsive drug delivery
systems for targeted application (Hwang et al., 2013). Develop
combination drug therapies: Combine curcumin with other
antioxidants (like resveratrol) or photoprotective agents to boost
its effectiveness. Regarding clinical trials, conduct large-scale
randomized trials. We do this to establish standard dosages and
verify long-term safety. Cost-effective production: Scale up
advanced formulations. Take into account both price and
accessibility to increase the likelihood of further application
in treatment.

The research underscores curcumin’s remarkable potential as an
anti-photoaging agent, with its ability to modulate key molecular
pathways, reduce inflammation, and protect against UV-induced
skin damage. However, its clinical application is hindered by
bioavailability and stability challenges, which are being addressed
through innovative formulations and emerging technologies. Future
efforts should focus on enhancing its clinical validation, optimizing
delivery systems, and ensuring cost-effective scalability. By
overcoming these barriers, curcumin can be positioned as a
cornerstone in the management of skin photoaging and related
dermatological conditions.
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6 Conclusion and future prospects

In summary, curcumin demonstrates remarkable efficacy in
combating photoaging. Its multifaceted mechanisms primarily
involve the regulation of relevant signaling pathways to exert
antioxidant and anti-inflammatory effects, alongside modulation of
MMP activity and influence on autophagy and apoptosis processes.
These integrated actions contribute to its effectiveness in reducing
wrinkle formation and mitigating skin hyperpigmentation.

Current research has positioned curcumin-based formulations
as a focal point in this field. This article provides a concise overview
of the intrinsic mechanisms and signaling pathways underlying
photoaging, while summarizing curcumin’s key molecular targets
in anti-photoaging interventions. Furthermore, it reviews recent
advancements in curcumin nanoparticle delivery systems within
dermatology, particularly their applications in photoaging,
inflammatory disorders, and wound healing. Although existing
studies on curcumin nanoparticle delivery systems are
substantial, higher-quality research remains imperative to address
challenges in dermatological applications.

Future research should prioritize several critical directions. First,
optimizing nanoparticle delivery systems to enhance targeted
delivery capabilities and rigorously evaluating the safety and
efficacy profiles of curcumin formulations are essential for
clinical translation. At present, although there are a large number
of curcumin preparations related research, but its long-term safety
needs to be further studied. Optimizing nanoparticle delivery
systems enhances curcumin’s bioavailability and tissue targeting
while minimizing side effects. Strategies like ligand conjugation,
stimuli-responsive release, and stealth coatings improve efficacy.
Clinical translation requires rigorous safety testing, scalable
production, and standardized regulatory evaluation to ensure
therapeutic viability.

Second, investigating the synergistic mechanisms between
curcumin and other antioxidants (e.g., vitamin C, resveratrol) at
the molecular level could maximize anti-photoaging outcomes
through optimal combinatorial strategies. The combination can
further enhance the efficacy of the drug, which has also been
explored in recent years. In an Alzheimer’s disease (AD) model,
curcumin combined with a coenzyme Q10 analog (mitoxantrone)
was more effective than single agents in inhibiting AB aggregation
and tau phosphorylation. (Xie et al., 2024). The combination of
curcumin and vitamin C reflected an additive effect demonstrated by
a significant decrease in malondialdehyde (p < 0.05) (Khudair and
Al-Gareeb, 2024). These findings highlight the anti-inflammatory,
antioxidant potential of combined antioxidants.

Third, emerging evidence highlights curcumin’s potential in
skin barrier repair and hydration maintenance, warranting
mechanistic exploration using advanced skin models. Finally,
developing cost-effective nanoparticle production methods will be
crucial to facilitate broader clinical implementation of curcumin-
based nanotherapeutics. Curcumin promotes skin repair by
modulating inflammatory pathways and enhancing hydration
through hyaluronic acid synthesis. Nanoemulsion gels containing
curcumin, resveratrol, and thymoquinone improve skin hydration
and barrier function in psoriasis (Khatoon et al., 2021). Curcumin
plus piperine significantly improves body composition by increasing
muscle mass in patients with mild to moderate IBD (da Paz Martins

et al., 2025). Commercial applications like Relispray® (a turmeric-
based spray bandage) leverage curcumin’s wound-healing properties
(Lagoa et al., 2025). These effects position curcumin as a promising
ingredient in dermatological formulations for inflammatory skin
conditions and cosmetic hydration therapies.

It is worth noting that skin-specific factors such as pH, temperature,
and photosensitivity significantly influence drug efficacy. Advanced
delivery systems enhance curcumin’s topical efficacy through stimuli-
responsive mechanisms. It is of great significance to develop stimuli-
responsive drug delivery systems for targeted skin applications. pH/
Enzyme-Responsive Systems: Chitosan-curcumin nanogels release drugs
in acidic wound environments (Sideek et al., 2024). Light-Activated
Nanocarriers: Gold nanoparticle-curcumin conjugates enable
photothermal therapy for psoriasis (Yu et al., 2021). Microneedle
Patches: Dissolvable microneedles with SLNs improve transdermal
penetration (Prabhu et al., 2022). These innovations enable precise,
localized delivery, minimizing systemic side effects while maximizing
therapeutic benefits for dermatological and cosmetic applications.

In conclusion, curcumin emerges as a potent anti-photoaging
agent through its multifaceted mechanisms targeting oxidative
stress, inflammation, and cellular repair processes. While current
nanoparticle delivery systems show promising advancements in
dermatological applications, further optimization of targeted
delivery, rigorous safety evaluations, and exploration of
synergistic combinations with other antioxidants remain critical
for clinical translation. Future research should prioritize developing
cost-effective production methods and advanced skin-specific
formulations to fully harness curcumin’s therapeutic potential in
skin health and rejuvenation.
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