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Matrix metalloproteinases (MMPs) are a family of enzymes that play an important
role in the pathophysiology of hypertensive disorders, particularly through their
involvement in extracellular matrix (ECM) remodeling and vascular dysfunction.
Their activity is closely linked to hypertension-mediated organ damage, which
affects the vascular and cardio-renal systems. MMPs are responsible for
degrading various components of the ECM, which is crucial for maintaining
vascular structure and function. In hypertensive patients, several MMPs, including
MMP-1, MMP-3, and MMP-9, are often found at elevated levels. This is associated
with vascular remodeling and dysfunction due to chronic high blood pressure.
The activation of MMPs in hypertension can be triggered by several factors, such
as oxidative stress, inflammatory cytokines, and vasoactive agents like
angiotensin II. In addition to increasing MMP activity, these variables cause an
imbalance between MMPs and tissue inhibitors of metalloproteinases (TIMPs),
which are the MMPs’ natural inhibitors. This imbalance contributes to excessive
degradation of the ECM and promotes pathological changes in vascular smooth
muscle cells (VSMCs), leading to their transition from a contractile to a synthetic
phenotype. This shift facilitates cell growth and migration, exacerbating vascular
remodeling. Given their critical roles in hypertension-related organ damage,
MMPs are being explored as potential pharmacological targets. Inhibitors of
MMPs may help mitigate the adverse effects of hypertension by restoring
balance in ECM remodeling processes. Understanding their mechanisms
opens avenues for targeted therapies that could significantly improve
outcomes for individuals suffering from hypertension-related complications.
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GRAPHICAL ABSTRACT

Highlights

• In hypertensive conditions, increased MMP activity promotes
vascular remodeling characterized by intimal-medial
thickening, fibrosis, and calcification.

• MMPs are upregulated by various stimuli, including
Angiotensin II and TNF-α, leading to increased ECM
degradation and increased blood pressure.

• Utilizing specific MMP inhibitors to restore balance between
MMPs and TIMPs may help prevent excessive ECM
degradation and support vascular integrity.

• Implementing antioxidants can reduce oxidative stress levels
that contribute to increased MMP activity.

1 Introduction

Hypertensive disorders, often referred to as high blood pressure or
hypertension, represent a significant public health concern affecting

millions of individuals around the globe. These conditions, which
manifest through persistently elevated blood pressure lead to severe
health complications if left untreated (Sutton et al., 2018). Hypertensive
disorders are classified into several categories, including gestational
hypertension, preeclampsia, chronic hypertension with superimposed
preeclampsia, and chronic hypertension (Lowe et al., 2015). The
implications of hypertensive disorders extend beyond mere elevated
blood pressure; they can lead to serious health issues such as organ
damage, cardiovascular complications, and adverse pregnancy
outcomes (Wilkerson and Ogunbodede, 2019). For instance,
preeclampsia is particularly concerning as it can progress to
eclampsia, a life-threatening condition marked by seizures.
Understanding the risk factors associated with hypertensive
disorders is essential for prevention and effective management.
Factors such as obesity, a history of hypertension, advanced
maternal age, and certain genetic predispositions can increase the
likelihood of developing pre-eclampsia (Magee et al., 2014).

Matrix Metalloproteinases (MMPs) are a group of zinc-
dependent endopeptidases that play important roles in a variety
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of physiological and pathophysiological processes, including tissue
remodeling, inflammation, and migration (Fontana et al., 2012). In
the context of hypertensive disorders, MMPs have been shown to
regulate blood pressure through their ability to degrade and process
various vasoactive peptides, such as angiotensin II, bradykinin, and
endothelin-1 (Androulakis et al., 2012). MMPs can modulate the
activity of these peptides by cleaving them into active or inactive
forms, thereby influencing blood pressure (Palei et al., 2008). For
example, MMP-2 and MMP-9 have been shown to degrade big
endothelin-1, a precursor of endothelin-1, into its active form, which
is a potent vasoconstrictor (Palei et al., 2012a). This process can
contribute to the development of hypertension. On the other hand,
MMP-1 has been reported to degrade angiotensin II, a potent
vasoconstrictor, into its inactive form, thereby reducing blood
pressure (Marchesi et al., 2012).

Given the critical role of MMPs in the pathogenesis of
hypertensive disorders, they have emerged as potential
therapeutic targets for the treatment of hypertension and its
associated cardiovascular complications (Palei et al., 2012b).
Multiple MMP inhibitors have been developed, and preclinical
research has indicated that they may lower blood pressure and
prevent cardiovascular disease. As demonstrated in several studies,
doxycycline has been shown to inhibit a number of MMPs, thereby
contributing to an improvement in blood pressure and cardiac
fibrosis. Mechanistically, doxycycline exerts its inhibitory effect
on the activity of various MMPs, particularly MMP-2 and MMP-
9, resulting in a reduction of extracellular matrix (ECM)
degradation. This action is of particular significance in conditions
where excessive MMP activity contributes to vascular pathologies,
such as atherosclerosis, neointima formation after vascular injury,
vascular remodeling, and intimal hyperplasia associated with
hypertension (Liu et al., 2003; Pires et al., 2011; Lee et al., 2004;
Ogut et al., 2016). Recent advancements in the development of
selective MMP inhibitors highlight both progress and challenges in
targeting specific MMP family members for therapeutic
applications. There is a concerted effort to create new classes of
MMP inhibitors with improved potency and selectivity for specific
MMPs relevant to particular diseases. Current research focuses on
developing selective inhibitors that avoid the broad-spectrum effects
seen in earlier compounds, which often led to disappointing clinical
outcomes, especially in cancer treatments. In this regard, recent
studies have identified promising candidates, including selective
MMP-1 inhibitors with very low IC50 values, suggesting high
potency. Additionally, novel thiazole derivatives have been
identified as potential anti-neoplastic agents by targeting MMPs,
demonstrating selective inhibition profiles (Ogut et al., 2016; Nuti
et al., 2007).

Moreover, there is ongoing research into allosteric inhibitors
that do not rely on zinc-binding groups, aiming to minimize off-
target effects associated with traditional MMP inhibitors that chelate
zinc and other metals. Non-selective MMP inhibitors often affect
multiple MMP family members, leading to unintended side effects
and complicating therapeutic outcomes. These broad-spectrum
inhibitors have generally failed in clinical trials due to adverse
effects linked to their lack of specificity (Spinale and Villarreal,
2014). On the other hand, the lack of selectivity can result in the
inhibition of beneficial MMP functions alongside harmful ones,
complicating treatment strategies and highlighting the necessity for

more refined approaches that target specific MMP family members
without affecting others. The development of MMP inhibitors faces
several significant challenges, particularly in the context of creating
effective and selective therapeutic agents (Fischer and Riedl, 2021).
Many existing MMP inhibitors are broad-spectrum, affecting
multiple MMP family members and other zinc-dependent
proteases. This non-selectivity can lead to undesirable side effects
and complicates therapeutic outcomes. Despite extensive research
and development efforts, no MMP inhibitor has successfully passed
clinical trials (Nuti et al., 2007; Spinale and Villarreal, 2014; Fischer
and Riedl, 2021). Also, MMPs share high structural homology,
making it difficult to design inhibitors that selectively target
specific MMP family members without affecting others.
Moreover, many synthetic MMP inhibitors suffer from issues
related to chemical stability and bioavailability, which can limit
their effectiveness in clinical settings (Fischer and Riedl, 2021;
Mohan et al., 2016).

While MMP inhibitors have been extensively studied, the role of
MMP activators in modulating cardiovascular function is less
understood. Activating specific MMPs may enhance their
beneficial effects on ECM remodeling and vascular repair
processes (Sakata et al., 2004). Several classes of drugs, including
antihypertensive medications, have been found to influence MMP
activity. For instance, nitroglycerin can increase expression and
activity of MMP-2, MMP-7, and MMP-9 while decreasing TIMP-
1 levels. Also, angiotensin-converting enzyme (ACE) inhibitors may
increase MMP-1 activity, while losartan has been shown to elevate
MMP-2 activity (Krishnatry et al., 2011).

By addressing these knowledge gaps, we can gain a deeper
understanding of the role of MMPs in hypertensive disorders
and develop effective therapeutic strategies for the treatment of
hypertension and its associated cardiovascular complications.

2 Classification, characteristics and
pathophysiology of
hypertensive disorders

Broadly classified as primary and secondary hypertension
(Figure 1), the characteristics of hypertensive disorders are
crucial for understanding their pathophysiology, diagnosis, and
management. Primary hypertension, also known as essential
hypertension, is the most common form of hypertension,
accounting for approximately 90% of all cases. It is a
multifactorial disorder, resulting from the interaction of genetic,
environmental, and lifestyle factors and characterized by: (i) elevated
blood pressure (BP) ≥140/90 mmHg; (ii) no identifiable cause or
underlying condition; (iii) Gradual onset, often asymptomatic in the
early stages; (iv) increased peripheral resistance and (v) normal or
slightly decreased cardiac output (Luizon et al., 2014; Mistry and
Pipkin, 2013). Secondary hypertension is caused by an underlying
medical condition or factor that elevates blood pressure; It’s
characterized by: (i) elevated BP ≥ 140/90 mmHg; (ii) identifiable
underlying cause or condition, such as: kidney disease (e.g., chronic
kidney disease and glomerulonephritis), adrenal gland disorders
(e.g., Cushing’s syndrome and pheochromocytoma), thyroid
disorders (e.g., hyperthyroidism), sleep apnea and medication-
induced hypertension (e.g., non-steroidal anti-inflammatory
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drugs (NSAIDs) and birth control pills); (iii) often presents with
symptoms, such as headaches, dizziness, and fatigue; and (iv)
variable impact on cardiac output and peripheral resistance
(Tranquilli et al., 2014; Ferrazzi et al., 2018).

In addition to primary and secondary hypertension, several
subtypes of hypertensive disorders have been identified,
including: (i) malignant hypertension: A rare, life-threatening
condition characterized by severe hypertension (BP ≥ 200/
120 mmHg) and rapid progression to end-organ damage; (ii)
resistant hypertension: A condition in which BP remains elevated
despite the use of three or more antihypertensive medications; (iii)
isolated systolic hypertension: A type of hypertension characterized
by elevated systolic BP (≥140 mmHg) and normal diastolic BP
(<90mmHg) and (iv) white coat hypertension: A condition in which
BP is elevated only in a clinical setting, often due to anxiety or stress
(Watanabe et al., 2017; Simonneau et al., 2004). Hypertensive
emergency occurs when the blood pressure exceeds 180/
120 mmHg, causing end-organ damage and dysfunction. The
sudden and severe increase in blood pressure causes mechanical
stress on the blood vessels, leading to endothelial dysfunction,
inflammation, and vascular remodeling in conjunction with a
cascade of signaling events that lead to vascular damage,
inflammation, and oxidative stress. Blood pressure and vascular
tone are mostly controlled by the endothelium, a single layer of cells
that lines the blood vessels. In hypertensive emergency, the
endothelium is damaged, leading to the release of
vasoconstrictors, such as endothelin-1, and the reduction of
vasodilators, such as nitric oxide. This imbalance favors
vasoconstriction, further increasing blood pressure and
exacerbating the condition (Talle et al., 2022; Simonneau
et al., 2013).

The pathophysiology of hypertensive disorders involves a
complex interplay of genetic, environmental (exposure to toxic
metals, air pollution, climate, and noise), and lifestyle factors
(such as dietary habits, physical activity, and stress) that
contribute to the development and progression of hypertension
(Simonneau et al., 2009). Familial clustering of hypertension has
been observed, suggesting that genetic factors contribute to the risk
of developing the condition (Burnier andWuerzner, 2015). Multiple
genetic variants have been identified, including those involved in the
renin-angiotensin-aldosterone system (RAAS), sodium transport,
and vascular tone regulation (Angeli et al., 2015). Lifestyle choices
such as smoking, drinking, diet, stress, and sedentariness also cause
damage to blood vessels which can elicit deleterious changes in
peripheral resistance and blood pressure elevation (Bidani and
Griffin, 2004).

The kidneys have a critical role in blood pressure regulation.
Renal dysfunction, such as nephrosclerosis, glomerulonephritis, and
renal artery stenosis, can lead to hypertension (Figure 2). The
kidneys regulate blood pressure through the RAAS. This system
causes vasoconstriction, sodium retention, and aldosterone
production, leading to blood pressure elevation. The endothelium
of blood vessels also plays a critical role in regulating vascular tone
(Braunthal and Brateanu, 2019; Rodrigo et al., 2011). In
hypertension, dysfunctional endothelium leads to impaired
vasodilation, increased peripheral resistance, increased
vasoconstriction, and blood pressure elevation. Endothelial
dysfunction and consequent vascular remodeling is hallmark of
hypertensive disorders (Hogg et al., 2022). Chronic hypertension
leads to vascular remodeling, characterized by increased media
thickness, decreased lumen diameter, and increased collagen
deposition, leading to increased peripheral resistance and blood

FIGURE 1
Hypertension is a complex disorder characterized by chronic elevation of blood pressure, which can lead to significant end-organ damage and
increased morbidity and mortality. This disorder can be categorized into two types: primary (essential) hypertension and secondary hypertension. Each
type presents distinct pathological changes and characterization.
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pressure elevation (Gibbins et al., 2016). Cardiac factors, such as left
ventricular hypertrophy and diastolic dysfunction, can also
contribute to the development of hypertensive disorders. Chronic
hypertension leads to cardiac remodeling, characterized by
increased left ventricular mass and decreased compliance,
exacerbating the increased peripheral resistance and blood
pressure elevation (Phoswa and Khaliq, 2021). Balancing
vasoconstriction, sodium chloride retention, and aldosterone
production, neurohumoral factors—such as the sympathetic
nervous system and the renin-angiotensin-aldosterone
system—are also essential for controlling blood pressure (Zanatta
et al., 2019).

While the underlying causes of hypertension are still not fully
understood, recent advances in molecular biology and physiology
have shed light on the critical role of molecular signaling and
homeostasis in the development and progression of hypertensive
disorders (Viau et al., 2015). The RAAS is a key molecular
signaling pathway activated in response to decreased blood
pressure, leading to the release of renin from the juxtaglomerular
cells of the kidney (Saxena et al., 2018). Angiotensinogen becomes
transformed into angiotensin I by renin, and the ACE subsequently
transforms this angiotensin I into angiotensin II (Figure 2). A strong
vasoconstrictor, angiotensin II raises blood pressure by inducing
vascular smooth muscle cells to contract. Furthermore, angiotensin
II encourages the adrenal gland to generate aldosterone, which
improves sodium reabsorption in the kidneys, raising blood
pressure even further (Carey, 2008). A strong vasodilator, nitric
oxide (NO) is essential for controlling blood pressure. Endothelial

nitric oxide synthase (eNOS) produces NO from L-arginine in
response to a number of stimuli, such as shear stress,
acetylcholine, and Bradykinin (Townsend et al., 2016). Cyclic
guanosine monophosphate (cGMP) is produced when NO diffuses
to nearby vascular smooth muscle cells and activates soluble guanylyl
cyclase. NO generation is frequently compromised in hypertensive
diseases, which results in reduced vasodilation and elevated blood
pressure (Harrison et al., 2021). In hypertensive diseases, epigenetic
changes—such as DNA methylation and histone modification—are
essential for controlling gene expression. Genes involved in blood
pressure regulation, including the RAAS and NO signaling pathways,
can have their expression altered by epigenetic changes (DeMarco
et al., 2014). For example, DNAmethylation of the promoter region of
the ACE gene has been shown to contribute to increased ACE
expression and activity in hypertensive individuals (Narang and
Szymanski, 2021). In addition, sympathetic nervous system (SNS)
modulates vascular resistance and cardiac output, while the
baroreceptor reflex, a negative feedback mechanism, responds to
changes in blood pressure by adjusting heart rate and vasomotor
tone (Palei et al., 2013).

3 The role of ECM in stability and
cellular communication and its
pathophysiology in diseases

The ECM is composed of a diverse range of biomolecules,
including collagens, proteoglycans, glycoproteins, and elastin,

FIGURE 2
The RAAS is key player in hypertension pathogenesis. Renin, an enzyme produced by the kidneys, converts angiotensinogen to angiotensin I, which
is then converted to angiotensin II by ACE, which is produced by the lungs. Angiotensin II is a potent vasoconstrictor that stimulates the release of
aldosterone, a hormone that promotes sodium retention and potassium excretion. The RAAS is activated in response to decreased renal blood flow,
decreased sodium delivery to the distal tubule, or increased sympathetic activity. Structural changes in the vasculature, including remodeling and
stiffening, contribute to the development of hypertension. Vascular smooth muscle cell hypertrophy and hyperplasia lead to increased wall thickness,
reducing the lumen diameter and increasing peripheral resistance.
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which are secreted by cells and assembled into a highly organized
three-dimensional structure (Ryan, 2009). The ECM is essential for
preserving tissue integrity, controlling cellular migration and
differentiation, and adjusting how cells react to biochemical and
mechanical stimuli (Valiente-Alandi et al., 2016; Karamanos et al.,
2021). One of the primary functions of the ECM is to provide
mechanical stability to tissues. The ECM acts as a scaffold, allowing
cells to adhere, migrate, and proliferate. The ECM’s mechanical
properties, such as its elasticity, stiffness, and viscoelasticity,
influence cell behavior and fate (Schlie-Wolter et al., 2013;
Walker et al., 2018). For instance, the ECM’s stiffness can
regulate stem cell differentiation, with stiffer matrices (generally
refers to the rigidity or stiffness of a structure) promoting osteogenic
differentiation and softer matrices favoring adipogenic
differentiation (Hansen et al., 2015). Furthermore, the ECM’s
mechanical properties can influence cell migration, with cells
migrating more efficiently on stiffer matrices. In addition to
providing mechanical stability, the ECM also plays a critical role
in cellular communication (Kudo and Kii, 2018). Growth factors,
cytokines, and other signaling molecules are stored in the ECM and
can be released in response to microenvironmental changes. These
signaling molecules can bind to specific receptors on the surface of
cells, triggering various cellular responses, such as proliferation,
differentiation, and migration. The ECM can also modulate cellular
behavior by presenting adhesive ligands, such as integrins, which
can activate signaling pathways that regulate cellular function
(Bowers et al., 2010; Marastoni et al., 2008; Pupa et al., 2002).

The ECM’s role in cellular communication is also highlighted by
its ability to regulate the activity of various signaling pathways. The
ECM can modulate the activity of growth factor receptors, such as
the epidermal growth factor receptor (EGFR), by sequestering
growth factors or presenting them to cells in a spatially and
temporally regulated manner (Walma and Yamada, 2020; Clause
and Barker, 2013). The ECM can also regulate the activity of
integrin-mediated signaling pathways, which are critical for cell
adhesion, migration, and survival. Dysregulation of the ECM’s role
in stability and cellular communication can contribute to various
diseases (Li J. et al., 2020). For instance, changes in the mechanical
characteristics of the ECM might play a role in the development of
fibrotic disorders such idiopathic pulmonary fibrosis, where the
ECM becomes overly rigid and scar tissue is deposited. Similar to
this, alterations in the form and composition of the ECM can aid in
the development of cancer by encouraging the migration, invasion,
and metastasis of tumor cells (Lynch and Matrisian, 2002; Watt and
Huck, 2013).

The ECM degradation significantly in hypertension, which aids
in the onset and progression of disease. These changes include
increased deposition of collagen, fibronectin, and other matrix
proteins, leading to vascular stiffening, remodeling, and
inflammation (Ma et al., 2012). These changes impair endothelial
function, increase vascular resistance, and promote the development
of hypertension. One of the key mechanisms by which the ECM
contributes to hypertension is through the regulation of vascular
tone (Sainio and Järveläinen, 2020). The ECM provides a scaffold for
vascular smooth muscle cells (VSMCs) and endothelial cells, and its
composition and organization influence the contraction and
relaxation of VSMCs, thereby modulating blood vessel diameter
and blood pressure (Urbanczyk et al., 2020).

4 MMPs biochemistry, classification
and physiological function

MMPs are synthesized as inactive zymogens, which undergo
proteolytic activation to become catalytically active enzymes. The
active site of MMPs contains a zinc ion, which is essential for their
catalytic activity. The zinc ion is coordinated by three histidine
residues, and the enzyme’s activity is regulated by the binding of
tissue inhibitors of metalloproteinases (TIMPs). The typical
structure of MMPs consists of an N-terminal zymogenic
propeptide domain (~80 amino acids), a metal-dependent
catalytic domain (~170 amino acids), a linker region
(~15–65 amino acids), and a C-terminal hemopexin-like domain
(~200 amino acids). The catalytic domain contains a conserved zinc-
binding motif, essential for metalloproteinase activity, while the
propeptide domain contains a cysteine switch motif that maintains
the enzyme in an inactive state until cleavage occurs (Dzobo and
Dandara, 2023; Vandooren et al., 2013; Cui et al., 2017; Cauwe and
Opdenakker, 2010).

MMPs can be classified into several subfamilies based on their
structure, function, and substrate specificity including (Figure 3): (i)
Collagenases (MMP-1, MMP-8, and MMP-13): These enzymes are
responsible for degrading collagen; (ii) Gelatinases (MMP-2 and
MMP-9): These enzymes degrade denatured collagen and are
involved in the remodeling of the ECM during tissue repair and
cancer progression; (iii) Stromelysins (MMP-3, MMP-10, and
MMP-11): These enzymes have a broader substrate specificity
and are involved in the degradation of a variety of ECM
components, including collagen, laminin, and fibronectin; (iv)
Matrilysins (MMP-7 and MMP-26): Collagen, laminin, and
elastin are among the ECM components that are broken down
by these enzymes; (v) Membrane-type MMPs (MT-MMPs):
Including MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and
MMP-25, are anchored to the cell membrane and have distinct
regulatory mechanisms involving furin cleavage sites in their pro-
peptides. These MMPs are crucial for cell migration, invasion, and
the activation of pro-MMPs, thus participating actively in various
physiological and pathological processes (Vempati et al., 2007;
Bellayr et al., 2009; Cauwe et al., 2007).

The physiological functions of MMPs are diverse and
multifaceted, and their dysregulation has been implicated in
various diseases. One of the primary physiological functions of
MMPs is to facilitate cell migration and tissue remodeling.
During embryonic development, MMPs are essential for the
migration of cells and the formation of tissues (Gerlach et al.,
2005). For instance, during neural tube development, MMP-2
and MMP-9 contribute to the migration of neural crest cells.
MMPs are necessary for the remodeling of tissues in adults in
response to inflammation or damage. For example, during
wound healing, MMP-1 and MMP-3 contribute to the
breakdown of ECM components, which permits keratinocytes
and fibroblasts to migrate to the wound site (Palei et al., 2008).
MMPs also play a critical role in angiogenesis and vascular
remodeling. During angiogenesis, MMPs are involved in the
degradation of the ECM. MMP-2, MMP-9, and MMP-14 are all
involved in this process, and their dysregulation has been implicated
in various vascular disorders (Ma et al., 2014). Additionally, MMPs,
particularly MMP-2 and MMP-9, are involved in degradation of
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ECM components in the vascular wall (such as collagen, laminin and
aggrecan), allowing adaptation of blood vessels to changes in flow
and/or blood pressure (Souza-Tarla et al., 2005). A complicated
interaction between transcriptional, post-transcriptional, and post-
translational pathways controls expression and activity of MMPs. At
the transcriptional level, MMPs are regulated by transcription
factors such as activator protein-1 (AP-1), nuclear factor kappa B
(NF-κB), and specificity protein-1 (SP-1). At the post-
transcriptional level, MMPs are regulated by microRNAs, which
can bind to the 3′untranslated region of MMP mRNAs, leading to
their degradation (Zamilpa et al., 2012; Klein and Bischoff, 2011). At
the post-translational level, MMPs are regulated by protein-protein
interactions, such as the binding of TIMPs toMMPs, leading to their
inhibition (Hijova, 2005).

MMPs are also involved in immune cell function, particularly in
the migration and activation of immune cells. For instance, MMP-9
is involved in the migration of neutrophils to sites of inflammation,
where they play a critical role in the elimination of pathogens
(Śliwowska and Kopczyński, 2005). Additionally, MMP-2 and
MMP-14 are involved in the activation of T-cells, which are
essential for the adaptive immune response. During tissue repair,
MMPs are involved in the degradation of ECM components,
allowing for the migration and proliferation of cells to the site of
injury (Karagiannis and Popel, 2004). However, excessive MMP
activity can lead to the formation of scar tissue, which can impair
tissue function (de Almeida et al., 2022). Additionally, MMP-2 and
MMP-14 are involved in the degradation of ECM components in the
brain, which is essential for the clearance of beta-amyloid plaques, a
hallmark of Alzheimer’s disease. MMPs have been linked to a variety
of cancer types, where they contribute to the growth and spread of

tumors. (Jabłońska-Trypuć et al., 2016). MMP-2, MMP-9 and
MMP-14 are also involved in the degradation of ECM
components, permitting migration and invasion of cancer cells
(Starr et al., 2012).

4.1 The role of MMPs on vascular function
and structure

In the context of cardiovascular disease, MMPs have been
implicated in both the progression and regression of
atherosclerosis, cardiac remodeling, and vascular inflammation.
Atherosclerosis is defined by the accumulation of lipids,
inflammatory cells, and fibrous tissue in the artery wall (Chen
and Parks, 2009). MMPs have been implicated in various stages
of atherosclerosis (Löffek et al., 2011), for example, MMP-2 and
MMP-9 have been demonstrated to play a major role in the
breakdown of the vascular ECM (increased degradation of elastin
in the aortic wall), hence contributing to the instability of
atherosclerotic plaques. (Siefert and Sarkar, 2012). The ADAM
family, especially ADAM10 and ADAM17, has been implicated
in the shedding of pro-inflammatory cytokines, such as tumour
necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)
(Figure 4), which exacerbate the inflammatory response in
atherosclerosis (Raffetto and Khalil, 2008).

Further, human aortic intima proteins including collagen,
elastin, and proteoglycans play a vital role in regulation of
vascular tone, blood pressure, and the transport of nutrients and
oxygen to the tissues. In atherosclerosis, these proteins are subjected
to degradation by MMPs, leading to the weakening of the

FIGURE 3
MMPs are responsible for degrading ECM components. TheMMP subfamily consists of 24members, which are categorized into five groups. The first
group, comprising MMP-1, MMP-8, and MMP-13, is involved in collagen degradation (collagenase subgroup). The second group, consisting of MMP-2
and MMP-9, is characterized by their ability to degrade gelatin (gelatinase subgroup). The third group, which includes MMP-3, MMP-10, and MMP-11, is
involved in the degradation of a wide range of ECM components (stromelysin subgroup). The fourth group, comprising MMP-7 and MMP-26, is
primarily involved in the degradation of ECM components in the lung (matrilysin subgroup). The fifth group is essential in various physiological processes,
including wound healing and embryonic development, as well as in pathological conditions such as cancer metastasis and cardiovascular diseases.
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atherosclerotic plaque (Wang and Khalil, 2018). The degradation of
the aortic intima proteins also leads to the loss of vascular tone,
resulting in increased blood pressure and cardiac workload.
Furthermore, the degradation of the activating protein-1, also
leads to the decreased transport of nutrients and oxygen to the
tissues, resulting in tissue ischemia and necrosis (Kuzuya and Iguchi,
2003). MMPs also have been shown to play a crucial role in vascular
inflammation by degrading the endothelial barrier, promoting the
migration of inflammatory cells, and regulating the activity of pro-
inflammatory cytokines. MMP-2, MMP-9, and ADAM17 have been
implicated in the degradation of the endothelial barrier, leading to
the increased permeability of the endothelium and the recruitment
of inflammatory cells, which further promotes progression of
vascular remodeling and hypertension (Merchant and Davidge,
2004; Prado et al., 2021). Vascular remodeling is characterized by
VSMC proliferation, migration, and ECM deposition (Galis and
Khatri, 2002). MMP-2 and MMP-9 have been shown to promote
VSMC proliferation and migration, while membrane-type I matrix
metalloproteinase (MT1-MMP) inhibits these processes (Hobeika
et al., 2007). MMPs also regulate ECM deposition and degradation
in hypertensive vessels. MMP-2 and MMP-9 can degrade collagen
and elastin, leading to vascular stiffening and increased blood
pressure. In contrast, MT1-MMP promotes the degradation of
fibronectin, a pro-inflammatory ECM protein that contributes to
vascular remodeling (Papazafiropoulou and Tentolouris, 2009).

One of the main routes by which MMPs exert their vascular
actions is through the modulation of vasodilation. Vasodilation is a
critical process that helps to maintain blood pressure, regulate blood
flow, and ensure proper oxygenation of tissues. NO is a potent

vasodilator that plays a central role in the regulation of blood vessel
tone (Chen et al., 2013). MMPs can degrade the ECM, leading to the
release of growth factors and cytokines that stimulate NO
production (Chew et al., 2004). For example, MMP-2 and MMP-
9 have been shown to cleave and activate PDGF, which is a potent
stimulator of NO production (Hu et al., 2007). Additionally, MMPs
can also cleave and activate the NO receptor, soluble guanylate
cyclase, leading to an increase in NO production (Castro et al.,
2011). On the other hand, NO can also regulate MMPs activity. NO
has been shown to inhibit the activity of MMP-2 and MMP-9, likely
through the S-nitrosylation of critical cysteine residues (Watanabe
et al., 2018). S-nitrosylation is a post-translational alteration that
involves the covalent attachment of a nitric oxide group to a cysteine
residue, which inhibits enzyme function. NO can also induce the
expression of TIMPs (Ketelhuth and Bäck, 2011). In the context of
atherosclerosis, MMPs and NO play critical roles in the regulation of
plaque stability and rupture. MMPs can degrade the fibrous cap,
leading to plaque rupture and thrombosis, while NO can promote
vasodilation and reduce blood pressure, thereby reducing the risk of
plaque rupture (M Castro and E Tanus-Santos, 2013). MMPs and
NO are involved in the remodeling of tissues during development,
growth, and repair. Also, MMPs can activate pro-inflammatory
cytokines, such as TNF-α, which can stimulate NO production,
leading to vasodilation and increased blood flow to the site of
inflammation (Johnson et al., 2011). MMPs also regulate Ang II
signaling by degrading its receptor, angiotensin II type 1 receptor
(AT1R) (Burbridge et al., 2002). Studies have shown that MMP-2
and MMP-9 are upregulated in response to Ang II, leading to
increased degradation of AT1R and subsequent decreased blood

FIGURE 4
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, inflammatory cells, and fibrous tissue in the arterial
wall, leading to the formation of atherosclerotic plaques. During the early stages of atherosclerosis, MMPs facilitate the migration of inflammatory cells
into the arterial wall. MMPs, such as MMP-2 and MMP-9, degrade the extracellular matrix, allowing for the migration of these cells and the formation of
atherosclerotic lesions. In addition, pro-inflammatory cytokines such as TNF-α and IL-1β, which exacerbate the inflammatory response in
atherosclerosis, have been linked to the ADAM family, particularly ADAM10 and ADAM17.
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pressure. However, this negative feedback loop is disrupted in
hypertension, leading to increased Ang II signaling and
vasoconstriction (Azevedo et al., 2014; Lenglet et al., 2013). In
addition, MMPs regulate NO signaling by degrading the NO
synthase enzyme, leading to decrease NO production. Studies
have shown that MMP-2 and MMP-9 are upregulated in
response to NO, leading to decreased NO production and
subsequent increased blood pressure (Padmanabhan Iyer et al.,
2016). Also, MMPs degrade various pro-inflammatory cytokines,
including TNF-α and IL-1β, leading to decreased inflammation and
subsequent decreased blood pressure. However, this anti-
inflammatory effect is disrupted in hypertension, leading to
increased inflammation and tissue damage (Ahmed et al., 2006).

5 MMPs and renal disorders

In renal fibrosis, MMPs have been implicated as key regulators
of ECM turnover, cell-matrix interactions, and tissue remodeling.
MMPs have been regularly shown to be elevated in several types of
renal fibrosis, including unilateral ureteral obstruction (UUO),
aristolochic acid nephropathy, and diabetic nephropathy (Jacob
et al., 2001). In human renal biopsies, MMPs have been detected
in fibrotic lesions, including glomeruli, tubules, and interstitium.
The expression of MMPs is not limited to a specific cell type, as they
have been found in various renal cells, including fibroblasts, tubular
epithelial cells, and podocytes (Zakiyanov et al., 2019). The
regulation of MMPs in renal fibrosis is complex and involves
multiple signaling pathways. The transforming growth factor-beta
(TGF-β) signaling pathway is a key regulator of MMP expression in
renal fibrosis (Lenz et al., 2000). TGF-β stimulates the expression of
MMP-2 and MMP-9, which are critical for ECM degradation and
fibrosis progression. Additionally, the mitogen-activated protein
kinases (MAPK) and phosphatidylinositol 3-kinase/protein kinase
B (PI3K/Akt) signaling pathways have been implicated in the
regulation of MMP expression in renal fibrosis (Catania et al., 2007).

MMPs also regulate the activity of various growth factors and
cytokines, including TGF-β, platelet-derived growth factor (PDGF),
and connective tissue growth factor (CTGF), which are critical for
fibrosis progression (Narula et al., 2018). Furthermore, MMPs have
been implicated in the regulation of epithelial-mesenchymal
transition (EMT), a process in which epithelial cells acquire a
mesenchymal phenotype, contributing to fibroblast accumulation
and ECM production. MMPs have also been shown to regulate the
activity of immune cells, including macrophages and T cells, which
play a critical role in the development of renal fibrosis (Zhao
et al., 2013).

The well-studied MMPs in the context of nephropathy are
MMP-2, MMP-9, and MT1-MMP. MMP-2 and MMP-9 are
gelatinases that degrade collagen IV, a key component of the
glomerular basement membrane (GBM) (Zakiyanov et al., 2021).
MT1-MMP is a membrane-type MMP that activates MMP-2 and
degrades a range of ECM proteins. MMPs can also activate or
inactivate other proteases, growth factors, and cytokines,
highlighting their complex role in regulating the ECM and
cellular behavior (Garcia-Fernandez et al., 2020). In nephropathy,
MMPs are often overexpressed or aberrantly activated, leading to
excessive ECM degradation and disruption of the glomerular

filtration barrier. The expression of MMPs is regulated by a
range of signaling pathways, including the MAPK and PI3K
pathways. In addition, MMPs can be induced by pro-
inflammatory cytokines, such as TNF-α and IL-1β, which are
commonly elevated in nephropathic states (Sampieri and Orozco-
Ortega, 2018).

In glomerulonephritis, MMPs contribute to the degradation of
the GBM, leading to proteinuria and glomerular scarring. In diabetic
nephropathy, MMPs are activated in response to hyperglycemia and
oxidative stress, promoting the degradation of ECMproteins and the
development of fibrosis (Tan and Liu, 2012). MMPs also involved in
the development of glomerular hypertrophy, a common feature of
chronic kidney disease (CKD). In this situation, MMPs contribute to
the degradation of the ECM, leading to the expansion of the
mesangial matrix and the development of glomerular sclerosis
(Provenzano et al., 2020). In acute kidney injury (AKI), MMPs
contribute to the degradation of the tubular basement membrane,
leading to the loss of tubular integrity and the development of
fibrosis. Pro-MMP-2 is converted into its active form by MMP-24,
which is increased in the tubular epithelium in human diabetic
kidney disease (DKD). Proximal, distal, and collecting tubules that
were positive for MT5-MMP (MMP-24) usually showed tubular
atrophy, likely resulting fromDNprogression (Friese et al., 2009; Liu
et al., 2020). Also in CKD, MMPs promote the degradation of the
ECM, leading to the development of interstitial fibrosis and the loss
of renal function. An imbalance in the MMP/TIMP ratio, often due
to decreased MMPs or increased TIMPs, results in ECM
accumulation, promoting CKD progression, and increased MMP-
9 activity in CKD, even in its early stages. This activity leads to
structural alterations in the renal tubule and glomerulus, particularly
in advanced stages of CKD when patients develop severe renal
fibrosis (AlQudah et al., 2020).

6 MMPs and RAAS

The interplay between MMPs and RAAS is multifaceted and
bidirectional. MMPs can influence RAAS activity by degrading ECM
components that regulate the bioavailability of RAAS components
(Duprez, 2006). For example, MMP-2 andMMP-9 have been shown
to degrade fibronectin, a protein that binds to angiotensinogen,
thereby increasing its bioavailability (Figure 5). Additionally, MMP-
7 can cleave the propeptide of prorenin, activating the enzyme and
increasing angiotensin II production (Muñoz-Durango et al., 2016).
Also, RAAS components can modulate MMP activity and
expression. Angiotensin II, for instance, can stimulate the
expression of MMP-2 and MMP-9 in vascular smooth muscle
cells, leading to increased ECM degradation and vascular
remodeling (Ishibashi et al., 2010). Aldosterone, another key
component of RAAS, can induce the expression of MMP-7 in
the kidney, contributing to the development of fibrosis. In
hypertensive situations, the activation of RAAS leads to increased
MMP-2 and MMP-9 expression, which in turn contributes to
vascular remodeling and stiffening (Su et al., 2019). Similarly, in
cardiac fibrosis, the activation of MMPs by RAAS components leads
to ECM degradation and fibrosis, exacerbating cardiac dysfunction.
Targeting the MMP-RAAS axis has emerged as a possible treatment
approach for a variety of disorders. Doxycycline and other MMP
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inhibitors have been found to minimize cardiac fibrosis and enhance
heart function in animal models of hypertension (Wu et al., 2020).
Moreover, the MMP-RAAS axis has been implicated in various
other diseases, including atherosclerosis, chronic kidney disease, and
liver fibrosis. In atherosclerosis, for example, the activation ofMMPs
by RAAS components contributes to the degradation of ECM and
the formation of vulnerable plaques (Mora-Gutiérrez et al., 2020). In
chronic kidney disease, RAAS activation induces MMP expression,
which contributes to the development of fibrosis and renal failure.
The MMP-RAAS axis serves a vital function in controlling tissue
morphogenesis and patterning (Lods et al., 2003). During
embryonic development, the coordinated activity of MMPs and
RAAS components is essential for the formation of various tissues
and organs. Dysregulation of the MMP-RAAS axis during
development has been implicated in various congenital disorders,
including cardiac defects and craniofacial abnormalities
(Rabkin, 2017).

7 MMPs and natriuretic system and
catecholamine

The atria produce atrial natriuretic peptide (ANP), a powerful
vasodilator and natriuretic hormone that plays an important role in
blood pressure management and cardiovascular homeostasis. In
hypertension, ANP levels are frequently reduced contributing to the
development and progression of cardiovascular disease (Belo et al.,
2016). Recent studies have demonstrated that MMPs, particularly
MMP-2 and MMP-9, are upregulated in hypertensive vessels,

contributing to the degradation of ANP and the development of
vascular hypertrophy (Figure 6). MMP activation has been
demonstrated to be regulated by multiple signaling pathways,
including the RAAS, oxidative stress, and inflammation, which
are all known to be activated in hypertension (Gresele et al.,
2017; Wallace et al., 2005).

Furthermore, MMP inhibition enhanced endothelial function
and decreased vascular stiffness, suggesting that MMPs play a role in
the development of endothelial dysfunction and vascular
remodeling in hypertension (Chow et al., 2007). The results
obtained imply that MMP inhibition could be a potential
therapeutic approach to the treatment of cardiovascular disease,
particularly in individuals with hypertension (Wang et al., 2015; Tsai
et al., 2019; Wang et al., 2003). Results showed that MMP-2 and
MMP-9 degraded ANP in a dose-dependent manner, and that MMP
inhibition prevented ANP degradation and increased its biological
activity (Parthasarathy et al., 2013). Moreover, MMPs regulated
ANP expression at the transcriptional level, withMMP-2 andMMP-
9 suppressing ANP gene expression in atrial myocytes (Okumura
et al., 2011). These findings suggest that MMPs play a critical role in
the regulation of ANP expression and activity, and that MMP
inhibition may be a useful strategy for increasing ANP levels and
activity in hypertension (Kalaiarasu et al., 2016; Kasama et al., 2008).

Catecholamines, such as norepinephrine, epinephrine, and
dopamine, are neurotransmitters that play a vital role in the
sympathetic nervous system’s response to stress and blood
pressure regulation (Kawakami et al., 2004). In vascular
hypertension, the equilibrium between catecholamine production
and breakdown is broken, resulting in a rise in catecholamine levels,

FIGURE 5
The interplay betweenMMPs and RAAS is complex and bidirectional. MMPs can regulate the RAAS by degrading or activating key components of the
system, such as angiotensinogen and ACE. Conversely, the RAAS can modulate MMP activity by regulating the expression and activity of MMPs.
Additionally, MMPs have been shown to regulate the expression of RAAS components, such as the angiotensin II type 1 receptor (AT1R). Angiotensin II has
been shown to stimulate the expression and activity of MMPs, such as MMP-2 and MMP-9, in various cell types, including vascular smooth muscle
cells and fibroblasts. This can lead to excessive ECM degradation and remodeling, contributing to the development of cardiovascular disease.

Frontiers in Pharmacology frontiersin.org10

Taherkhani et al. 10.3389/fphar.2025.1559288

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1559288


which exacerbates hypertension (Elmas et al., 2011; Speidl et al.,
2004). Studies have shown that MMPs, particularly MMP-2 and
MMP-9, are upregulated in hypertensive vessels (expression in
VSMCs and endothelial cells), leading to the degradation of ECM
components, including collagen and elastin. This degradation can
result in the release of bound catecholamines, increasing their
bioavailability and contributing to the development of
hypertension (Chakroborty et al., 2009; Banfi et al., 2005; Rassler
et al., 2012). Furthermore, MMPs can also regulate catecholamine
levels by degrading the enzymes involved in catecholamine synthesis
and degradation. For instance, MMP-2 has been shown to degrade
tyrosine hydroxylase, a rate-limiting enzyme in catecholamine
synthesis, leading to a decrease in catecholamine production (Shi
et al., 2010; Yang et al., 2006). Conversely, MMP-9 has been found to
degrade monoamine oxidase (MAO), an enzyme responsible for
catecholamine degradation, resulting in increased catecholamine
levels. In addition to their direct effects on catecholamine levels,
MMPs can also influence catecholamine signaling pathways (Essa
et al., 2012). MMP-2 has been shown to activate the β-adrenergic
receptor, leading to an increase in catecholamine-mediated
vasoconstriction and hypertension (Yang et al., 2008).
Conversely, MMP-9 has been found to inhibit the α-adrenergic
receptor, leading to a decrease in catecholamine-mediated

vasoconstriction and a subsequent decrease in blood pressure
(Yang et al., 2012; Zhang et al., 2017).

8 MMPs knockout models in
hypertensive disorders

Research involving MMP knockout models in hypertensive
contexts has provided valuable insights into the involvement of
MMPs in vascular remodeling and organ damage associated with
hypertension. A study investigated the function of MMP2 in the
progression of proteinuria and renal damage following the induction
of hypertension or diabetes in MMP2 knockout rats. The findings
indicated that MMP2 knockout rats exhibited reduced levels of
proteinuria, glomerular injury, renal fibrosis, and podocyte loss.
Consequently, the absence of MMP-2 in Dahl salt-sensitive rats was
associated with lower mean arterial pressure and diminished renal
injury when compared to wild-type counterparts (Pushpakumar
et al., 2013). A related investigation indicates that the deletion of
MMP9 in hypertensive rat models reinstates the autoregulation of
renal blood flow and mitigates the progression of hypertension,
proteinuria, glomerular damage, and renal interstitial fibrosis.
Conversely, MMP-9 knockout mice subjected to angiotensin II

FIGURE 6
Arterial hypertrophy is a common feature of various cardiovascular diseases, including hypertension, atherosclerosis, and restenosis. The
relationship between arterial hypertrophy and hypertension is bidirectional, with each condition exacerbating the other. On one hand, hypertension can
induce arterial hypertrophy by stimulating the proliferation of VSMCs and promoting the production of growth factors. On the other hand, arterial
hypertrophy can contribute to the development of hypertension by increasing peripheral resistance and reducing vascular compliance. In addition,
the increased blood pressure can cause endothelial dysfunction, which leads to the activation of inflammatory pathways and the recruitment of immune
cells, ultimately resulting in the formation of atherosclerotic plaques. Additionally, hypertension can also contribute to the rupture of these plaques,
leading to acute cardiovascular events. In the context of arterial hypertrophy, the activity ofMMPs is regulated by various signaling pathways, including the
RAAS, oxidative stress, and NF-κB pathway. These signaling pathways regulate the expression and activity of MMPs, leading to the degradation of ECM
components and the development of arterial hypertrophy. MMP-2 have been implicated in the development of arterial hypertrophy and expressed by
VSMCs and is involved in the degradation of collagen and elastin, leading to the loss of arterial wall elasticity and compliance.
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treatment demonstrated more pronounced elevations in blood
pressure and diminished compliance of the carotid artery when
compared to their wild-type counterparts. This suggests that MMP-
9 may play a protective role in the early stages of hypertension by
preserving vascular compliance (Yang et al., 2012).

The interactions between MMPs and other signaling pathways
in the context of hypertension have been elucidated through
knockout models. For example, MMP-9 has been shown to
interact with the angiotensin II signaling pathway, where its
activation contributes to the hypertensive response. In MMP-9
knockout mice, there is a notable reduction in angiotensin II-
induced vascular remodeling, indicating that MMP-9 may
facilitate the effects of this potent vasoconstrictor (Barhoumi
et al., 2017). Furthermore, studies have demonstrated that MMPs
can modulate the activity of other proteases and inflammatory
mediators, creating a complex network of interactions that
exacerbate hypertensive conditions. These findings suggest that
targeting MMPs may not only directly influence vascular
remodeling but also disrupt harmful interactions within the
broader hypertensive signaling landscape, offering a multifaceted
approach to hypertension management (Chakroborty et al., 2020; Li
K. et al., 2020).

9 MMPs inhibitor as therapeutic agents
for hypertension

Several MMP inhibitors have been developed and tested in
preclinical models of hypertension. These inhibitors can be
classified into several categories, including synthetic peptides,
non-peptidic molecules, and natural products (Luchian et al.,
2022). Synthetic peptides, such as batimastat and marimastat,
have been shown to be effective in reducing blood pressure and
improving vascular function in hypertensive animals (Cabral-
Pacheco et al., 2020; Mondal et al., 2020). Non-peptidic
molecules, such as doxycycline and minocycline, have also been
shown to be effective in reducing blood pressure and improving
vascular function in hypertensive animals (Napoli et al., 2020).
Natural products, such as green tea extract and curcumin, have
also been shown to have anti-hypertensive effects in preclinical
models (Das et al., 2020). For example, green tea extracts reduced
blood pressure and improved vascular function in spontaneously
hypertensive rats (Zakiyanov et al., 2021). Another study found that
curcumin reduced blood pressure and improved renal function in
hypertensive rats (Das et al., 2021).

Recent studies suggest that antihypertensive therapies may
influence MMP activity and thereby modify ECM metabolism
and VSMC function (Chuliá-Peris et al., 2022; Broekaart et al.,
2021). For example, patients treated with lisinopril or candesartan
exhibited significant reductions in both BP and MMP-9
concentrations after 3 months of treatment, suggesting a
potential for MMP inhibitors to serve dual purposes in managing
hypertension and reducing organ damage (Chuliá-Peris et al., 2022;
Broekaart et al., 2021; Laronha et al., 2020). The correlation between
MMP activity and BP levels reinforces the therapeutic relevance of
MMPmodulation in hypertensive patients (Zipfel et al., 2020; Luddi
et al., 2020). Furthermore, marimastat, a broad-spectrum MMP
inhibitor, functions by mimicking the structure of natural MMP

substrates, thereby binding to MMPs and preventing the
degradation of the basement membrane. Marimastat has been
shown to inhibit MMPs such as MMP-9, MMP-1, MMP-1,
MMP-2, MMP-14, and MMP-7. Its inhibitory action prevents
endothelial cell migration, which is necessary for new blood
vessel formation, and also blocks tumor cells from entering or
exiting blood vessels, thereby preventing metastasis (Gimeno
et al., 2020; Kiuru et al., 2021; Todd et al., 2020; Sinno et al., 2013).

9.1 The modulatory effects of natural
products on MMPs

Natural products, such as flavonoids, polyphenols, and omega-3
fatty acids, have been identified as potential MMP inhibitors. These
compounds have been shown to inhibit MMP activity, reduce
inflammation, and improve vascular function in both in vitro
and in vivo studies (de Meijer et al., 2010; Goffin et al., 2005).
The advantage of natural MMP inhibitors lies in their safety profile,
as they are generally well-tolerated and have minimal off-target
effects. Curcumin, a polyphenol extracted from turmeric, has been
extensively studied for its antihypertensive properties. Curcumin
has been shown to inhibit MMP-2 and MMP-9 activity, reduce
inflammation, and improve endothelial function in animal models
of hypertension (Islam et al., 2024; Krebber et al., 2020).
Additionally, clinical studies have shown that curcumin is
effective in decreasing blood pressure in hypertensive patients
(Ronsisvalle et al., 2020; Saragusti et al., 2010). Resveratrol, a
polyphenol found in grapes and berries, has been shown to
inhibit MMP-2 and MMP-9 activity, reduce oxidative stress, and
improve vascular function in animal models of hypertension (Lim
and Kim, 2007). Omega-3 fatty acids, particularly eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), have anti-
inflammatory properties and have been shown to inhibit MMP-2
and MMP-9 activity (Crascì et al., 2018).

Quercetin, a flavonoid present in apples and onions, has been
demonstrated to inhibit MMP-2 and MMP-9 activity in human
umbilical vein endothelial cells. Similarly, epigallocatechin gallate
(EGCG), a flavonoid contained in green tea, has been observed to
suppress MMP-2 and MMP-9 production in human aortic smooth
muscle cells (Cayetano-Salazar et al., 2022). These findings suggest
that flavonoids may be useful in preventing or treating
hypertension-related vascular remodeling and fibrosis (Ende and
Gebhardt, 2004). The mechanisms by which flavonoids modulate
MMP activity are not fully understood, but several pathways have
been proposed. One possible mechanism involves the inhibition of
MMP gene expression through the suppression of NF-κB and AP-1
transcriptional activity (Chojnacka and Lewandowska, 2018).
Flavonoids may also inhibit MMP activity by binding to the
active site of the enzyme, thereby blocking substrate access.
Additionally, flavonoids may modulate MMP activity by altering
the redox state of the cell, as MMPs are sensitive to oxidative stress
(Annabi et al., 2002).

Animal studies have provided further evidence for the
antihypertensive effects of flavonoids. For example, a study in
spontaneously hypertensive rats showed that quercetin
supplementation reduced blood pressure and improved
cardiovascular function (Calabriso et al., 2016; Saavedra et al.,
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2016). Similarly, a study in mice with angiotensin II-induced
hypertension found that EGCG supplementation reduced blood
pressure and inhibited vascular remodeling (Hilliard et al., 2020).
While the existing evidence suggests that flavonoids may be useful in
preventing or treating hypertension, several limitations and
challenges remain. One major challenge is the variability in
flavonoid bioavailability and bioactivity, which can affect their
efficacy in different individuals (Sim et al., 2007). Additionally,
the optimal dosage and duration of flavonoid supplementation
required to achieve therapeutic effects in hypertension are not
well established. Flavonoids are a desirable therapeutic target for
the prevention and treatment of hypertension because of their
antihypertensive properties (Santos et al., 2015). Several potential
therapeutic applications of flavonoids in hypertension can be
envisioned by dietary supplementation pharmaceutical
development and nutrigenomic approaches (Lee et al., 2018;
Devipriya et al., 2007; Huang and Liaw, 2017).

9.2 α2-Macroglobulin

α2-Macroglobulin (alpha2M), as a plasma protein, is a
significant protease inhibitor known for its ability to inhibit
activated MMPs, particularly MMP-9. This glycoprotein, with a
molecular weight of approximately 720 kDa, is primarily
synthesized in the liver and plays a crucial role in regulating
proteolytic activity in the human body (Agić et al., 2018;
Matchett et al., 2006). Elevated levels of MMPs are often
associated with pathological conditions, including cancer and
inflammatory diseases, highlighting the importance of alpha2M
in maintaining homeostasis. The interaction between alpha2M
and MMPs has significant implications for diseases characterized
by excessive proteolytic activity (Strek et al., 2007). For instance, in
conditions like severe sepsis or cancer, where MMP-9 levels are
elevated, α2M can help mitigate tissue damage by inhibiting these
active proteases (Crascì et al., 2017). Additionally, understanding the
dynamics of alpha2M’s interaction with MMPs could provide
insights into therapeutic strategies targeting these pathways in
various diseases (Wang et al., 2014; Tortorella et al., 2004).

The mechanisms underlying the antihypertensive effects of
alpha2M are multifaceted and involve the inhibition of MMPs,
reduction of vascular inflammation, and modulation of the renin-
angiotensin-aldosterone system (Barcelona et al., 2013; Ikari et al.,
2003). The inhibition of MMPs by alpha2M is a critical aspect of its
antihypertensive effects (Cáceres et al., 2010). By binding to and
inhibiting MMPs, alpha2M prevents the degradation of matrix
proteins, thereby reducing vascular stiffness and improving blood
flow. Additionally, alpha2M has been shown to inhibit the activity of
other proteases, such as cathepsins and elastase, which are also
involved in vascular remodeling and hypertension (de Laat-Kremers
et al., 2024). Beyond its effects on proteolytic pathways, alpha2M has
anti-inflammatory properties, which contribute to its
antihypertensive effects. Vascular inflammation is a hallmark of
hypertension, and alpha2M has been shown to reduce inflammation
by inhibiting the activation of immune cells and the production of
pro-inflammatory cytokines (Annapoorani et al., 2006).
Additionally, by suppressing the ACE and decreasing the
synthesis of angiotensin II, alpha2M has been shown to alter the

renin-angiotensin-aldosterone pathway, a crucial blood pressure
regulator (Rajamanickam et al., 2001). Studies showing that
alpha2M is effective in lowering blood pressure and improving
cardiovascular outcomes in animal models of hypertension
further suggest its therapeutic promise in hypertension (Knopp,
2022; Oh et al., 2005). Additionally, alpha2M has been shown to
have synergistic effects when combined with other antihypertensive
agents, suggesting its potential as an adjunctive therapy in the
management of hypertension (Raymond et al., 2009; Lagrange
et al., 2022).

10 Techniques, advanced markers, and
genetical modulators related to
evaluation of MMPs function

Post-translational modifications (PTMs) of MMPs such as
phosphorylation, ubiquitination, and glycosylation, have emerged
as a critical regulatory mechanism that can alter the enzymatic
activity, substrate specificity, and expression levels, thereby
influencing their role in hypertension (Martos et al., 2018;
Motomiya et al., 2003). Phosphorylation of MMP-2 has been
shown to increase its activity, leading to enhanced degradation of
type IV collagen and increased vascular permeability (Madzharova
et al., 2019; Sun et al., 2024). Ubiquitination of MMP-2 has been
shown to reduce its expression and activity, leading to decreased
vascular remodeling and fibrosis (Leeming et al., 2011). Conversely,
deubiquitination of MMP-9 and N-glycosylation of MMP-2 has
been linked to increased expression and activity, contributing to
vascular inflammation and remodeling (Liddy et al., 2013). In
addition, O-glycosylation of MMP-9 has been linked to decreased
activity and expression, reducing vascular inflammation and
remodeling (Sawicki and Jugdutt, 2007; Ergul et al., 2004;
Buelna-Chontal et al., 2021).

Epigenetic modifications, such as DNA methylation, histone
modifications, and non-coding RNA regulation, significantly
influence MMP expression and function in the context of
hypertension (de Mello et al., 2019; Gajjala et al., 2015; Sarker
et al., 2021; He et al., 2020). Studies have shown that histone
modifications can alter the expression of MMPs in response to
inflammatory cytokines, such as IL-1β, suggesting interplay between
these modifications and MMP activity (Guarner-Lans et al., 2020;
Cruz et al., 2021). Conversely, repressive histone marks can inhibit
MMP expression, contributing to the pathophysiology of
hypertension (Schiattarella et al., 2018), thus targeting histone-
modifying enzymes could be a potential strategy for modulating
MMP function (Weber et al., 2016). miRNAs can modulate the
expression of MMPs directly by binding to their mRNA and
inhibiting translation (Lacolley et al., 2020). For example, miR-
146a has been shown to repress MMP-13 expression in
chondrocytes, while miR-203 can enhance MMP-1 secretion in
rheumatoid arthritis synovial fibroblasts. Similarly, lncRNAs can
influence MMP expression by interacting with chromatin-
modifying complexes and transcription factors, thereby regulating
inflammatory responses (Chistiakov et al., 2017; Priviero, 2023).

Recent advancements in analytical techniques, including
zymography, active-site probes followed by enzymatic digestion,
and liquid chromatography-mass spectrometry (LC-MS) analysis
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have significantly enhanced the detection and quantification of
MMPs in biological samples (Kupai et al., 2010). Zymography is
effective for visualizing active enzymes, it may lack sensitivity
compared to other methods (Hu and Beeton, 2010). LC-MS
offers high sensitivity and specificity, it requires sophisticated
equipment and expertise, making it less accessible for routine
evaluations (Kotnik et al., 2018). Active-site probes followed by
enzymatic digestion technique involves the application of small
molecules that specifically bind to the active sites of MMPs,
facilitating the study of their functional roles. However,
standardization of this method remains a challenge, which can
lead to variability in results (Xu et al., 2015).

Proteomic profiling, particularly through the use of the
SOMAscan v3.1 platform, have significantly enhanced the
evaluation of MMPs and their functions in hypertension. This
innovative technology enables the simultaneous measurement of
over 1,000 proteins, allowing for a comprehensive analysis of the
proteomic landscape associated with cardiovascular health. The
resulting data are processed to yield quantifiable measurements
for a wide array of proteins, with annotations provided via
established databases such as UniProt and Entrez Gene (Habet
et al., 2023; Wort, 2021).

CRISPR/Cas9 gene-editing technology has emerged as a
powerful tool for evaluating the function of MMPs in various
biological contexts, including hypertension. This method allows
for precise modifications of MMP genes, enabling researchers to
investigate the specific roles these proteins play in disease
mechanisms (Seidl et al., 2019). By designing guide RNAs
(gRNAs) that target specific MMP genes, researchers can
induce double-strand breaks that lead to gene disruption.
This approach has proven effective in elucidating the
functional contributions of MMPs in hypertension-related
processes. The targeted editing allows scientists to assess
changes in phenotype and gene expression, providing insights
into the pathological roles of MMPs in hypertensive conditions
(Camargo et al., 2023). For example, knock out of MMP-2 and
MMP-9 by CRISPR/Cas9 system in animal models results in
reduced hypertensive responses, highlighting its critical role in
the development of hypertension (Waghulde, 2016; Wang
et al., 2018).

11 Conclusion

Hypertension is a major public health concern and the
pathophysiology of hypertension is complex, involving
multiple cellular and molecular mechanisms. Among these,
MMPs have emerged as key players in the regulation of blood
pressure and vascular function. MMPs have been linked to the
control of inflammation, remodeling, and vascular tone in the
setting of hypertension. It has been demonstrated that MMP-2
and MMP-9 specifically contribute to the development of
hypertension by cleaving extracellular matrix proteins, which
results in vascular stiffness and elevated blood pressure. In
hypertension, MMP-2 is upregulated, leading to increased
ECM degradation and vascular remodeling. MMP-9, on the

other hand, is primarily expressed in macrophages and has
been implicated in the regulation of inflammation and
immune responses. In hypertension, MMP-9 is also
upregulated, contributing to the development of vascular
inflammation and oxidative stress. Several pharmacological
agents have been developed to target MMPs in hypertension.
MMP inhibitors, such marimastat and doxycycline, are among
these medications; in animal models of hypertension, they have
been demonstrated to lower blood pressure and enhance vascular
function. Furthermore, it has been demonstrated that a number
of natural compounds, such as flavonoids and polyphenols, lower
blood pressure and suppress MMP activity. The development of
novel therapeutic strategies, including MMP inhibition,
antioxidant therapy, exercise training, dietary modification,
and gene therapy, may provide a promising approach for the
treatment of hypertension.
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Glossary
MMPs Metalloproteinases

ECM Extracellular matrix

TIMPs Tissue inhibitors of metalloproteinases

VSMCs Vascular smooth muscle cells

BP Blood pressure

NSAIDs Nonsteroidal anti-inflammatory drugs

RAAS Renin-angiotensin-aldosterone system

ACE Angiotensin-converting enzyme

NO Nitric oxide

eNOS Endothelial nitric oxide synthase

cGMP Cyclic guanosine monophosphate

SNS Sympathetic nervous system

AP-1 Activator protein-1

SP-1 Specificity protein-1

UUO Unilateral ureteral obstruction

PI3K/Akt Phosphatidylinositol 3-kinase/protein kinase B

TGF-β Transforming growth factor-beta

PDGF Platelet-derived growth factor

EGFR Epidermal growth factor receptor

TNF-α Tumour Necrosis Factor-alpha

IL-1β Interleukin-1 beta

CTGF Connective tissue growth factor

GBM Glioblastoma

MAPK Mitogen-activated protein kinases

CKD Chronic kidney disease

AKI Acute kidney injury

DKD Diabetic kidney disease

AT1R Angiotensin II type 1 receptor

SOD Superoxide dismutase

RA Rheumatoid arthritis

EPA Eicosapentaenoic acid

DHA Docosahexaenoic acid

NF-κB Nuclear factor kappa B

MT1-MMP Membrane-type I matrix metalloproteinase

EMT Epithelial-mesenchymal transition

ANP Atrial natriuretic peptide

MAO Monoamine oxidase

EGCG Epigallocatechin gallate

α2M α2-Macroglobulin

PTMs Post-translational modifications

LC-MS Liquid chromatography-mass spectrometry

gRNAs guide RNAs
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