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Obstructive nephropathy is one of the leading causes of kidney injury and fibrosis,
which can lead to end-stage renal disease (ESRD). Stromal vascular fraction (SVF),
a heterogeneous cell mixture derived from adipose tissue, has been widely used
for regenerative medicine across many preclinical models and clinical
applications. Recent studies have suggested that SVF can alleviate acute
kidney injury in mice. However, to our knowledge, the therapeutic effects of
SVF on obstructive nephropathy have not been studied before. In this study, we
evaluated the therapeutic potential of SVF on obstructive nephropathy in mice
with unilateral ureteral obstruction (UUO). We revealed that autologous SVF
administration mitigated UUO-induced renal fibrosis. SVF treatment inhibited
both the infiltration of neutrophils and CD4+ T cells, as well as the production of
inflammatory cytokines. Moreover, SVF promotedmetabolic reprogramming and
improved mitochondrial function in the obstructed kidneys, partially through
PPAR pathway activation. Mechanistically, SVF-mediated PPAR activation
inhibited the epithelial-mesenchymal transition (EMT) process of tubular cells,
thus alleviating renal fibrosis in UUO mice. We further confirmed that
pharmacological activation of PPAR pathway significantly reduced fibrosis in
UUO kidneys. Therefore, our study suggests that SVF may represent a
promising therapeutic strategy for obstructive nephropathy.
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1 Introduction

Obstructive nephropathy, a common medical problem that affects many people, is a
chronic and inflammatory process caused by urological obstruction. In infants and children,
ureteropelvic junction obstruction (UPJO) is the most common cause of obstructive
nephropathy (Stevens, 2018; Vemulakonda, 2021; Chevalier, 2015). In adults, most renal
obstructions result from kidney stones, affecting approximately 10% of adults worldwide
(Stevens, 2018). A review identified that 3.1% of individuals had hydronephrosis in
59,064 autopsies ranging from neonates to the elderly (Stevens, 2018). The obstruction
decreases blood supply and triggers tubular epithelial cell damage and chronic inflammation,
which subsequently leads to myofibroblast activation, excessive production of extracellular
matrix, and renal fibrosis (Humphreys, 2018; Jackson et al., 2018). This may ultimately result
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in kidney function loss and end-stage renal disease (ESRD). Currently,
aside from surgery to remove kidney stones or correct UPJO to
prevent further injury, specific and effective therapies for obstruction-
induced renal fibrosis are lacking.

Stromal vascular fraction (SVF) is a heterogeneous mixture of
cells derived from adipose tissue (Guo et al., 2016). It contains
stem/progenitor cells such as adipose-derived stem cells (ADSCs),
stromal cells such as endothelial cells, fibroblasts, and pericytes, as
well as immune cells such as macrophages and T cells (Goncharov
et al., 2023; Al-Kharboosh et al., 2022). SVF has been widely used
for regenerative medicine due to its potential to facilitate tissue
repair (Koh et al., 2011; Bensemmane et al., 2023; Zhou et al.,
2016), angiogenesis (Morris et al., 2015), and immunomodulation
(Riordan et al., 2009; Dong et al., 2013). The therapeutic effect of
SVF has been investigated in multiple preclinical models,
including burn wounds, diabetic foot ulcers, acute myocardial
infarction, and numerous others (Atalay et al., 2014; Cianfarani
et al., 2013; Premaratne et al., 2011). Moreover, increasing
numbers of clinical studies have demonstrated improved
outcomes with SVF therapy in patients with ischemic stroke,
myocardial ischemia, idiopathic pulmonary fibrosis, chronic
liver failure, and knee osteoarthritis (Bateman et al., 2018;
Andia et al., 2019; Vargel et al., 2022; Zhang et al., 2022).
Notably, recent studies have shown that SVF administration
could attenuate acute renal injury induced by ischemia-
reperfusion and cisplatin (Zhou et al., 2016; Yasuda et al.,
2012). However, to our knowledge, few studies have addressed
the preventive effects of SVF against the development of chronic
kidney disease, such as obstructive nephropathy.

In this study, we sought to investigate the therapeutic role of SVF
in obstructive nephropathy using the unilateral ureteral obstruction
(UUO) model. Our findings demonstrate that SVF significantly
attenuated obstruction-induced renal fibrosis and inflammatory
responses. Mechanistically, the therapeutic efficacy correlated
with metabolic reprogramming and the activation of the PPAR
signaling pathway in UUO kidneys.

2 Materials and methods

2.1 SVF isolation and detection

SVF was extracted from C57BL/6 mouse inguinal subcutaneous
adipose tissue as previously described (Liu et al., 2023). C57BL/6 mice
were procured from Spfbiotech (Beijing) and housed in specific-
pathogen-free (SPF) conditions. The tissue was washed with ice-
cold sterile PBS, diced, and subjected to enzymatic digestion using
0.075% type I collagenase at 37°C for 45 min. The tissue was then
filtered through a 100 μm nylon mesh and centrifuged at 500 g for
5 min. The resultant cells were suspended at a density of 2 × 107/mL in
PBS and administered via the tail vein (100μL/mouse). Flow cytometry
was used to detect the composition of SVF using a FACSCanto II (BD
Biosciences). The following fluorescent antibodies were used (all from
BioLegend): CD31-PE (102407), CD90-APC (140311), CD45-BV421
(103134), CD11b-FITC (101206), CD11c-PE/Cyanine7 (117317), and
CD29-APC/Cyanine7 (102225).

2.2 Mice and study design

Ethical approval for the animal experimental protocols was obtained
from the Ethical Committee of Chinese PLA General Hospital. Eight-
week-old male mice were used for the UUO model. After anesthesia
(Avertin, Sigma, T48402), a midline abdominal incision was made and
the left ureter was double ligated. The UUO mice were randomly
assigned to two groups (n = 5 per group). The experimental group
received intravenous SVF injections on days 3 and 6 post-UUO surgery.
On day 14,mice were euthanized and kidneys were collected for analysis.

2.3 Masson staining and histological analysis

The murine kidneys were fixed in 4% paraformaldehyde and
embedded in paraffin. Renal sections were stained with Masson’s
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trichrome. Images were obtained using a NanoZoomer Slide
Scanner (Hamamatsu Photonics).

2.4 Renal function analysis

Mouse serum was collected via centrifugation, and blood urea
nitrogen (BUN) and creatinine levels were quantified using a Urea
Assay Kit (C013-2-1) and a Creatinine Assay Kit (C011-2-1, Nanjing
Jiancheng, China) following the manufacturer’s protocol.

2.5 Western blots

Renal protein extracts were prepared following standard
protocols. The tissue lysates were separated by SDS-PAGE and
transferred to polyvinylidene difluoride membranes (Millipore).
The following primary antibodies were used: anti-β-tubulin
(Huaxingbio, HX1829), anti-GAPDH (Proteintech, 60004-1-Ig),
anti-fibronectin (Proteintech, 66042-1-Ig), anti-Col I (Abcam,
ab260043), anti-αSMA (Proteintech, 67735-1-Ig), anti-NF-κB p65
(CST, 8242T), anti-PPARα (Huaxingbio, HX18360), anti-PPARγ
(Proteintech, 16643-1-AP), anti-E-Cadherin (CST, 3195T), and
anti-N-Cadherin (CST, 13116S). Western blot quantification was
performed using ImageJ software.

2.6 Real-time quantitative PCR (qPCR)

Murine kidneys were homogenized and total RNAwas extracted
using an RNA Extraction Kit (Huaxingbio, HXR8075) following the
manufacturer’s protocol. Complementary DNA (cDNA) was
synthesized using the Reverse Transcription Kit (Takara,
RR037A). Real-time quantitative PCR was performed on an
iQ5 Real-Time PCR Detection System (Bio-Rad). The expression
of the target gene was normalized to the housekeeping gene Gapdh.
Relative gene expression was calculated via the standard 2−ΔΔCT

method. The qPCR primers are provided in Table 1.

2.7 Bulk RNA sequencing (RNA-seq)

UUO kidneys from mice treated with or without SVF were
subjected to RNA-seq analysis. RNA was extracted from the
kidneys using TRIzol reagent (Thermo Fisher). RNA quality
and quantity was qualified and quantified using a NanoDrop
spectrophotometer and an Agilent 2100 Bioanalyzer.
Subsequently, RNA was amplified and reverse-transcribed into
cDNA for library construction. Sequencing was performed on an
Illumina NovaSeq X Plus platform (Novogene, China). Raw
sequencing data were aligned to the murine reference genome
(version mm10).

2.8 Kidney leukocyte isolation and flow
cytometry analysis

Renal tissues were enzymatically digested with 0.05%
collagenase IV supplemented with 2 mM CaCl2 at 37°C for
25 minutes as previously described (Tao et al., 2023). The
digested tissue was filtered through a 100 μm nylon mesh. The
cell suspension was centrifuged at 500 g for 5 minutes and then
incubated with an Fcγ receptor blocker (101320, BioLegend) for
10 minutes. The following fluorescent antibodies (all from
BioLegend) were used: CD45-BV421 (103134), CD11b-FITC
(101206), Ly6G-APC/Cyanine7 (127624), Ly6C-PE (128008), F4/
80-APC (123116), CD206-PE/Cyanine7 (141720), CD3-PE
(100206), CD4-PE/Cyanine7 (116016), CD8a-APC/Cyanine7
(100713), NK1.1-FITC (156508), and CD20-APC (152107). Flow
cytometry was performed using a FACSCanto II (BD Biosciences).
The data were analyzed using FlowJo software 10.4.

2.9 Cell culture and treatment

The murine tubular cell line TCMK-1 was acquired from the
Cell Resource Center, Institute of Basic Medical Sciences (Beijing,
China). The cells were cultured in RPMI 1640 medium (Gibco)

TABLE 1 qPCR primers.

Genes Forward Reverse

Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA

Fn1 CCCTATCTCTGATACCGTTGTCC TGCCGCAACTACTGTGATTCGG

Col1a2 GCAGGTTCACCTACTCTGTCCT CTTGCCCCATTCATTTGTCT

Acta2 ACTGCCGAGCGTGAGATTGT TGATGCTGTTATAGGTGGTTTCG

Il1b TGTAATGAAAGACGGCACACC TCTTCTTTGGGTATTGCTTGG

Il6 TACCACTTCACAAGTCGGAGGC CTGCAAGTGCATCATCGTTGTTC

Tnf TCCAGGCGGTGCCTATGT CACCCCGAAGTTCAGTAGACAGA

Mrc1 GTTCACCTGGAGTGATGGTTCTC AGGACATGCCAGGGTCACCTTT

Retnla CAAGGAACTTCTTGCCAATCCAG CCAAGATCCACAGGCAAAGCCA

Cdh1 CAGTTCCGAGGTCTACACCTT TGAATCGGGAGTCTTCCGAAAA

Tgfb1 CGCAACAACGCCATCTATGA ACTGCTTCCCGAATGTCTGA
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supplemented with 10% fetal bovine serum (FBS). Tubular EMTwas
induced with recombinant human TGF-β1 (MCE, HY-P7118,
10 ng/mL). The PPARγ agonist pioglitazone (S2590, Selleck) and
antagonist T0070907 (S2871, Selleck) were used.

2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism
(version 10.1.2). Data are presented as mean ± standard error of
the mean (SEM). Experiments were replicated at least three
times. The two-tailed Student’s t-test was used for two-group
comparisons. One-way analysis of variance (ANOVA) was used
to assess comparisons among three or more groups. A p-value
less than 0.05 was considered statistically significant.

3 Results

3.1 Characterization of murine SVF

To characterize the cellular composition of SVF, flow cytometry
was performed on freshly isolated stromal vascular fraction
(Figure 1). Quantification identified the following marker
expression profiles: hematopoietic lineage: CD45 (5.7% ± 2.4%),
CD11b (1.4% ± 0.3%), and CD11c (2.5% ± 1.1%); mesenchymal
markers: CD29 (4.6% ± 1.8%) and CD90 (2.5% ± 1.4%); and

endothelial marker: CD31 (5.8% ± 2.9%). These data confirm the
heterogeneous cellular composition of SVF, encompassing
hematopoietic, stromal, and vascular components.

3.2 SVF alleviated UUO-induced renal
fibrosis and injury

To investigate the potential of SVF to alleviate obstructive
nephropathy, we employed the UUO mouse model (Figure 2A).
Compared with controls, SVF-treated mice exhibited reduced
collagen deposition in UUO kidneys as evidenced by Masson
staining (Figure 2B). Notably, SVF administration resulted in
significant downregulation of fibrotic markers, including
fibronectin (FN), collagen I (Col I), and α-smooth muscle
actin (αSMA), at both the protein and transcript levels
(Figures 2C,D), indicating suppression of obstruction-
induced renal fibrosis. Consistent with histological
improvements, serum blood urea nitrogen (BUN) levels were
also lower in SVF-treated mice versus controls (Figure 2E),
suggesting renal functional preservation. However, serum
creatinine levels remained comparable between two groups
(Figure 2E). Importantly, SVF treatment significantly
attenuated expression of transforming growth factor-β (TGF-
β), a master regulator of fibrogenesis (Figure 2F). Collectively,
these findings demonstrate SVF exerts renoprotective effects in
UUO-induced nephropathy.

FIGURE 1
Characterization of murine SVF by flow cytometry Representative flow cytometry plots of murine stromal vascular fraction (SVF). The expression of
hematopoietic (CD45, CD11b, and CD11c), mesenchymal (CD29, CD90), and endothelial (CD31) markers were detected and the quantification was
shown as the mean ± SEM.
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3.3 SVF contributed to metabolic
reprogramming and reduced inflammation
in UUO kidneys

To elucidate the mechanisms underlying SVF-mediated renal
protection, bulk RNA sequencing (RNA-seq) was performed on
UUO kidneys from SVF-treated versus control mice. Differential
expression analysis identified 716 upregulated and
437 downregulated genes in SVF group (fold change >1.5, p <
0.05) (Figure 3A). Gene ontology (GO) analysis revealed that
upregulated genes in SVF-treated mice were significantly
enriched in metabolic pathways, specifically organic acid
metabolism, carboxylic acid metabolism, small molecule
metabolism, fatty acid metabolism, and cellular amino acid
metabolism (Figure 3B). These genes were further associated with
brush border and mitochondrial inner membrane components
(Figure 3B), suggesting that SVF may promote mitochondrial
function in tubular cells. Conversely, downregulated genes were
enriched in angiogenesis, immune cell migration, and extracellular
structure organization (Figure 3C), indicating SVF-mediated
suppression of inflammatory responses and fibrotic matrix
deposition.

Subsequently, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed to identify signaling
pathways modulated by SVF treatment. Consistent with GO
findings, metabolic pathways, including peroxisome, fatty acid
degradation, tryptophan metabolism, and PPAR signaling, ranked
among the top enriched pathways for upregulated genes
(Figure 3D). Conversely, downregulated genes were enriched in
cytokine-cytokine receptor interactions, TGF-β signaling, MAPK
signaling, and PI3K-Akt signaling (Figure 3E). Notably, TGF-β is a
well-characterized master regulator of organ fibrosis (Meng et al.,
2016), while PI3K-Akt pathway promotes kidney fibrosis by

regulating collagen deposition and epithelial-mesenchymal
transition (EMT) (Hu et al., 2021). Moreover, RNA-seq analysis
revealed that the SVF-treated group exhibited significantly reduced
expression levels of Fn1, Col1a2, and Acta2, suggesting that SVF
may attenuate renal fibrosis progression (Figure 3F). These data
imply that SVF attenuates renal fibrosis, at least partially, by
suppressing pro-fibrotic pathways (e.g., TGF-β/PI3K-Akt) in
UUO kidneys.

3.4 SVF inhibited renal inflammation in
UUO kidneys

Inflammation plays a central role in the pathogenesis of
kidney injury and fibrosis across etiologies (Tang et al., 2019).
To characterize immune infiltration in UUO kidneys, we
performed flow cytometric analysis of immune cell
populations, including macrophages, neutrophils, monocytes,
T cells, natural killer T (NKT) cells, natural killer (NK) cells,
and B cells (Figure 4A). Notably, SVF treatment significantly
reduced renal infiltration of neutrophils and CD4+ T cells
(Figures 4B–F). This finding aligns with established evidence
implicating neutrophils and CD4+ T cells as key mediators of
fibrogenesis in UUO models (Ryu et al., 2022; Tapmeier et al.,
2010). Collectively, these data demonstrate that SVF suppresses
the accumulation of pro-fibrotic immune subsets in
obstructed kidneys.

Next, we evaluated kidney inflammation by analyzing
inflammatory cytokines and pathways in UUO kidneys.
Consistent with RNA-seq data, SVF treatment significantly
inhibited pro-fibrotic cytokines IL-1β and IL-6 (Figure 5A).
M2 macrophages are recognized as critical mediators of renal
fibrosis through pro-fibrotic factors and macrophage-

FIGURE 2
SVF alleviated UUO-induced renal fibrosis and injury (A) Experimental design was shown. (B) Representative Masson staining and quantification of
UUO kidneys from control and SVF-treated mice (n = 5), scale bar = 40 μm. Asterisks (*) indicate regions of interstitial collagen deposition (in blue). (C)
Immunoblots and quantification of FN, Col I, and αSMA expression in UUO kidneys from control and SVF-treatedmice (n = 3). (D) qPCR analysis forCol1a2
and Acta2 in UUO kidneys from control and SVF-treated mice (n = 4). (E) Serum levels of BUN and Cr in control and SVF-treated mice (n = 4). (F)
qPCR analysis for Tgfb1 in UUO kidneys from control and SVF-treated mice (n = 4). The results represent mean ± SEM. *p < 0.05, **p < 0.01, NS no
significant.
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myofibroblast transition (MMT) (Tang et al., 2019). We observed
that SVF treatment reduced expression levels of M2 markers Mrc1
and Retnla in UUO kidneys (Figure 5B). Additionally,
CD206 expression in renal macrophages exhibited a marked

decrease in SVF-treated mice (Figure 5C). Furthermore, NF-κB
p65 levels were significantly lower in SVF-treated mice compared
to controls (Figure 5D). These results indicate that SVF
administration inhibits UUO-induced kidney inflammation.
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3.5 SVF contributed to PPAR activation and
inhibited EMT in tubular cells

Given that SVF upregulated the PPAR signaling pathway
(Figure 3D) and PPAR plays a critical role in cellular metabolism
(Gao and Gu, 2022), we sought to assess its impact on the PPAR
pathway in both UUO kidneys and tubular cells. Our data
revealed elevated levels of PPARα and PPARγ in obstructed
kidneys from SVF-treated mice (Figure 6A). To further
investigate this phenomenon, we examined SVF’s effects on
TCMK-1 cells, a murine tubular cell line. Consistent with
previous reports, recombinant human TGF-β significantly
reduced PPARα and PPARγ expression (Figures 6B,C).
Remarkably, SVF treatment restored PPARα and PPARγ
levels in TCMK-1 cells (Figures 6B,C), indicating its PPAR
signaling activation potential. Importantly, SVF counteracted
the TGF-β-mediated EMT process as evidenced by reduced FN
and αSMA expression alongside increased epithelial marker

E-cadherin (Figures 6B–D). These findings collectively suggest
that SVF attenuates EMT through PPAR signaling in
tubular cells.

To investigate whether PPAR signaling mediated SVF’s
inhibitory effect on tubular EMT, we employed a well-
characterized PPARγ agonist pioglitazone and specific PPARγ
antagonist T0070907 (Qian et al., 2022; Nian et al., 2024). When
combined with SVF treatment, pioglitazone produced greater
suppression of Col I and αSMA while enhancing E-cadherin
levels (Figures 6E–G), confirming a critical role of PPAR
activation in EMT inhibition. Conversely, pharmacological
PPARγ blockade with T0070907 significantly restored the
expression of FN and Col I while diminishing the levels of
E-cadherin (Cdh1) in SVF-treated TCMK-1 cells, demonstrating
that PPARγ inactivation counteracts SVF-mediated EMT
suppression (Figure 6H). These findings establish that SVF
attenuates tubular EMT through at least partial activation of the
PPAR signaling pathway.

FIGURE 4
SVF inhibited the accumulation of neutrophils and CD4+ T cells in UUO kidneys (A) Gating strategy of kidney immune cells. Representative flow
cytometry plots and quantification of (B) macrophages, (C) neutrophils and monocytes, (D) B cells, (E) T, NK, and NKT cells, and (F) CD4+ T and CD8+

T cells in UUO kidneys from control and SVF-treated mice (n = 5). The results represent mean ± SEM. *p < 0.05, **p < 0.01, NS no significant.
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3.6 PPAR activation alleviated UUO-induced
renal fibrosis and inflammation

To investigate the role of PPAR activation in obstruction-induced
renal fibrosis, we administered the PPARγ agonist pioglitazone to
UUO mice. As expected, pioglitazone administration significantly
increased the expression of PPARα and PPARγ in UUO kidneys
(Figure 7A). Histopathological assessment revealed that pioglitazone
administration attenuated collagen deposition in pioglitazone-treated
mice compared to controls (Figure 7B). Furthermore, pioglitazone-
treated mice displayed reduced levels of the fibrosis markers FN,
αSMA, Col I, and N-cadherin while increasing levels of the epithelial
marker E-cadherin (Figures 7C,D), which was consistent with in vitro
studies in tubular cells. Notably, pioglitazone also markedly
suppressed inflammatory cytokine production in obstructed
kidneys, including IL-1β and TNF (Figure 7E). These data
demonstrate that pharmacological PPAR activation via pioglitazone
effectively mitigates both renal fibrosis and inflammation
in UUO mice.

4 Discussion

Our study demonstrated that autologous SVF administration
attenuates obstructive nephropathy in mice. SVF intervention
improves metabolic processes, inhibits inflammatory cytokine
production, and reduces neutrophils and CD4+ T cell infiltration
in UUO kidneys. Importantly, we further identified that SVF
significantly inhibits tubular EMT and renal fibrosis through, at
least in part, activation of the PPAR signaling axis.

SVF constitutes a heterogeneous cell population comprising
ADSCs and other regenerative components. Similar to
mesenchymal stem cells (MSCs), ADSCs have been widely studied
and exploited for the treatment of tissue injury due to their

regenerative, proangiogenic, anti-fibrotic, and immunomodulatory
properties (Guo et al., 2016). ADSCs can differentiate into tissue
functioning cells because of their pluripotent capabilities, such as
neonatal adipocytes in fat grafts (Zhu et al., 2015). Beyond direct
differentiation, SVF can also induce host cell proliferation to
regenerate injured tissue, such as fibroblasts in diabetic foot ulcers
and nerve cells in peripheral nerve lesions (Han et al., 2010; di Summa
et al., 2010). Importantly, accumulating evidence indicates that
ADSCs drive neovascularization via angiogenic factor secretion, a
critical mechanism for tissue regeneration in pathologies including
myocardial infarction, thermal injuries, diabetic ulcers, and
ischemic myopathy (Atalay et al., 2014; Cianfarani et al., 2013;
Li et al., 2013). This aligns with reports documenting that SVF
facilitates angiogenesis by inducing VEGF production (Rehman
et al., 2004). Interestingly, our transcriptomic analysis revealed
unexpected downregulation of angiogenesis-related pathways in
SVF-treated mice, a finding requiring further mechanistic
validation through functional assays.

SVF is recognized to exert multifaceted immunomodulatory
effects, mediated through three principal cellular components:
ADSCs, macrophages, and regulatory T (Treg) cells (Gandolfi
et al., 2023). Mounting evidence highlights the immunomodulatory
effects of MSCs (including ADSCs), although the associated
mechanisms are not fully understood (Ketterl et al., 2015; Bowles
et al., 2017). Adipose-resident macrophages predominantly exhibit an
anti-inflammatory M2 phenotype, characterized by the production of
IL-10 and other immunosuppressive mediators (Lumeng et al., 2007;
Zeyda et al., 2007). Notably, ADSCs have been shown to actively
promote M2 macrophage polarization (Shang et al., 2015).
Furthermore, SVF contains detectable populations of Treg cells, a
specialized lymphocyte subset that suppress inflammation via
secretion of immunoregulatory cytokines (Wang et al., 2024). Our
experimental data revealed that SVF significantly reduced the
accumulation of neutrophils and CD4+ T cells, as well as the

FIGURE 5
SVF inhibited UUO-induced kidney inflammation (A,B) qPCR analysis for Il1b, Il6,Mrc1, and Retnla expression in UUO kidneys from control and SVF-
treatedmice (n = 4). (C) Representative plots and quantification of CD206 expression in renal macrophages from control and SVF-treatedmice (n = 3). (D)
Immunoblots and quantification of NF-κB p65 expression in UUO kidneys from control and SVF-treated mice (n = 3). The results represent mean ± SEM.
*p < 0.05, **p < 0.01.
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production of inflammatory cytokines in UUO kidneys. However, the
precise interplay between these cellular components in mediating
SVF’s immunomodulatory effects needs systematic investigation.

Emerging evidence demonstrates the therapeutic potential of
SVF in combating fibrotic pathologies. For example, autologous SVF
exerts anti-fibrotic effects in ischemia-reperfusion induced fibrosis
in kidney and heart, and also prevents the development of fibrosis in
the tunica albuginea in a rat model of Peyronie’s disease (Zhou et al.,

2016; Castiglione et al., 2019). Furthermore, clinical studies confirm
that autologous SVF injection prevents fibrosis of the corpus
cavernosum caused by cavernous nerve injury (Qiu et al., 2012).
Here, our findings provide experimental evidence that autologous
SVF administration represents a novel therapeutic approach to
alleviate renal fibrosis in obstructive nephropathy.

PPAR isoforms are ubiquitously expressed across renal cell
populations, including proximal tubular cells, collecting duct

FIGURE 6
SVF promoted PPAR activation and inhibited EMT in TCMK-1 cells (A) Immunoblots and quantification of PPARα and PPARγ in UUO kidneys from
control and SVF-treated mice (n = 3). (B) Immunoblots and (C) quantification of PPARα, PPARγ, FN, αSMA, and E-cad in TCMK-1 cells treated with or
without SVF (n = 3). (D) qPCR analysis for Fn1,Col1a2, and Acta2 in TCMK-1 cells treatedwith or without SVF (n = 4). (E) Immunoblots and (F) quantification
of PPARα, PPARγ, FN, Col I, αSMA, and E-cad in TCMK-1 cells treated with SVF or SVF and pioglitazone combined (n = 3). (G) qPCR analysis for Fn1,
Col1a2, and Acta2 in TCMK-1 cells treatedwith SVF or SVF and pioglitazone combined (n = 4). (H) qPCR analysis for Fn1,Col1a2, Acta2, andCdh1 in TCMK-
1 cells treated with SVF or SVF and T0070907 combined (n = 4). The results represent mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, NS no significant.
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epithelia, podocytes, and mesangial cells, to maintain energy
homeostasis (Gao and Gu, 2022). PPAR target genes orchestrate
fatty acid metabolism and inflammatory responses. Accumulating
evidence established that all PPAR members (PPARα, PPARβ/δ, and
PPARγ) are implicated in the pathogenesis of kidney diseases (Gao
and Gu, 2022). Deletion of each of the three PPARs results in more
severe kidney injury inmurinemodels (Iwaki et al., 2019; Toffoli et al.,
2017; Mukundan et al., 2009). Therefore, the PPAR pathway has
emerged as a promising target for the treatment of kidney diseases.
We showed that SVF infusion led to elevated levels of both PPARα
and PPARγ in UUO kidneys, suggesting that SVF may induce the
activation of PPAR signaling. However, the molecular mechanisms by
which SVF activates the PPAR pathway remain to be elucidated.
Besides, our study did not evaluate SVF’s effects on PPARβ/δ.

Our study has several limitations. First, the precise mechanisms
through which SVF modulates mitochondrial function and metabolic
reprogramming in tubular cells remain to be systematically investigated.
Specifically, whether SVF-derived cellular components or paracrine
factors mediate these effects requires functional validation through
mitochondrial stress assays and metabolomic profiling. Second, while
we identified PPARα/γ activation as a key pathway, the precise
mechanisms driving SVF-induced PPAR signaling activation remain

incompletely characterized. Notably, the potential involvement of
PPARβ/δ isoform-specific effects needs further investigation. Third,
the critical unresolved question of whether cellular (e.g., ADSCs, Tregs)
or acellular components (e.g., matrix proteins, microRNAs)mediate the
observed anti-fibrotic effects demands rigorous characterization. Future
studies employing single-cell RNA sequencing of SVF subpopulations
coupled with functional fractionation studies will be essential to
delineate therapeutically active components.

In summary, we demonstrated that autologous SVF administration
may mitigate renal inflammation and promote kidney metabolism in
obstructive nephropathy. SVF mediates the activation of the PPAR
pathway and inhibits the tubular EMT process, thus alleviating renal
fibrosis in obstructed kidneys. Our study suggests that SVF may
represent a promising strategy for obstructive nephropathy.
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FIGURE 7
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PPARγ in UUO kidneys from control and pioglitazone-treated mice (n = 3). (B) Representative Masson staining and quantification of UUO kidneys from
control and pioglitazone-treatedmice (n = 5), scale bar = 40 μm. Asterisks (*) indicate regions of interstitial collagen deposition (in blue) (C) Immunoblots
and quantification of FN, Col I, αSMA, E-cad, and N-cad expression in UUO kidneys from control and pioglitazone-treated mice (n = 3). (D,E) qPCR
analysis for Col1a2, Il1b, and Tnf in UUO kidneys from control and pioglitazone-treated mice (n = 5). The results represent mean ± SEM. *p < 0.05,
**p < 0.01.
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