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microRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene
expression at the RNA level. In recent decades, increasing evidence has shown
that miRNAs play crucial regulatory roles in various biological processes and are
considered promising targets for preventing and treating several diseases,
including cardiovascular disorders. Multiple studies have suggested that
miRNAs serve as significant modulators of angiogenesis. It is believed that the
angiogenic response of the vascular endothelium is influenced by miRNAs,
indicating a new perspective on the angiogenesis process. Exercise training is
an effective strategy for enhancing cardiovascular health, partly due to its positive
effects on lipid profiles and increased blood flow in vessels resulting from
structural changes in the vasoreactivity of coronary arteries. The literature also
provides evidence of polyphenols’ anti-inflammatory, antioxidant, antiviral, and
anti-cancer properties across various organs. Polyphenols offer significant health
benefits and are recognized for their role in preventing and treating multiple
disorders, including cardiovascular disease. They can reduce the risk of ischemic
stroke by mitigating platelet aggregation, dyslipidemia, and hypertension. To our
knowledge, no current review comprehensively summarizes the combined
effects of polyphenols and exercise on angiogenesis. Therefore, in the present
review, we examined influence of polyphenols intake and exercise alone or
together on angiogenic signaling via modulating the expression of miRNAs.
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1 Introduction

The interplay between polyphenols and physical exercise has garnered significant
attention in health promotion and disease prevention. Both modalities have been
shown to benefit a range of biological processes, including oxidative stress,
inflammation, and metabolic regulation (Qiu et al., 2023; Paul et al., 2024; Naderi et al.,
2019). A particularly intriguing area of research explores the combined effects of miRNAs
and angiogenic signaling pathways, essential for maintaining homeostasis and aiding
recovery across various physiological contexts.

miRNAs are small, non-coding RNA molecules crucial for gene regulation (Figure 1),
impacting cellular functions such as proliferation, apoptosis, and differentiation (Billi et al.,
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2024). Their capacity to fine-tune gene expression means that
dysregulation of miRNAs has been linked to a wide range of
diseases, including cancer, diabetes, and cardiovascular disorders
(Nemeth et al., 2024; Searles, 2024; Rao et al., 2024). In particular,
angiogenesis—the formation of new blood vessels—plays a crucial
role in these conditions, as it is vital for tumor growth metastasis and
tissue repair after injury (Lorenc et al., 2024; Shi et al., 2023). Both
polyphenols and exercise have been shown to modulate miRNA
expression, thereby impacting angiogenic signaling pathways and
contributing to tissue repair and regeneration.

Polyphenols, naturally occurring compounds found abundantly
in plants and fungi (Figure 2), exhibit potent antioxidant and anti-
inflammatory properties. Different subclasses of polyphenols, such
as flavonoids, phenolic acids, polyphenolic amines, stilbenes, and
lignans, target a range of molecular pathways including COX and
LOX enzymes, the Nrf2 antioxidant defense system, MAPK
signaling, neurotransmitter systems, and estrogen receptor-
mediated pathways (Zagoskina et al., 2023; Ciupei et al., 2024;
Jomova et al., 2025; Behl et al., 2022; Rebas et al., 2020; Al-
Khayri et al., 2023; Singh et al., 2024). Exercise similarly serves as
a potent physiological stimulus, enhancing muscle function,
vascular remodeling, and systemic resilience (Kan et al., 2018;
Hughes, Ellefsen, and Baar, 2018).

It has been shown that exercise and polyphenols alter miRNA
profiles, impacting angiogenic processes. Nevertheless, exactly how
polyphenols and exercise affect miRNA-mediated angiogenic
signaling is still unclear. A coherent diagram that connects these
relationships is suggested (see Figure 3), showing how exercise and

polyphenol consumption can converge on miRNA control to alter
angiogenic results. There is a vast body of research on the effects of
polyphenols and exercise separately on angiogenesis and miRNA
expression, but less is known about their combined effects. As far as
we know, this interaction has not been thoroughly examined in any
review. The lack of integrated analysis is shown in Table 1, which
provides a chronological summary of important publications
examining polyphenols, exercise, miRNAs, and angiogenesis
separately. Closing this gap is essential for creating
comprehensive cardiovascular health and chronic disease
prevention programs. Knowing whether particular miRNAs are
involved in the polyphenol-exercise-angiogenesis axis may help
identify new biomarkers for therapeutic targeting and health
monitoring. By combining knowledge from exercise physiology,
nutrition, and molecular biology, future initiatives may promote
more proactive and individualized approaches to illness prevention
and health promotion. The combination of polyphenol
supplementation and exercise training may constitute a paradigm
shift in preventive healthcare as studies continue to clarify the
complex connections among nutrition, exercise, and molecular
signaling networks.

2 Angiogenesis

Angiogenesis is the biological process through which new blood
vessels form from existing ones, playing a crucial role in tissue
development and repair (Eelen et al., 2020). New blood vessel

FIGURE 1
Biogenesis of miRNAs and their diverse roles in angiogenesis.
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processes consist of two main stages: vasculogenesis and
angiogenesis (Kubis and Levy, 2003). Vasculogenesis refers to the
initial formation of blood vessels through the generation of
endothelial cells, whereas angiogenesis involves the branching
and dividing of these preexisting vessels (Kubis and Levy, 2003).
When angiogenesis is unregulated, it can be associated with several
disease conditions, including tumors, which often induce excess
blood vessel formation to facilitate their growth (Albini et al., 2024).
Additionally, chronic degenerative disorders such as arthritis and
cardiovascular diseases can arise from abnormal angiogenesis
(Dudley and Griffioen, 2023; Caliogna et al., 2024; Zhang, 2024).
Moreover, eye diseases like diabetic retinopathy are affected by
improper blood vessel growth in the retina (Kour et al., 2024).
Multiple factors are essential for regulating angiogenesis.

2.1 Growth factors and receptors

Vascular Endothelial Growth Factor A (VEGF-A) is a crucial
regulator of angiogenesis (Wiszniak and Schwarz, 2021). VEGF is an

essential growth factor that plays a significant role in promoting
angiogenesis. VEGF stimulates the proliferation of endothelial cells,
helps prevent their programmed cell death, enhances vascular
permeability, and promotes cell migration, among other effects.
Due to these effects, it actively regulates both normal and abnormal
angiogenesis (Melincovici et al., 2018). EGFR (Epidermal Growth
Factor Receptor) and IGF-1 (Insulin-Like Growth Factor 1) are
essential factors that promote the proliferation of endothelial cells
(Sabbah, Hajjo, and Sweidan, 2020; Keller and Schmidt, 2017; Zhang
Shiyan et al., 2024). EGFR is a receptor that, when activated by its
ligands (such as EGF), triggers a cascade of intracellular signaling
pathways, including the MAPK/ERK pathway, which is essential for
cell proliferation and survival (Zhou et al., 2015). The activation of
EGFR in endothelial cells is vital for the angiogenic process, enabling
the body to adapt and respond to various physiological and
pathological conditions, such as healing and tumor growth
(Lorenc et al., 2024). The signaling pathways activated by IGF-1
binding to IGF-1R are crucial for regulating cell growth, division,
and survival, making IGF-1 an essential factor in development and
tissue maintenance (Werner, 2023). IGF-1 enhances endothelial cell

FIGURE 2
Classification of natural polyphenols.

Frontiers in Pharmacology frontiersin.org03

Sun et al. 10.3389/fphar.2025.1560305

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1560305


proliferation and survival, contributing to angiogenesis and vascular
repair processes (Zhang X. et al., 2024). CTGF (Connective Tissue
Growth Factor) aids in matrix remodeling and the formation of
blood vessels (Moon et al., 2020). Mice that lack CTGF expression
(either throughout their entire body or specifically in endothelial
cells) show significant biological changes (Moon et al., 2020). The
absence of CTGF negatively impacts the growth and function of
vascular cells, compromising the structure and functionality of
blood vessels. The development and formation of blood vessels
are negatively impacted, suggesting that CTGF plays a vital role in
proper vascular development (Moon et al., 2020). The integrity of
the blood-brain barrier or other vascular barriers is compromised,
which can seriously affect tissue health and function (Moon
et al., 2020).

2.2 Transcription factors

HIF-1α is crucial for initiating angiogenesis in response to low
oxygen levels, enabling the body to adapt to changes in oxygen
availability and maintain tissue viability (Zimna and Kurpisz, 2015).
Recent studies have demonstrated that hypoxia and the expression
of HIF-1 are crucial in angiogenesis through multiple mechanisms.
Firstly, HIF-1 triggers the transcription of various angiogenic genes
and their receptors, including PlGF, VEGF, ANGPT2, PDGFB, and
ANGPT1 (Greijer et al., 2005). These factors are essential for
initiating and maintaining the angiogenic process, as they work
together to enhance endothelial cells’ survival, proliferation, and
migration. Furthermore, HIF-1 regulates proangiogenic chemokines
such as CXCR4 (C-X-C chemokine receptor type 4) and S1PRs
(sphingosine-1-phosphate receptors), SDF-1α (stromal cell-derived
factor 1α) and S1P (sphingosine-1-phosphate), along with their

receptors (Xue et al., 2020). This modulation aids in attracting
endothelial progenitor cells to areas experiencing hypoxia,
effectively enhancing the local vascular repair and regeneration
processes. In addition, HIF-1 encourages the proliferation and
division of endothelial cells by affecting genes that control the
cell cycle and DNA replication, ensuring an adequate supply of
endothelial cells needed to form new blood vessels (Slawski et al.,
2024). Beyond these direct effects, HIF-1 is also crucial in
orchestrating the remodeling of the extracellular matrix (ECM),
which is vital for establishing a supportive environment for forming
new blood vessels (Magar et al., 2024). By promoting the production
of matrix metalloproteinases (MMPs) and other ECM components,
HIF-1 aids in the degradation of existing matrix structures, enabling
the migration of endothelial cells into hypoxic tissues. Moreover,
HIF-1 coordinates metabolic signals that respond to oxygen
availability. This integration ensures that energy production and
nutrient availability are aligned with the demands of rapidly
proliferating endothelial cells (Magar et al., 2024). The
interaction between metabolic adaptation and angiogenic
signaling is essential, as it allows cells to survive in low-oxygen
conditions while promoting the development of a functional
vascular network. In summary, the diverse functions of HIF-1 in
angiogenesis emphasize its significance in physiological processes
like wound healing and tissue regeneration and highlight its
potential as a therapeutic target for pathological conditions, such
as cancer and ischemic diseases.

2.3 Matrix degradation molecules

MMPs are a family of zinc-dependent endopeptidases that
degrade a variety of proteins in the ECM (Wang and Khalil,
2018; Cabral-Pacheco et al., 2020). MMPs are generated by
various cell types, including leukocytes, fibroblasts, and vascular
smooth muscle (VSM) cells (Wang and Khalil, 2018; Cabral-
Pacheco et al., 2020). Their activity is controlled at the mRNA
expression level and through an activation process that entails
removing the propeptide domain from their inactive zymogen
form. MMPs can also affect endothelial cell function and
influence VSM cell migration, proliferation, calcium signaling,
and contraction. They are involved in remodeling vascular tissue
during key biological processes such as angiogenesis (Wang and
Khalil, 2018; Cabral-Pacheco et al., 2020).

2.4 Maturation factors

Eph receptor tyrosine kinases and their Ephrin ligands
constitute an essential signaling system that affects multiple facets
of cell function and disease (Darling and Lamb, 2019; Zhu et al.,
2024; Pasquale, 2024b). These receptors and ligands are anchored to
the cell membrane, resulting in Eph/Ephrin interactions at cell-to-
cell contact sites (Pasquale, 2024a). EphB4 and EphrinB2 are
essential in vascular development and postnatal angiogenesis
(Zhu et al., 2024). Research on their expression and function has
associated EphB4/EphrinB2 with processes including endothelial
cell growth, assembly, migration, survival, and angiogenesis. The
signaling mechanisms involving these molecules are intricate,

FIGURE 3
The diagram illustrates the relationship between polyphenols and
exercise in regulating key miRNAs involved in angiogenesis. Both
polyphenol consumption and exercise are shown to increase the
levels of miR-126, miR-210, miR-132, and miR-146b. These
miRNAs subsequently enhance the expression of angiogenic factors,
including VEGF, FGF-2, eNOS, Ang-2, and HIF-1α, promoting
angiogenesis.
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allowing for bidirectional communication, with signals originating
from both the Ephrin ligands and Eph receptors (Salvucci and
Tosato, 2012).

3 Biogenesis and functions of miRNAs,
with an emphasis on their role in
angiogenesis

The formation of miRNAs involves several critical steps (see
Figure 1). When microRNAs are transcribed from a host gene
controlled by their promoters, they are processed intergenically
or intragenically from the introns and exons of nuclear DNA.
RNA polymerase II or III transcribes segments of specific genes
(pri-miRNAs) in lengthy double-stranded clusters known as pre-
miRNAs through the primary canonical and/or secondary non-
canonical pathways (de Mello et al., 2024). The class 2 ribonuclease
III enzyme Drosha and the protein DiGeorge Syndrome Critical
Region 8 (DGCR8) connect with pri-miRNAs in the canonical route

(Prabhakar et al., 2023). The molecule is broken down into a smaller
double-stranded pre-miRNA by this microprocessing complex of
DGCR8 and Drosha (Partin et al., 2020). Drosha cleaves the duplex
pri-miRNA into a 2 nt3’ overhang on pre-miRNA, whereas
DGCR8 identifies regions within the pri-miRNA, such as an N6-
methyladenylated GGAC and other short sequence motifs (O’Brien
et al., 2018). The protein Exportin five then exports pre-miRNAs
from the nucleus to the cytoplasm, where they are released for the
Endoribonuclease III Dicer to cleave their stem-loop, producing an
even shorter double-stranded molecule (Stavast and Erkeland 2019).
The Argonaut protein 2 (AGO2) is loaded with the 5p and 3p
strands from the pre-miRNAs 5′and 3′ends, respectively (de Mello
et al., 2024). A single strand is then released from the AGO2 after the
double strand is unwound. The dynamic environment and function
of the cell play a crucial role in determining which strand will stay
connected to the AGO2, adding a layer of complexity to the process.
But typically, the strand that stays loaded into AGO2 (the guide
strand) is the one with lesser 5′stability or 5′uracil. Conversely,
AGO2 cleaves the passenger strand (unloaded strand), which is

TABLE 1 Timeline of key studies (original and review articles) addressing the effects of polyphenols, exercise, or their combination on angiogenesis.

Study Type Focus Combined Mechanistic review?

Ramirez-Sanchez et al. (2012) Original Research Epicatechin + Exercise No

Ringholm et al. (2013) Original Research Resveratrol + Exercise No

Gliemann et al. (2014) Original Research Resveratrol + Exercise No

Mirdar et al. (2014) Original Research Curcumin + Exercise No

Chis et al. (2015) Original Research Quercetin + Exercise No

Ghorbanzadeh et al. (2016) Original Research Crocin + Exercise No

Ghorbanzadeh et al. (2017) Original Research Crocin + Exercise No

Nourshahi et al. (2017) Original Research Cinnamon + Exercise No

Sahafian et al. (2018) Original Research Genistein + Exercise No

Far et al. (2019) Original Research berberine + Exercise No

Banaei et al. (2020) Original Research Berberine + Exercise No

Ghiasi et al. (2020) Original Research Garlic + Exercise No

Dariushnejad et al. (2020) Original Research Crocin + Exercise No

Dehbozorgi et al. (2020) Original Research Royal Jelly + Exercise No

Khosravi et al. (2020) Original Research Green tea + Exercise No

Kouchaki et al. (2020) Original Research Curcumin + Exercise No

Sadeghian et al. (2021) Original Research Genistein + Exercise No

Jalali and Shahidi, (2021) Original Research Quercetin + Exercise No

Abdehvand et al. (2022) Original Research Quercetin + Exercise No

Pouya et al. (2023) Original Research Crocetin + Exercise No

Ghasemi et al. (2023) Original Research Resveratrol + Exercise No

Zangiband et al. (2024) Original Research Royal Jelly + Exercise No

— Review Exercise alone and angiogenesis No

— Review Polyphenols alone and angiogenesis No

— Review Combined Polyphenols + Exercise (Mechanistic) X None found
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TABLE 2 Effects of polyphenols and exercise alone or together on angiogenic signaling.

Polyphenols Dose Exercise
modalities

Exercise
training
modality

Duration Sample
size

Mechanism Effect type
(combined
polyphenols and
exercise)

Models Ref.

Garlic 250 mg/kg/day Voluntary
training

Running wheel For 6 weeks 32 Male Wistar
rats

miRNA-210↑, miRNA-126↑ Synergistic In vivo Ghiasi et al. (2020)

Crocin 50mg/kg, 6 days a
week, for 8 weeks

Voluntary
Exercise

Running wheel For 8 weeks 35 rats miRNA-210↑, miRNA-126↑ Synergistic In vivo Dariushnejad et al.
(2020)

Crocin 50 mg/kg Voluntary
Exercise

Running wheel For 8 weeks 40 Male Wistar
rats

ERK1/2↑, Akt↑, miRNA-210↑, miRNA-
126↑, CD31↑

Synergistic In vivo Ghorbanzadeh et al.
(2017)

Royal jelly 100 mg/kg Aerobic Training Treadmill 5 sessions/week for
8 weeks

30 female
OVXD rats

miRNA126↑,miRNA-210↑ Additive/Synergistic In vivo Zangiband et al.
(2024)

Royal jelly 100 mg/kg Aerobic Training Swimming 3 times/week/for
8 weeks

25 rats with AD BDNF↔, NGF↔ Additive In vivo Dehbozorgi et al.
(2020)

Berberine 10 mg/kg Aerobic Training Treadmill 5sessions/week for
8 weeks

50 rats VEGF↑, FGF2↑ Synergistic In vivo Banaei et al. (2020)

Berberine 2 and 15 mg/kg
for 5 weeks

Resistance
Training

N/A N/A 40 male Wistar
rats

IGF1↑,PDGF↑,VEGF↑ Synergistic In vivo Far et al. (2019)

Genistein 1 mg/kg/day Aerobic Training Swimming 1 session/day,
3 days a week, for
5weeks

48 Female
Wistar rats

miRNA-146b↓, miRNA-132↓, TNF-α↓,
IL-1β↓, VEGF↓ NF-κB↓, ERK↓, MMP-2↓

In vivo Sadeghian et al.
(2021)

Genistein 100 mg/kg Aerobic Training Swimming 49 male Wistar
rats

NO↑, VEGF↑ Synergistic In vivo Sahafian et al.
(2018)

Quercetin 110 mg/kg, 3 days
per weeks, for
6 weeks

Aerobic exercise Treadmill 5–20 min/day,
5 days a week, for
8 weeks

24 female
BALB/c

VEGF-A↓,TIE-2 ↔ Synergistic/Additive In vivo Jalali and Shahidi,
(2021)

Quercetin 30 mg/kg Aerobic exercise Swimming 1 h/day, 5 days/
week, 4 weeks

80 healthy
Wistar albino
male rats

MDA↓, PC↓, SOD↑, CAT↑, NOx↓, iNOS↓ Synergistic In vivo Chis et al. (2015)

Quercetin 0.25 mg for
8 weeks

Interval training HIIT 1 session for
90 min

30 rats NF-κB↑, FGF-2↑ Synergistic In vivo Abdehvand et al.
(2022)

Crocetin 30 mg/kg per day HIIT Training HIIT 5 session/week for
8 weeks

45 elderly male
mice with
Diabetes

FGF-2↑, NO↓ Synergistic In vivo Pouya et al. (2023)

Resveratrol 250 mg/day for
8 weeks

Exercise training Intense exercise
training

60 min/session,
3 days/week, for
6 weeks

43 healthy men VEGF↔, TIMP-1↔, VEGFR-2↔ Synergistic Human Gliemann et al.
(2014)

Resveratrol 4 g/kg food Aerobic Training Running wheel N/A N/A PGC-1α, VEGF Synergistic In vivo

(Continued on following page)
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TABLE 2 (Continued) Effects of polyphenols and exercise alone or together on angiogenic signaling.

Polyphenols Dose Exercise
modalities

Exercise
training
modality

Duration Sample
size

Mechanism Effect type
(combined
polyphenols and
exercise)

Models Ref.

Ringholm et al.
(2013)

Resveratrol 20 mg/kg Aerobic Training Treadmill 1 h/day, 5 days a
week, for 4 weeks

40 old male
Wistar rats

VEGF↑, adropin↑, FGF-2↑,
NO↑,Angiostatin↓

Synergistic In vivo Ghasemi et al.
(2023)

Green tea extract 3 times/week for
8 weeks

Aerobic Training Treadmill 5 days/week 90 Wistar rats MMP-2↓, MMP-9↔, VEGF↔ Antagonist/Additive In vivo Khosravi et al.
(2020)

(−)-Epicatechin 1 mg/kg twice
daily

Aerobic Training Treadmill 5 sessions/week,
for 8 weeks

25 old, C57BL/
6N male mice

CD31↑,HIF1α↑,VEGF↑,VEGFR-2↑ Synergistic In vivo Ramirez-Sanchez
et al. (2012)

Curcumin 100 mg/kg Endurance
Training

Treadmill 5 sessions/week,
for 5 weeks

40 female BALB/
c mice

miRNA-126↑, Angiopoietin-1↓ Synergistic In vivo Kouchaki et al.
(2020)

Curcumin 30 mg/kg
3 day/week for
8 weeks

Endurance
Training

Treadmill 3 times/week for
8 weeks

60 male Wistar
rats

VEGF↔ Additive In vivo Mirdar et al. (2014)

Cinnamon 200 mg/kg/day Exhaustive
exercise

Treadmill 8 weeks 32 male Wistar
rats

VEGF↓, SOL muscle Endostatin↑, EDL
muscle Endostatin↓

Synergistic/Additive In vivo Nourshahi et al.
(2017)
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often the 3p one, and cellular processes then destroy it. But typically,
the strand that stays loaded into AGO 2 (the guide strand) is the one
with lesser 5′stability or 5′uracil. Pre-miRNAs created by Drosha
and DGCR8 are also the source of microRNAs produced by non-
canonical pathways. Pre-miRNAs created by Drosha, DGCR8, and
Dicer activities also produce microRNAs produced by non-
canonical pathways (Havens et al., 2012). Nevertheless, Exportin
one exports the pre-miRNAs straight to the cytoplasm without
Drosha cleavage (Martinez et al., 2017). Alternatively, in this
route, the 3p strand serves as the guide strand since the 5p
strand is typically not the central strand loaded into the
AGO2 due to a 7-methylguanosine (m7-G) cap in the double-
strand pre-miRNA (Martinez et al., 2017). In addition, Drosha
generates a few pre-miRNAs from endogenous short hairpin
RNA transcripts (Yang et al., 2010). Because of their brief length,
the AGO2 completes its maturation in the cytoplasm by attaching to
both strands and creating a single strand following the trimming of
the 5p (Yang et al., 2010). Many miRNAs, with a half-life of a few
days to a few weeks, exhibit remarkable stability (Coenen-Stass et al.,
2019). This is primarily due to their robust association with Ago
proteins, which act as a shield against exoribonucleases. Even when
the Ago–miRNA complex eventually dissociates, the Iruka
E3 ubiquitin ligase turns over unloaded Ago (Kobayashi et al.,
2019). However, this is not the end of the story. Free miRNAs,
once unloaded, are subject to exoribonucleolytic degradation, a
process that underlines the urgency of this degradation
mechanism. miRNAs are vital in regulating angiogenesis,
impacting a range of processes. Pro-angiogenic miRNAs, such as
miR-126, enhance endothelial cell migration and proliferation,
thereby promoting the formation of new blood vessels (Guo
et al., 2025). miR-210 plays a crucial role in responding to
hypoxic conditions, supporting cell survival and adaptation,
which facilitates angiogenesis (Saadh et al., 2025). Additionally,
miR-132 is involved in vascular remodeling and the regulation of
endothelial function, contributing to overall vascular health
(Arcucci et al., 2021). Conversely, anti-angiogenic miRNAs, like

miR-145, inhibit endothelial cell migration and tube formation,
serving as negative regulators of angiogenesis (Pan et al., 2021; Yang
et al., 2010).

4 Different exercise types and its
physiological mechanisms on miRNAs

Different types of exercise have distinct physiological impacts on
angiogenesis, each contributing to vascular health in unique ways.
Aerobic exercise, which includes activities like running, cycling, and
swimming, enhances blood flow and oxygen delivery to tissues while
stimulating the production of growth factors such as VEGF (Ross
et al., 2023; Pinckard et al., 2019; Ghahramani and Majd, 2020).
Aerobic exercise also promotes the expression of angiogenic
microRNAs, resulting in improved capillary density (Dastah
et al., 2020; Lou et al., 2022; Zhao et al., 2023). High-intensity
interval Training (HIIT), characterized by alternating short bursts of
intense activity with periods of rest, increases levels of angiogenic
factors like Fibroblast Growth Factor-2 (FGF-2) and enhances
mitochondrial biogenesis and vascular remodeling, leading to
significant improvements in endothelial function (Banaei et al.,
2020; Torma et al., 2019; Li, Zhao, and Yang, 2025). Resistance
training, encompassing weightlifting and bodyweight exercises,
increases muscle mass, thereby improving local blood flow and
stimulating the release of growth factors that contribute to
angiogenesis while upregulating miRNAs associated with vascular
health (Verdijk et al., 2016; Alves et al., 2025; Mei et al., 2024).
Swimming, a full-body workout often regarded as low-impact,
enhances cardiovascular fitness and promotes capillary growth in
muscle tissues (Mølmen, Almquist, and Skattebo, 2025; Zhao et al.,
2023), while also increasing levels of neurotrophins that support
angiogenic processes and potentially reducing oxidative stress to
benefit endothelial function (Dehbozorgi et al., 2020; Sadeghian
et al., 2021). Overall, engaging in various exercise modalities can
optimize cardiovascular health and enhance the body’s ability to

TABLE 3 Combined effects of polyphenols and exercise on microRNAs.

Polyphenols Modalities Sample
size

Dose Exercise
protocol

Effect
type

Models miRNAs
expression

Ref.

Cinnamon Exercise
training

32 diabetic rats 200 mg/kg Swimming for
5 session weekly

Synergistic In vivo miRNA-133a↑,
miRNA-21↑

Najafabadi et al.
(2023)

Quercetin Exercise
training

40male LDLr−/−

mice on
C57BL/6J

100 g/day Treadmill for
30 min,15 m/m/
5 days/week for

30 days

Synergistic/
additive

In vivo miRNA-21↑,
miRNA-125-b↑ and
miRNA-451↓

Garelnabi and
Mahini, (2014)

Royal jelly Exercise
training

42 rats 50 mg/kg
and

100 mg/kg

Running wheel for
5 weeks (5 days/

week)

Synergistic In vivo miRNA-34a-5p ↓,
miRNA-155-3p↓

Lohrasbi et al.
(2022)

Genistein Exercise
training

60 female
Wistar rats

1 mg/kg/day Swimming
(5–20 min/day) for

5 days

Synergistic In vivo miRNA-132↑ Habibi et al.
(2017)

Genistein Exercise
training

56 rats 1 mg/kg,
daily for
8 weeks

Swimming (60 min/
day) for 6days/

weeks

Synergistic In vivo miRNA-133↑ Nazari-Serenjeh
et al. (2021)

Soy Isoflavone HIIT 50 female
Wistar rats

60 mg/kg/
day

HIIT 5 days per
week for 6 weeks

Additive In vivo miRNA-133↑ Mirheidari et al.
(2022)
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adapt to physiological demands, highlighting the importance of a
comprehensive approach to fitness.

5 Effects of polyphenols and exercise in
angiogenic signaling

Polyphenols, natural compounds found in plants, have gained
attention for their potential health benefits, including their roles in
angiogenesis (Cao, Cao, and Bråkenhielm, 2002). Angiogenesis is
essential in numerous physiological and pathological contexts, such
as cardiovascular diseases, wound healing, and cancer (La Mendola,
Trincavelli, and Martini, 2022; Peña and Martin, 2024; Zhang X.
et al., 2024). Exercise-induced angiogenesis can greatly enhance
cardiovascular and metabolic health, improving muscle glucose
uptake, crucial for diabetes prevention (Ross et al., 2023). Here’s
an overview of the pro-angiogenic and anti-angiogenic effects of
polyphenols and exercise alone and combined (see Table 2).

5.1 Garlic

The contributions of garlic and exercise to promoting
angiogenesis are complex and involve various molecular
mechanisms, primarily through the modulation of specific
miRNAs like miR-210 and miR-126 (Naderi et al., 2019). Regular
exercise improves cardiovascular function by increasing blood flow,
which can stimulate angiogenesis. This is crucial for delivering
oxygen and nutrients to tissues, especially in conditions like
diabetes. Exercise training has significantly increased the
expression of miR-210 and miR-126 in myocardial tissue (Naderi
et al., 2019). miR-126 is crucial for endothelial cell function and
vascular integrity (Jansen et al., 2013; Chistiakov, Orekhov, and
Bobryshev, 2016). miR-126 facilitates angiogenesis by boosting the
signaling pathways associated with VEGF (Gao et al., 2021). Under
hypoxic conditions, miR-210 is upregulated, facilitating angiogenic
responses that improve microcirculation and tissue oxygenation.
This is particularly important in situations where tissue perfusion is
compromised. The research conducted by Ghiasi et al. demonstrated
that voluntary exercise, when paired with garlic supplementation at
250 mg/kg per day, significantly improved myocardial angiogenesis
(Ghiasi et al., 2020). This was demonstrated by increased levels of
CD31, a marker for endothelial cells, which indicates improved
blood vessel formation (Kim et al., 2022). Garlic is rich in bioactive
compounds, notably allicin, which possesses antioxidant and anti-
inflammatory properties (Shang et al., 2019). These effects
contribute to cardiovascular health and can enhance angiogenic
processes (Naderi et al., 2019). Garlic consumption has been linked
to increased expressions of both miR-126 andmiR-210 (Ghiasi et al.,
2020; Naderi et al., 2019). Garlic enhances VEGF signaling, which is
crucial for angiogenesis (Ghiasi et al., 2020). By improving this
signaling pathway, garlic can stimulate the formation of new blood
vessels, especially in situations of reduced perfusion. Garlic may act
as a hydrogen sulfide donor, a molecule recognized for regulating
angiogenesis. Hydrogen sulfide can upregulate miR-126 (Ghiasi
et al., 2020), thus further promoting vascular health. The pairing
of garlic and exercise produces an additive effect that boosts miRNA
expression and encourages angiogenesis (Naderi et al., 2019; Ghiasi

et al., 2020). This synergism suggests that utilizing both
interventions can improve vascular function and structure
beyond the benefits of each alone. Both garlic and exercise
significantly promote angiogenesis by modulating critical
miRNAs like miR-126 and miR-210 (Ghiasi et al., 2020).
Enhancing endothelial function, improving VEGF signaling, and
inducing angiogenic responses contribute to better cardiovascular
health. Their combined effects enhance these benefits, positioning
them as promising strategies for improving vascular health,
particularly those at risk for cardiovascular diseases. Additional
research is necessary to fully elucidate the underlying
mechanisms and optimize these interventions for therapeutic
applications.

5.2 Crocin

Regular voluntary exercise is linked to beneficial changes in
cardiovascular health, including improved angiogenesis (Pinckard
et al., 2019). Exercise enhances the expression of VEGF, a key pro-
angiogenic factor (Pinckard et al., 2019). Exercise helps lower
oxidative stress, which can harm cardiovascular health (Pinckard
et al., 2019). This reduction may facilitate better angiogenic
responses. Exercise has been shown to upregulate miR-210,
which promotes angiogenesis by enhancing cell migration and
capillary formation (Dariushnejad et al., 2020). Crocin has
antioxidant, anti-inflammatory, and cardioprotective properties
(Bastani et al., 2022; Demir et al., 2022). Crocin enhances the
expression of VEGF, which is crucial for angiogenesis (Saharkhiz
et al., 2021). Crocin administration significantly increases the
expression levels of miR-126 and miR-210, which are essential
for promoting angiogenesis (Ghorbanzadeh et al., 2017). These
microRNAs enhance the signaling pathways involving Akt and
ERK1/2, leading to improved angiogenic responses
(Ghorbanzadeh et al., 2017). Voluntary exercise stimulates
angiogenesis by increasing the capillary network in heart tissue
(Ghorbanzadeh et al., 2016). This process is also VEGF-dependent.
Exercise further elevates the expression of miR-126 and miR-210,
amplifying their angiogenic effects (Dastah et al., 2020;
Dariushnejad et al., 2020). The combination of exercise and
crocin at 50 mg/kg, 6 days a week for 8 weeks, produces a
synergistic effect that significantly boosts angiogenesis compared
to either treatment on its own (Dariushnejad et al., 2020). The
combination of crocin at 50 mg/kg and voluntary exercise results in
a significant increase in Akt and ERK1/2 protein levels, further
enhancing angiogenic signaling (Ghorbanzadeh et al., 2017). The
study concludes that both interventions benefit heart angiogenesis
by modulating key microRNAs and signaling pathways, suggesting
potential therapeutic strategies for cardiovascular health.

5.3 Royal jelly

Exercise can be divided into different categories, such as aerobic,
strength training, and flexibility exercises, each providing distinct
health advantages. Aerobic training significantly elevates levels of
VEGF and endothelial nitric oxide synthase (eNOS), which are
critical for angiogenesis (Pinckard et al., 2019). Exercise enhances
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the expression miR-210, which is known to promote angiogenesis
under hypoxic conditions (Bei et al., 2024), and miR-126, which
positively influences the PI3K/VEGF pathway (Fernandes et al.,
2012; Gomes et al., 2017). Regular aerobic exercise leads to better
lipid profiles and reduces oxidative stress, further supporting
vascular health and angiogenesis (Roque et al., 2013). Royal jelly
contains antioxidants that help reduce oxidative damage, crucial for
maintaining healthy endothelial function and promoting
angiogenesis (Oršolić and Jazvinšćak Jembrek, 2024).
Consumption of 100 mg/kg of royal jelly elevates levels of VEGF
and eNOS, comparable to the effects of exercise (Zangiband et al.,
2024). This is linked to its ability to enhance miR-210 and miR-126
levels (Zangiband et al., 2024). Although both interventions offer
individual benefits, the combined effect of royal jelly and aerobic
training is less significant for specific markers (such as VEGF and
eNOS) than their impact when administered separately
(Dariushnejad et al., 2020).

Exercise, specifically swimming training, is linked to increased
levels of neurotrophins such as brain-derived neurotrophic factor
(BDNF) and nerve growth factor (NGF) (Zhang Shiyan et al., 2024;
Dehbozorgi et al., 2020). These factors are crucial for neuronal
health and can promote angiogenesis by enhancing blood flow and
nutrient delivery to brain tissues (Blais et al., 2013). Regular physical
activity improves cerebral blood flow, essential for maintaining
healthy brain function and supporting the growth of new blood
vessels (Yen et al., 2023). Exercise may activate signaling pathways,
such as the phosphoinositide 3-kinase (PI3K) pathway (Weeks et al.,
2012), which are associated with promoting angiogenesis and
neuronal survival. Royal jelly is known for its antioxidant
properties, which help reduce oxidative stress in the brain. This
stress reduction can lead to improved endothelial function and
support angiogenesis. The Dehbozorgi et al. (2020) study found
that consuming royal jelly at 100 mg/kg significantly elevated NGF
levels in the hippocampus, which is crucial for neuronal growth and
survival, indirectly supporting angiogenic processes. Royal jelly has
been shown to promote neurogenesis, particularly in the
hippocampus, which can enhance the brain’s ability to repair and
regenerate (Momeni et al., 2025), further supporting angiogenic
signaling. Both exercise and royal jelly consumption play critical
roles in strengthening angiogenic signaling through their effects on
neurotrophic expression, blood flow improvement, and oxidative
stress reduction. While exercise promotes the production of
neurotrophic factors and enhances cerebral circulation, royal jelly
contributes by increasing NGF levels and providing neuroprotective
benefits. However, the study noted that their combined effects did
not significantly change BDNF and NGF expression when
administered simultaneously.

5.4 Berberine

HIIT increases VEGF levels, promoting the proliferation and
differentiation of vascular endothelial cells, which is crucial for new
blood vessel formation (Banaei et al., 2020). HIIT also elevates
fibroblast growth factor 2 (FGF2), which supports endothelial cell
proliferation and organization (Banaei et al., 2020). FGF2 plays a
crucial role in angiogenesis by activating endothelial cells through its
binding to FGF receptors (FGFR1–FGFR4) on their surface (Jia

et al., 2021). Regular high-intensity exercise helps decrease levels of
caspase-3, a marker of apoptosis (Banaei et al., 2020). This reduction
is significant as it mitigates cell death in endothelial cells, thereby
enhancing angiogenesis. The exercise protocol improved cardiac
function post-reperfusion, as indicated by better echocardiographic
indices in the intervention groups than in the control group (Banaei
et al., 2020). Berberine supplementation increased the expression of
angiogenic factors like VEGF, suggesting its role in promoting
angiogenesis in ischemic tissues (Banaei et al., 2020). Berberine
has been linked to reduced levels of caspase-3, which contributes to
its protective effects on endothelial cells during ischemia-
reperfusion injury (Banaei et al., 2020). Combining berberine at
10 mg/kg with high-intensity interval training (HIIT) led to a more
significant enhancement in angiogenic signaling than either
treatment on its own (Banaei et al., 2020). This synergy enhances
the overall angiogenic response, leading to improved recovery of
myocardial tissue. HIIT and berberine play crucial roles in
enhancing angiogenic signaling by increasing the expression of
pro-angiogenic factors and reducing apoptosis. Their combined
use maximizes these benefits, suggesting a potential therapeutic
strategy for conditions like ischemic heart disease.

Resistance training significantly increased the expression of
angiogenic factors such as IGF-1, Platelet-Derived Growth Factor
(PDGF), and VEGF (Far et al., 2019). IGF-1 facilitates the
development of new blood vessels. IGF-1 does this by
upregulating angiogenic factors such as vascular endothelial
growth factor (VEGF) through the activation of the MAPK and
PI3K/AKT signaling pathways (Ackermann et al., 2012). PDGF is
involved in cell growth, and PDGF plays a role in angiogenesis and
tissue repair (Jian et al., 2022). Exercise helps counteract the adverse
effects of diazinon toxicity, which can impair angiogenesis and
neuronal health (Far et al., 2019). Resistance training facilitates
recovery and neuroprotection by increasing the expression of VEGF
and other growth factors. Supplementation with berberine at 2 and
15 mg/kg for 5 weeks also increased levels of IGF-1, PDGF, and
VEGF, indicating its positive impact on angiogenesis (Far et al.,
2019). This is particularly important in the context of diazinon-
induced damage. Berberine has neuroprotective properties (Sunhe
et al., 2024)and can enhance neuronal survival pathways, which may
further support angiogenesis in the hippocampus (Nathan et al.,
2024). The study indicates that the combination of berberine
supplementation and resistance training maximizes the
expression of angiogenic factors compared to each treatment
alone, illustrating a synergistic effect that could enhance recovery
from toxin exposure (Far et al., 2019). Both resistance training and
berberine supplementation contribute positively to angiogenic
signaling by increasing key growth factors like IGF-1, PDGF, and
VEGF. Together, they help reduce the harmful effects of diazinon
and promote recovery in brain tissue, underscoring their potential
therapeutic roles in enhancing angiogenesis and neuronal health.

5.5 Genistein

Regular swimming exercise has been demonstrated to lower
VEGF levels in pathological conditions like retinal
neovascularization (Sadeghian et al., 2021). This variation from
other studies was likely attributed to differences in the test
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protocols, animal species, or age (Sahafian et al., 2018). Exercise can
help inhibit excessive blood vessel formation in the retina. Exercise
influenced the expression of miRNAs, specifically miR-132 and
miR-146a, which are involved in cellular processes that regulate
angiogenesis and inflammation (Sadeghian et al., 2021). These
miRNAs can promote cell survival and inhibit apoptosis,
affecting overall retinal health. Physical activity reduces
inflammatory markers such as IL-1β and TNF-α, which are
known to play a role in angiogenesis (Sadeghian et al., 2021). By
mitigating inflammation, exercise supports healthier angiogenic
responses. Genistein, a phytoestrogen, mimics estrogen’s
protective effects, particularly in the retina (Nebbioso et al.,
2012). Genistein has antioxidant and anti-inflammatory
properties that help counteract oxidative stress and inflammation,
which are detrimental to angiogenesis (Nebbioso et al., 2012).
Genistein treatment at 1 mg/kg per day was associated with
decreased expression of VEGF and MMP-2, which play critical
roles in angiogenesis (Sadeghian et al., 2021). This suggests that
genistein helps normalize angiogenic signaling pathways disrupted
by diabetes. Combined, exercise and genistein treatment yielded
more significant improvements in angiogenic signaling than either
intervention alone, indicating a synergistic effect (Sadeghian et al.,
2021). This combination effectively reduced retinal
neovascularization and restored healthier signaling pathways.
Both exercise and genistein play crucial roles in regulating
angiogenic signaling in the retina, particularly in diabetes
conditions and hormonal changes due to ovariectomy. Their
combined effects promote a healthier retinal environment by
reducing inflammation, oxidative stress, and abnormal blood
vessel formation.

Exercise, especially acute swimming for 90 min, significantly
increases the levels of NO and VEGF in cardiac tissue (Sahafian
et al., 2018). This suggests that physical activity stimulates
angiogenic pathways, promoting the formation of new blood vessels.
Exercise-induced shear stress enhances NO production, which plays a
critical role in vasodilation and preventing platelet aggregation. Physical
activity boosts hormonal growth factors, such as growth hormone
(GH), which can activate pathways that increase angiogenic factors like
VEGF.When administered at 100mg/kg, genistein did not significantly
increase NO or VEGF levels compared to the control and saline groups
when used alone (Sahafian et al., 2018). However, it was part of
combinations (with exercise) that showed increased levels. Genistein
is known to enhance the activity of nitric oxide synthase (NOS), leading
to increased NO production (Sahafian et al., 2018). Genistein may
enhance angiogenesis when combined with exercise by potentially
improving endothelial function. The study (Sahafian et al., 2018)
concludes that while exercise alone is a robust stimulus for
angiogenic signaling through increased NO and VEGF, adding
genistein may enhance these effects, particularly in exercise.
However, more research is needed to fully understand the
interactive mechanisms and the potential benefits of genistein
supplementation alongside physical activity.

5.6 Quercetin

The roles of quercetin and exercise in promoting angiogenesis
are significant, particularly in cardiovascular health and cancer

management (Papakyriakopoulou et al., 2022; Kwak et al., 2018).
Quercetin, a flavonoid known for its antioxidant effects (Anand
David et al., 2016), has demonstrated strong anti-angiogenic
properties. In studies, quercetin supplementation significantly
reduced vascular endothelial growth factor-A (VEGF-A)
expression, which is crucial for new blood vessel formation
(Lupo et al., 2019; Uttarawichien et al., 2021). For example, the
combination of quercetin at 110 mg/kg taken three times a week for
6 weeks along with aerobic exercise resulted in a significant
reduction in VEGF-A levels compared to the control group,
underscoring its potential to amplify the anti-angiogenic benefits
of exercise (Jalali and Shahidi, 2021). Quercetin helps neutralize free
radicals and reduce oxidative stress (Xu et al., 2019). By lowering
oxidative stress in endothelial cells, quercetin creates a more
favorable environment for angiogenesis (Jalali and Shahidi, 2021).
This is important because oxidative stress can hinder endothelial
function and vascular growth. Quercetin at a dosage of 30 mg/kg
enhances endothelial function by boosting the availability of nitric
oxide (NO), a key factor for vasodilation and the formation of new
blood vessels (Chis et al., 2015). Maintaining NO levels supports
angiogenesis and enhances blood flow. Quercetin has been shown to
decrease inflammatory markers, such as inducible nitric oxide
synthase (iNOS) (Chis et al., 2015). Reduced inflammation
benefits angiogenesis, as chronic inflammation can impair blood
vessel formation. Quercetin at a dose of 0.25 mg for 8 weeks has also
been associated with the promotion of FGF-2, an important factor in
angiogenesis (Abdehvand et al., 2022). This is particularly relevant
for tissue repair following myocardial infarction (MI), where FGF-2
supports the formation of new blood vessels in damaged myocardial
tissue (Farooq et al., 2021; Li et al., 2021). Regular aerobic exercise
enhances cardiovascular function and blood flow, crucial for
stimulating angiogenesis (Pinckard et al., 2019). The mechanical
forces produced during exercise can stimulate the expression of
angiogenic factors like VEGF and FGF-2 (Abdehvand et al., 2022).
Exercise also improves overall metabolic health, enhances immune
function, and reduces systemic inflammation, creating an
environment more conducive to angiogenesis. Aerobic exercise
has been shown to positively influence vascular health by
affecting the expression of various factors, including VEGF-A
and TIE-2 (Dariushnejad et al., 2023; Dopheide et al., 2016).
Some studies, such as those involving sustained ischemia models,
reported that quercetin did not significantly improve exercise
performance or blood supply. This raises questions about its
efficacy in specific contexts, such as peripheral arterial disease
(PAD), where quercetin and exercise may not produce the
expected angiogenic benefits (Phie et al., 2021). The integrated
approach of combining dietary supplements like quercetin with
lifestyle modifications such as exercise is promising for managing
cancer progression and improving cardiovascular health
(Sadighparvar et al., 2020; Khajehlandi and Bolboli, 2024).
However, further research remains needed to explore the
mechanisms and optimize these combined strategies for clinical
applications. It is crucial to understand the interactions between
quercetin and exercise, as it underscores the complexity of the
research and the need for a comprehensive understanding of the
topic. Quercetin and exercise play crucial roles in promoting
angiogenesis through complementary mechanisms. Quercetin’s
antioxidant properties, ability to enhance NO availability, and
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reduction of inflammation work synergistically with the benefits of
exercise, which improves blood flow and induces angiogenic factor
expression (Sumi et al., 2013; Zaheri et al., 2023). Together, they
present a multifaceted strategy for enhancing vascular health,
particularly in contexts like myocardial infarction and cancer
management (Zaheri et al., 2023). Further research is essential to
understand their interactions and develop effective therapeutic
protocols fully.

5.7 Crocetin

Crocetin, derived from saffron, has antioxidant properties that
help reduce tissue oxidative stress and inflammation (Zaheri et al.,
2023). This is crucial for maintaining a healthy environment for
angiogenesis, especially in diabetic conditions where oxidative
damage is prevalent. The Pouya et al. (2023) study demonstrated
that Crocetin supplementation at 30 mg/kg per day, when paired
with aerobic exercise, significantly enhanced the expression of FGF-
2. FGF-2 is a key factor in promoting the proliferation andmigration
of endothelial cells, which are essential for angiogenesis (Jia et al.,
2021). The findings indicated that crocetin also influenced NO gene
expression (Pouya et al., 2023). Lower NO levels with increased
FGF-2 suggest a complex interaction where crocetin may help
balance these factors to optimize angiogenesis. HIIT improves
cardiovascular fitness by increasing blood flow and inducing
shear stress on blood vessels. This physical stimulus is critical for
promoting angiogenesis through various signaling pathways. The
aerobic exercise regimen significantly increased FGF-2 expression in
both prediabetic and diabetic groups (Pouya et al., 2023). This
enhancement reflects the ability of physical activity to stimulate
angiogenic mechanisms in the heart, counteracting the adverse
effects of diabetes. The combination of HIIT and crocetin
resulted in significantly lower insulin and glucose levels in the
treated groups (Pouya et al., 2023). Improved metabolic profiles
are associated with enhanced vascular health and reduced risk of
cardiovascular complications. The Pouya et al. study concludes that
crocetin and HIIT function synergistically to enhance angiogenesis
in heart tissue affected by prediabetes and diabetes (Pouya et al.,
2023). The increase in FGF-2 expression and the modulation of NO
levels highlight their combined potential to improve vascular health.
Therefore, incorporating periodic aerobic exercise and crocetin
supplementation could be beneficial strategies for managing
angiogenesis-related issues in elderly individuals with prediabetes
and diabetes.

5.8 Resveratrol

In the context of angiogenesis, resveratrol and exercise play
significant roles, albeit through different mechanisms and outcomes.
Exercise training is well-documented for its ability to enhance
angiogenesis (Li et al., 2022a), evidenced by increased capillary-
to-fiber (C:F) ratios and elevated levels of angiogenic factors like
VEGF and VEGF receptor-2 (VEGFR-2) (Gliemann et al., 2014).
These factors promote new blood vessel formation and improve
oxygen delivery to skeletal muscle. Regular physical activity
stimulates the release of angiogenic factors, which is particularly

vital for older adults, as physiological adaptability changes make
efficient oxygen transport critical for maintaining muscle function
and overall health (Song et al., 2023). The effectiveness of exercise in
promoting angiogenesis is linked to the presence of peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α), which
mediates the beneficial effects of exercise on muscle capillarization
(Gliemann et al., 2014). Exercise-induced shear stress on endothelial
cells also normalizes premature senescence, reinforcing the
restorative effects of physical activity on vascular health
(Gliemann et al., 2014). Resveratrol is a polyphenol known for its
antioxidant effects, which are expected to enhance the angiogenic
response to exercise (Gliemann et al., 2014). Resveratrol can mimic
some cellular effects of physical activity, such as promoting
mitochondrial biogenesis (Gliemann et al., 2014) and improving
metabolic health (Sergi et al., 2020). However, studies, such as those
by Gliemann et al. (2014), suggest that resveratrol supplementation
at 250 mg per day for 8 weeks may not promote angiogenesis as
expected. Specifically, it did not increase C: F ratios or elevate VEGF
levels in muscle tissue, suggesting that resveratrol might counteract
some of the positive effects of exercise on angiogenesis (Gliemann
et al., 2014). In recent studies, it has been noted that resveratrol
negatively affects VEGF expression in cultured adipocytes (Cullberg
et al., 2013). Resveratrol effectively blocks the hypoxia-induced
increase in VEGF mRNA expression (Cullberg et al., 2013).
Commonly, VEGF is upregulated in response to hypoxia to
promote angiogenesis. However, resveratrol’s inhibitory effect on
this response in adipose tissue may impact vascularization and
metabolic processes within that environment. While resveratrol
at 20 mg/kg can increase certain angiogenic factors (like VEGF
and adropin) and enhance NO production (Ghasemi et al., 2023)—
vital for blood flow and endothelial cell proliferation—it did not
improve muscle capillarization (Gliemann et al., 2014). In the study
by Ringholm et al. (2013), it was discovered that resveratrol
supplementation at 4 g/kg of food, whether given alone or
alongside exercise training, did not affect VEGF protein levels or
the capillary-to-fiber ratio in aged mice. This finding, which
challenges the conventional understanding of resveratrol’s effects,
underscores the complexity of its actions and raises crucial questions
about its efficacy in promoting angiogenic adaptations in aging
muscle tissue. Instead, resveratrol appeared to lower the levels of
tissue inhibitors of metalloproteinases (TIMP-1), a key factor in
regulating the remodeling of the extracellular matrix, potentially
disrupting the processes that exercise promotes angiogenesis
(Gliemann et al., 2014). The interaction between resveratrol and
exercise is complex. While both benefit vascular health, their
combined effects may not be additive. Resveratrol’s potential to
undermine the angiogenic benefits of exercise raises essential
questions about dietary supplements’ roles in conjunction with
physical activity. These findings suggest a need for reevaluating
the role of resveratrol and similar supplements in promoting
vascular health, particularly in aging populations. Understanding
the specific pathways influenced by resveratrol could help optimize
exercise programs and nutritional strategies. The need for further
research is paramount to elucidate how resveratrol interacts with
exercise and to clarify its mechanisms. This knowledge could lead to
more effective interventions to improve older adults’ quality of life
and functional capacity, enabling them to maintain an
active lifestyle.
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In conclusion, while exercise is a potent stimulus for enhancing
angiogenesis, the role of resveratrol is less straightforward. However,
it shows promise in supporting endothelial function, offering a
hopeful avenue for future research and potential health benefits.
Understanding these interactions will be crucial for developing
comprehensive strategies for promoting vascular health and
combating the effects of aging.

5.9 Green tea

The role of green tea extract (GTE) and exercise in angiogenesis
presents an interesting dynamic, particularly in cancer and
cardiovascular health (Alam et al., 2022; Guo et al., 2023).
Epigallocatechin-3-gallate (EGCG), a principal constituent of
GTE, is noted for its potential chemopreventive properties (Datta
et al., 2022). It can inhibit cell growth and reduce tumor-related
factors, particularly vascular endothelial growth factor (VEGF),
which is crucial for angiogenesis (Liao et al., 2020). GTE also has
been shown to suppress MMPs, specifically MMP-2 and MMP-9,
which are involved in tumor invasion and angiogenesis (Tanabe
et al., 2023). However, the study by Khosravi et al. (2020) found no
significant changes in MMP or VEGF levels following GTE
consumption three times a week for 8 weeks, indicating that the
anticipated anti-angiogenic effects were not achieved under the
experimental conditions.

Several factors could explain the discrepancies between the study
by Khosravi et al. (2020) and other studies that report the anti-
angiogenic effects of GTE. Variations in the dosage and
concentration of GTE can significantly affect outcomes, as
different studies may employ varying amounts, leading to various
levels of bioactive compounds. Additionally, differences in
experimental design—such as the duration of the study, the
model organism, or the method of administration (e.g., oral vs
intravenous)—can influence results. The bioavailability of GTE
components also varies among individuals and experimental
models, with factors like food intake, gut microbiota, and genetic
differences playing a role. Furthermore, the timing of biomarker
measurement after GTE consumption may impact results, as some
effects could be transient and not captured if assessed at the wrong
time. Variability in GTE formulations, with differing concentrations
of active ingredients, may lead to inconsistent results. Lastly,
biological differences, including hormonal levels, immune
responses, and overall health, can result in different
reactions to GTE.

Moderate-intensity aerobic exercise appears to have a dual role
in angiogenesis. While exercise may promote angiogenesis in
healthy tissues (Song et al., 2023), offering a ray of hope in the
fight against cancer. The study noted that MMP-2 levels in
cancerous rats engaged in aerobic training were lower than in
their healthy counterparts, suggesting decreased angiogenic
markers due to exercise. However, no significant differences in
MMP-9 and VEGF levels were observed, indicating that the
exercise protocol did not substantially alter angiogenesis in these
cancerous scenarios (Khosravi et al., 2020). The authors concluded
that GTE intake and low to moderate-intensity aerobic training did
not significantly influence angiogenesis and metastasis markers in
the studied rats. This underscores the need for further investigation

into how dietary components and exercise can modulate tumor
vascularization and metastasis, but also maintains the hope that
exercise can play a significant role in this complex process.

Epicatechin (Epi) has been shown to stimulate myocardial
angiogenesis by approximately 30% over control levels when
administered at 1 mg/kg twice daily for 15 days (Ramirez-
Sanchez et al., 2012). This effect is primarily mediated by
activating the eNOS pathway, essential for NO production and a
key mediator in angiogenesis. Epi enhances protein levels of vital
angiogenic factors such as VEGF and its receptor VEGFR2, which
are critical for capillary formation (Ramirez-Sanchez et al., 2012).
Like Epi, exercise alone promotes angiogenesis, with effects
comparable to those induced by Epi (Ramirez-Sanchez et al.,
2012). Epi and exercise activate the VEGF/eNOS/NO signaling
pathway, which is integral for new blood vessel formation
(Ramirez-Sanchez et al., 2012). Both Epi and exercise activate the
VEGF/eNOS/NO signaling pathway, integral for new blood vessel
formation (Ramirez-Sanchez et al., 2012). Exercise contributes to
increased shear stress on the endothelium, further stimulating
angiogenic pathways, while Epi directly activates eNOS,
enhancing NO production (Ramirez-Sanchez et al., 2012). Both
GTE and exercise have complex roles in angiogenesis. While GTE,
particularly through its active compound EGCG, shows potential in
inhibiting angiogenesis in certain contexts, its effectiveness may
depend on specific conditions. Conversely, Epi and exercise
demonstrate a synergistic relationship that enhances myocardial
angiogenesis, offering promising therapeutic strategies for ischemic
heart conditions. Further research is essential to elucidate these
processes’ precise mechanisms and interactions, particularly in
cancerous environments and cardiovascular health.

5.10 Curcumin

Curcumin, a bioactive compound derived from turmeric
(Urošević et al., 2022), and exercise are influential in regulating
angiogenesis (Ghorbanzadeh et al., 2022; Li et al., 2022b). This
interplay is particularly relevant in cancer treatment and recovery
from oxidative stress. Curcumin has been shown to inhibit
angiogenesis by modulatingli various signaling pathways
(Astinfeshan et al., 2019). In the study by Langroudi and Delfan,
(2020), curcumin supplementation at 100 mg/kg significantly
decreased the expression of angiopoietin-1, a protein that
promotes blood vessel formation.

This reduction suggests that curcumin can effectively regulate
angiogenesis, particularly in tumor environments where excessive
blood vessel growth is often detrimental. The study highlighted the
synergistic effects of combining moderate-intensity exercise with
curcumin supplementation (Langroudi and Delfan, 2020). The
combination resulted in a significant increase in miR-126 levels
and a notable decrease in angiopoietin-1 compared to control
groups (Langroudi and Delfan, 2020). This indicates that exercise
not only helps manage tumor growth but also enhances the anti-
angiogenic effects of curcumin. The findings suggest that the
integration of endurance training and curcumin supplementation
provides a more pronounced effect on reducing tumor mass and
influencing angiogenic factors than either intervention alone. This
synergy underscores the potential clinical applications of combining
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exercise and dietary interventions in therapeutic strategies for breast
cancer management, offering a promising integrated approach.

In summary, both curcumin and exercise play significant roles in
regulating angiogenesis. Curcumin inhibits pathways that promote
blood vessel formation while enhancing the expression of protective
miRNAs. Exercise, on the other hand, promotes angiogenesis
through increased VEGF levels and improved blood flow.
Combined, these interventions synergize, inspiring us to explore
new treatment strategies for managing cancer and improving
vascular health.

5.11 Cinnamon

The research by Nourshahi et al. (2017) sheds light on the
intricate roles of cinnamon extract and exercise in the signaling
pathways that regulate angiogenesis. Angiogenesis, the process of
forming new blood vessels, is vital for tissue recovery and
adaptation, particularly in aging populations where vascular
health can decline. Cinnamon extract supplementation at
200 mg/kg per day led to a significant decrease in VEGF levels in
the soleus (SOL) muscle (Nourshahi et al., 2017). VEGF is a key
signaling molecule that stimulates angiogenesis. By reducing VEGF
levels, cinnamon extract may inhibit the body’s natural ability to
promote new blood vessel formation, which is essential for
delivering oxygen and nutrients to tissues, particularly after
injury or during recovery (Nourshahi et al., 2017). Concurrently,
the increase in Endostatin levels suggests that cinnamon extract
enhances the activity of angiogenesis inhibitors (Nourshahi et al.,
2017). Endostatin is known to limit excessive blood vessel growth
(Walia et al., 2015), indicating that cinnamonmay play a dual role by
not only lowering a pro-angiogenic factor like VEGF but also
increasing an angiogenesis inhibitor (Nourshahi et al., 2017).
This inhibitory effect on angiogenesis is particularly concerning
for aged rats, as adequate blood supply is crucial for muscle recovery
and adaptation (Nourshahi et al., 2017). By potentially restricting
angiogenesis, cinnamon extract might impede the healing processes
and functional improvements that are necessary for older
individuals. In the exhaustive exercise (EX) group, an immediate
decrease in VEGF levels was observed following exercise (Nourshahi
et al., 2017). This initial dropmay reflect the body’s acute response to
the heightened oxygen demand and metabolic stress experienced
during intense activity (Nourshahi et al., 2017). It suggests a
temporary suppression of angiogenesis signaling as the body
reallocates resources. Interestingly, VEGF levels increased 4 h
post-exercise, indicating a rebound effect that stimulates
angiogenesis during the recovery phase (Nourshahi et al., 2017).
This response underscores the role of exercise as a potent stimulus
for angiogenesis, facilitating the repair of muscle tissue and
enhancing blood supply in the aftermath of physical exertion. In
the combined cinnamon extract and exercise group, the increase in
VEGF levels post-exercise suggests that the angiogenic signaling
activated by exercise can prevail over the inhibitory effects of
cinnamon extract (Nourshahi et al., 2017). This highlights the
dynamic nature of these signaling pathways, where physical
activity can activate mechanisms that promote vascular health,
even in the presence of compounds that typically inhibit
angiogenesis.

6 Polyphenols and miRNAs

Polyphenols, including flavonoids, polyphenols, and herbal
extracts, can affect the expression of various miRNAs (Tuli et al.,
2023). For instance, compounds like curcumin and resveratrol have
been found to increase miRNAs that support anti-inflammatory
responses while decreasing those related to oxidative stress (Ngum
et al., 2023) Many polyphenols possess antioxidant properties,
which can help regulate miRNA expression involved in oxidative
stress pathways, thereby protecting cells from damage and
promoting overall cellular health (Ngum et al., 2023). Certain
polyphenols can specifically target miRNAs associated with
diseases such as cancer, cardiovascular issues, and metabolic
disorders (Ngum et al., 2023; Tuli et al., 2023). For example,
polyphenols can restore miRNAs that are downregulated in
cancer, potentially helping to inhibit tumor growth.

7 Combined effects of polyphenols and
exercise on miRNAs expression

Integrating polyphenols and exercise could synergistically affect
miRNA expression (Najafabadi et al., 2023; Garelnabi and Mahini,
2014). For example, specific polyphenols might amplify the positive
impacts of exercise on miRNAs related to inflammation and
oxidative stress (Shargh et al., 2025). Polyphenols could also aid
recovery after exercise by influencing miRNAs that govern muscle
repair and growth (Campbell et al., 2021). This is especially
advantageous for athletes and older individuals aiming to
preserve muscle mass and functionality. Polyphenols and exercise
offer a holistic method for influencing miRNAs associated with
various diseases (see Table 3). This combined approach may
strengthen the body’s defense against chronic conditions like
obesity, diabetes, and cardiovascular diseases.

The interplay between curcumin and exercise in influencing
miRNA expression is a compelling area of research with significant
implications for various diseases, including cardiovascular and
inflammatory conditions and cancer. Curcumin has
demonstrated protective effects against cardiac injury, particularly
in contexts of oxidative stress, such as arsenic exposure (Cox et al.,
2022; Lan et al., 2022). Studies have shown that curcumin
supplementation can significantly reduce levels of caspase-3, a
key enzyme involved in the apoptotic pathway (Majidi et al.,
2020; Olanlokun et al., 2022). This reduction indicates a potential
mechanism for enhancing cell survival in cardiomyocytes. In
experimental setups combining HIIT and curcumin, a significant
decrease in miR-1 expression was observed (Majidi et al., 2020).
Elevated miR-1 levels are associated with increased cardiomyocyte
apoptosis. This suggests curcumin’s ability to downregulate miR-1
may enhance cell survival amid environmental stressors.
Concurrently, curcumin increased miR-133 expression and is
known for its role in promoting cardiomyocyte health (Majidi
et al., 2020). HIIT is known to improve cardiovascular fitness
and promote protective mechanisms in cardiac tissues. For
example, HIIT has been shown to elevate levels of miR-499 and
HSP60 while reducing miR-208, an miRNA linked to increased
apoptosis in cardiac cells (Jadidi et al., 2021). The combination of
HIIT and curcumin led to decreasing levels of apoptotic markers and
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enhanced beneficial miRNA profiles, suggesting a robust strategy for
improving cardiac health and functional recovery. Curcumin has
potent anti-cancer effects, primarily bymodulating various signaling
pathways involved in cell survival, apoptosis, and proliferation
(Cozmin et al., 2024). Notably, it has been shown to reduce miR-
21 expression in cancerous tissues (Naghizadeh et al., 2024). miR-21
is recognized as an oncogene, and its overexpression is linked to
tumor progression. By downregulating miR-21, curcumin may
inhibit tumor growth and promote the expression of tumor
suppressor genes, making it a valuable adjunct in cancer therapy.
Exercise, particularly endurance training, has also significantly
decreased miR-21 levels in cancer models (Naghizadeh et al.,
2024). This reduction suggests that physical activity can modulate
miRNA profiles and potentially inhibit cancer cell proliferation. The
synergy between endurance training and curcumin supplementation
in reducing miR-21 levels implies that both strategies may work
through complementary mechanisms to enhance anti-tumor effects,
thereby improving cancer treatment outcomes (Naghizadeh
et al., 2024).

Curcumin is well-documented for its anti-inflammatory
properties, particularly in the context of osteoarthritis (OA)
(Mende et al., 2025). Curcumin has been shown to significantly
reduce inflammatory markers and upregulate miR-130a, which
plays a critical role in regulating inflammation and cartilage
degradation (Saber et al., 2023). Curcumin may also influence
epigenetic changes that affect miRNA expression, suggesting a
multifaceted approach to modulating inflammatory responses in
OA (Cione et al., 2019). Low-impact exercise, such as swimming,
provides mechanical stimulation to joints, enhancing joint function
and reducing pain. Similar to curcumin, exercise has been shown to
increase miR-130a levels (Saber et al., 2023). The combination of
curcumin and exercise leads to a more significant increase in miR-
130a levels, which helps restore balance to the disrupted regulatory
pathways in OA. Additionally, exercise can reduce
HDAC3 expression, further promoting the expression of
beneficial miRNAs (Saber et al., 2023). The interplay between
curcumin and exercise in modulating miRNA expression offers a
promising strategy for addressing various diseases, including
cardiovascular issues, cancer, and inflammatory conditions like
OA. Their combined effects can lead to favorable shifts in
miRNA profiles, promoting cell survival, reducing apoptosis, and
enhancing overall health. Future research should continue to explore
the underlying mechanisms of these interactions and their clinical
applications, potentially leading to integrated therapeutic strategies
that leverage both curcumin supplementation and exercise to
optimize health outcomes across a spectrum of diseases.

Cinnamon and exercise significantly modulate miRNA
expression, particularly related to cardiac health in diabetic
conditions (Najafabadi et al., 2023). Cinnamon is recognized for
its antioxidant properties, which help neutralize free radicals and
reduce oxidative stress, particularly in cardiac tissue (Guo et al.,
2024; Padmanabhan and Doss, 2025). This protective effect is linked
to the increased expression of miR-133a, pivotal for cardiac
protection and inhibiting apoptosis (Najafabadi et al., 2023). The
study by Najafabadi et al. (2023) found that cinnamon intake
significantly elevated the levels of both miR-133a and miR-21.
While miR-133a supports cardiac health, the rise in miR-
21—often associated with cardiac damage—suggests a complex

role for cinnamon in modulating miRNA profiles. This dual
effect indicates that cinnamon may influence both protective and
potentially damaging processes in the heart.

Furthermore, cinnamon is believed to activate pathways that
enhance mitochondrial biogenesis and reduce inflammation,
contributing to a favorable lipid profile and improved cardiac
function (Das et al., 2022). These physiological changes are
closely tied to alterations in miRNA expression, suggesting that
cinnamon supplementation can profoundly impact heart health.
Exercise induces physiological adaptations in the heart, including
increased oxidative stress, significantly influencing miRNA
expression (Najafabadi et al., 2023). The same study indicated
that swimming training led to increased expression of miR-133a
and miR-21 compared to diabetic control groups (Najafabadi et al.,
2023). miR-133a plays a crucial role in cardiac muscle differentiation
and protects against apoptosis (Li et al., 2015). Its increased
expression in response to exercise indicates a potential
enhancement of cardiac resilience, suggesting that physical
activity may foster better heart health by promoting the
regulation of this critical miRNA (Nie et al., 2016). Although
miR-21 is frequently linked to cardiac damage (Nie et al., 2016),
its increased expression in exercise may reflect an adaptive response
to oxidative stress or a protective mechanism for cardiomyocytes
(Zhou et al., 2020). The researchers emphasized the synergistic
effects on miR-133a, suggesting that these interventions may
collaboratively enhance cardiac health in people with diabetes
(Najafabadi et al., 2023). Consistent exercise, paired with
cinnamon, can notably affect miRNA expression associated with
cardiac function, potentially providing therapeutic advantages for
managing diabetes and related cardiovascular risks (Najafabadi
et al., 2023). Cinnamon and exercise are crucial in modulating
miRNA expression, particularly those linked to cardiac protection.
Their combined effects may offer a promising strategy for enhancing
cardiac health in diabetic patients.

Quercetin is known for its anti-inflammatory and antioxidant
properties, which can significantly impact metabolic processes and
gene expression (Aghababaei and Hadidi, 2023). In the study by
Garelnabi et al. (Garelnabi and Mahini, 2014), mice supplemented
with quercetin exhibited a notable upregulation of miR-21 and miR-
125b in both liver and aorta tissues. This indicates that quercetin
plays a role in modulating these miRNAs, which are crucial in
regulating inflammatory responses and promoting vascular health.
Similarly, exercise also has a substantial impact on miRNA
expression. The study found that physical activity significantly
increased miR-21 and miR-125b levels, with miR-21 showing
particularly high expression in response to exercise (Garelnabi
and Mahini, 2014). This enhancement suggests that miR-21
could be a biomarker for improved cardiovascular health linked
to exercise. Furthermore, the exercise regimen appeared to amplify
the protective effects of quercetin on miRNA expression. When
quercetin intake was combined with exercise, the highest levels of
miR-21 and miR-125b were observed, highlighting a synergistic
effect (Garelnabi and Mahini, 2014). This synergy implies that
combining these two interventions augments their benefits on
miRNA profiles and may enhance cardiovascular protection
against atherogenic processes. Interestingly, while both quercetin
and exercise were effective at upregulating miR-21 and miR-125b,
they were also associated with downregulating miR-451 in the liver
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(Garelnabi and Mahini, 2014). This suggests a complex interplay in
which different miRNAs respond variably to these interventions,
pointing to the possibility that miR-451 may have a unique role in
the context of atherogenic diets. Overall, the study emphasizes the
importance of both quercetin and exercise in modulating miRNA
expression, particularly miR-21 andmiR-125b, which are relevant to
inflammation and cardiovascular health. These findings support the
potential therapeutic benefits of integrating dietary interventions
with physical activity to enhance metabolic and
cardiovascular outcomes.

Royal jelly is rich in bioactive compounds, including 10-
hydroxy-2-decenoic acid, which possesses anti-inflammatory and
neuroprotective properties (Oršolić and Jazvinšćak Jembrek, 2024).
These compounds play a significant role in modulating cellular
processes essential for managing symptoms related to multiple
sclerosis (MS) (Sabbagh et al., 2025). The study by Lohrasbi et al.
(2022) suggested that the intake of royal jelly can influence the
expression of specific miRNAs, notably miR-155-3p and miR-34a-
5p, which are associated with the pathology of MS. These miRNAs
are involved in inflammatory responses and neuroprotection,
suggesting that royal jelly may help regulate critical molecular
mechanisms associated with MS (Sabbagh et al., 2025). In
addition to royal jelly, regular exercise has been shown to
improve physical fitness and cognitive function in individuals
with MS (Lohrasbi et al., 2022). Exercise can reduce
neuroinflammation and foster neuroprotection, which is crucial
in combating neurodegenerative diseases (Hu et al., 2024). The
interaction between royal jelly and exercise significantly influences
the expression of miR-155-3p and miR-34a-5p (Lohrasbi et al.,
2022). The research by Lohrasbi et al. (2022) suggested that physical
activity can enhance the beneficial effects of royal jelly, leading to
improved miRNA profiles that support better management of MS
symptoms. The study emphasized that the combination of royal jelly
and exercise leads to a more significant modulation of miRNA
expression than either treatment alone (Lohrasbi et al., 2022). This
synergistic effect is likely to increase the therapeutic potential against
the hallmark features of MS, such as inflammation and
demyelination. The findings suggest integrating natural
supplements like royal jelly with physical activity could represent
a valuable non-pharmacological strategy for managing MS. In
conclusion, both royal jelly and exercise play essential roles in
influencing miRNA expression, which is vital for addressing the
underlying mechanisms of MS. Their combined effects may offer a
novel therapeutic approach to treating neurodegenerative
conditions.

The interaction between genistein, a phytoestrogen found in soy
(Rasheed et al., 2022), and exercise presents significant implications
for enhancing the expression of various miRNAs crucial for
cognitive and cardiovascular health, particularly in
postmenopausal women (Yu et al., 2021; Afzal et al., 2024). This
discussion focuses on the roles of miRNA-132, miRNA-133, and
miRNA-29, examining how these interventions contribute to
neuroprotection and cardiac health. Genistein administration in
ovariectomized (OVX) rats has been shown to significantly increase
the expression miRNA-132, a miRNA essential for neuronal
functions such as synaptic plasticity and memory (Habibi et al.,
2017). This is particularly important in the context of cognitive
decline associated with menopause. The upregulation of miRNA-

132 is linked to enhanced levels of BDNF and IGF-1 (Lohrasbi et al.,
2022). BDNF and IGF-1 are critical for neuronal health, promoting
neurogenesis and synaptic function (Colucci-D’Amato et al., 2020).
The activation of BDNF and IGF-1 signaling pathways suggests that
genistein may help improve cognitive outcomes in spatial memory
tasks, making it a promising candidate for mitigating cognitive
decline in menopausal women (Li et al., 2022b). Physical exercise
also enhances miRNA-132 expression, BDNF, and IGF-1 levels in
the hippocampus (Habibi et al., 2017). Exercise promotes
neurogenesis and reduces neuroinflammatory processes that can
negatively impact brain health (Liu et al., 2019). The combined
effects of genistein and exercise lead to the highest expression levels
of miRNA-132, indicating a synergistic relationship that optimizes
cognitive functions (Habibi et al., 2017). In diabetic ovariectomized
(OD) rats, genistein significantly increased the expression miRNA-
133, which is crucial for regulating cardiac hypertrophy and
protecting against cardiac dysfunction (Nazari-Serenjeh et al.,
2021). miRNA-133 is key in maintaining heart health,
particularly in stress conditions such as diabetes (Guo and Nair,
2017; Song et al., 2020). The administration of genistein increased
levels of IGF-1 and Bcl-2, promoting cell survival and growth while
reducing levels of the pro-apoptotic factor Bax (Nazari-Serenjeh
et al., 2021). This shift towards cell survival is vital in preventing
excessive apoptosis, which can lead to heart failure.

Additionally, genistein’s antioxidant and anti-inflammatory
properties further improve cardiac function. Exercise alone also
increases miRNA-133 expression and Bcl-2 and IGF-1 levels
(Nazari-Serenjeh et al., 2021). The combination of exercise
and genistein amplifies these protective mechanisms,
indicating that physical activity can enhance the
cardioprotective effects of genistein (Nazari-Serenjeh et al.,
2021). The dual intervention upregulates protective miRNAs
and reduces oxidative stress and inflammation, critical factors
in maintaining heart health. Soy isoflavones, including genistein,
have enhanced the expression of miRNA-29 in OVX rats
(Mirheidari et al., 2022). miRNA-29 is vital for regulating
cardiac function and influences pathways related to fibrosis
and apoptosis (Liu et al., 2021). miRNA-29’s role in cellular
processes highlights its importance in cardiac health, particularly
estrogen deficiency (Ebada et al., 2023). While soy
supplementation improved miRNA-29 expression, the results
indicated that exercise, particularly HIIT, had a more
pronounced effect (Mirheidari et al., 2022). HIIT significantly
increased miRNA-29 levels compared to the combination of
HIIT and soy. This suggests that while genistein contributes
positively, regular physical activity may provide a more direct
and robust impact on regulating protective miRNAs involved in
cardiac health (Mirheidari et al., 2022). Increased miRNA-29
expression associated with exercise may help mitigate the risks of
cardiac diseases in postmenopausal women (Mirheidari et al.,
2022). The findings underscore the importance of integrating
exercise into lifestyle interventions for improving cardiac health
and preventing heart disease. The roles of genistein and exercise
in enhancing the expression of miRNA-132, miRNA-133, and
miRNA-29 highlight their potential as effective strategies for
improving cognitive and cardiovascular health in
postmenopausal women. Genistein’s neuroprotective effects,
facilitated by increased levels of BDNF and IGF-1 (Singh,
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Katiyar, and Song, 2025), combined with the beneficial impacts of
exercise on neurogenesis and cardiac protection, suggest a
multifaceted approach to health management. Together, these
interventions optimize the expression of protective miRNAs and
mitigate the adverse effects of menopause, emphasizing the
importance of combining dietary and lifestyle modifications
for optimal health outcomes. This integrated approach may
represent a promising strategy for managing at-risk
populations’ cognitive decline and cardiovascular health.

8 Conclusion

This review emphasizes the significant interplay between
natural polyphenols and exercise in modulating miRNA
expression and angiogenic signaling. Both interventions
independently enhance cardiovascular health and offer
synergistic benefits when combined. The evidence suggests that
polyphenols, through their antioxidant and anti-inflammatory
properties, can amplify the positive effects of exercise on
miRNA regulation, particularly in pathways related to
angiogenesis. Furthermore, the integration of these lifestyle
modifications presents a promising strategy for preventing and
managing chronic diseases such as cardiovascular disorders and
metabolic conditions. The importance of these findings cannot be
overstated, as they provide a deeper understanding of how
polyphenols and exercise influence miRNA expression. This
knowledge can be used to develop more effective therapeutic
approaches that promote overall health and resilience. Fostering
a proactive approach that includes dietary interventions and
regular physical activity may significantly enhance health
outcomes, particularly in populations at risk for cardiovascular
and related diseases. This holistic perspective underscores the
importance of combining lifestyle modifications with natural
compounds to optimize health and wellbeing.
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Glossary
VEGF Vascular Endothelial Growth Factor

FGF2 Fibroblast Growth Factor 2

CD31 Cluster of Differentiation 31

miRNA MicroRNA

BDNF Brain-Derived Neurotrophic Factor

NGF Nerve Growth Factor

IGF1 Insulin-like Growth Factor 1

PDGF Platelet-Derived Growth Factor

NO Nitric Oxide

eNOS Endothelial Nitric Oxide Synthase

HIIT High-Intensity Interval Training

NF-κB Nuclear Factor Kappa B

ERK Extracellular Signal-Regulated Kinase

TIMP-1 Tissue Inhibitor of Metalloproteinases-1

HIF1α Hypoxia-Inducible Factor 1-alpha

SOD Superoxide Dismutase

CAT Catalase

PGC-
1α

Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha

MMP-2 Matrix Metalloproteinase-2

MMP-9 Matrix Metalloproteinase-9

NOx Nitric Oxide Derivatives

TIE-2 Tyrosine Kinase with Immunoglobulin-like and EGF-like Domains two

IL-1β Interleukin-1 beta

TNF-α Tumor Necrosis Factor-alpha

AD Alzheimer’s Disease
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