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Renal fibrosis represents the terminal pathological manifestation of most chronic
kidney diseases, driving progressive loss of renal function. Natural products have
emerged as promising therapeutic agents for preventing and ameliorating renal
fibrosis due to their multi-target efficacy and favorable safety profiles. In this
review, we conducted a comprehensive literature search on PubMed using the
keywords “natural product” and “renal fibrosis” from 2004 to 2025, identifying
704 relevant articles. We systematically categorize and discuss the biological
effects of key natural products and formulations with antifibrotic potential,
focusing on five major classes: glycosides, flavonoids, phenolic compounds,
anthraquinones, and terpenoids. Representative compounds from each
category are highlighted for their mechanisms of action, including modulation
of oxidative stress, inflammation, autophagy, and fibrosis signaling pathways. This
review aims to provide a theoretical foundation for the development of natural
product-based therapies to combat renal fibrosis, offering insights into their
therapeutic potential and future research directions.
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1 Introduction

The rising global prevalence of hypertension, diabetes, and obesity has precipitated a
parallel increase in kidney disease incidence, imposing a significant public health burden
(Jing et al., 2024). Renal fibrosis, the terminal pathological manifestation of most chronic
kidney diseases (CKD), is a multifactorial process driven by extracellular matrix (ECM)
dysregulation, fibroblast-to-myofibroblast transdifferentiation, immune cell infiltration,
and tubular epithelial-mesenchymal transition (EMT)(Figure 1). EMT, a pivotal
mechanism in fibrogenesis, involves the phenotypic transformation of polarized
epithelial cells into motile mesenchymal cells, marked by loss of apical-basal polarity,
dissolution of intercellular adhesions, and acquisition of migratory and invasive properties.
This process is central to embryogenesis, wound healing, fibrotic disorders, and metastatic
progression (Li et al., 2024; Sugyeong et al., 2022; Lili and Shougang, 2020). A hallmark of
EMT is cadherin switching, characterized by transcriptional repression of E-cadherin—a
calcium-dependent adhesion molecule critical for maintaining epithelial integrity through
β-catenin binding—and concomitant upregulation of N-cadherin. E-cadherin depletion
destabilizes adherens junctions, facilitating cytoskeletal reorganization and mesenchymal
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marker expression, including α-smooth muscle actin (α-SMA).
Keratin, another conserved epithelial marker, inversely correlates
with fibrotic progression, as evidenced by its downregulation in
EMT-driven renal fibrosis (V et al., 2024; Brittany et al., 2024).
Mechanistically, transforming growth factor-β1 (TGF-β1) and its
downstream effector Snail orchestrate EMT by suppressing
epithelial markers (e.g., cytokeratin) and inducing mesenchymal
markers (e.g., α-SMA), with their expression levels positively
correlating with renal interstitial fibrosis severity (Xiao-Yi et al.,
2016). These insights underscore the therapeutic potential of
targeting EMT-associated pathways to mitigate renal fibrosis,
emphasizing the need for precise modulation of cadherin
dynamics and TGF-β signaling pathways.

The TGF-β/Smad signaling pathway represents a canonical
mechanism underlying fibrotic progression (Figure 2) (Xinyue
et al., 2024; Xiao-Ming et al., 2016; Dandan et al., 2022; He-He
et al., 2018; Jun Ho and Joan, 2022; Nikolaos, 2020; Erine et al.,
2021). This pathway bifurcates into canonical and noncanonical
branches. The canonical TGF-β/Smad cascade initiates when ligands
such as TGF-β, activins, or nodal bind to transmembrane type I and
II receptor complexes, triggering phosphorylation of Smad2/3.
Phosphorylated Smad2/3 subsequently associates with Smad4,
forming a heteromeric complex that translocates to the nucleus
to regulate transcription of fibrogenic target genes. In contrast,
noncanonical TGF-β signaling engages alternative effectors-
including β-catenin, Mitogen-activated protein kinase (MAPK)
(ERK1/2, p38 and JNK), JAK-STAT, and PI3K-AKT-mTOR
pathways-to indirectly modulate EMT, cellular proliferation, and
stromal remodeling (Xingmei et al., 2024). In addition, AMP-
activated protein kinase (AMPK) inhibits mTOR, thereby
affecting the PI3K-AKT pathway, which is involved in the
regulation of fibrosis (Hui-Yun et al., 2020). Elevated TGF-β1
expression in fibrotic kidneys underscores its pivotal role in
driving ECM deposition and tubular EMT, hallmark features of
renal fibrosis (Dandan et al., 2022; Constantinos et al., 2019).
Consequently, therapeutic strategies targeting TGF-β1 inhibition
form a cornerstone of antifibrotic interventions, including those
derived from natural products.

Traditional Chinese Medicine (TCM) has emerged as a
promising adjunctive therapy for renal fibrosis, leveraging its
pleiotropic mechanisms to restore biological homeostasis. Key
pathological drivers—oxidative stress, inflammation, and
autophagy-apoptosis dysregulation-are intricately interconnected
in fibrogenesis. Firstly, excessive reactive oxygen species (ROS)
generation activates proinflammatory cascades, exacerbating ECM
deposition and tubular injury. Conversely, inflammatory mediators
such as tumor necrosis factor alpha (TNF-α) and interleukin (IL)-
6 amplify ROS production via NADPH oxidase activation,
establishing a self-perpetuating cycle (Mengqi et al., 2024; Samar
et al., 2023; Xiao-Jun et al., 2024; Jiawei et al., 2020). TCM
counteracts this axis by activating AMPK, enhancing energy
homeostasis and reducing lipid peroxidation (Li et al., 2015; Nan
et al., 2016). Secondly, oxidative-inflammatory axis further disrupts
autophagy, impairing clearance of damaged organelles and proteins,
which perpetuates cellular dysfunction and fibrosis (Jun-Hao et al.,
2022; Rong et al., 2022; Feng Y. et al., 2024; Azam et al., 2018; Maria
et al., 2018), while TCM restores autophagic flu and mitigates
oxidative damage by inhibition of PI3K/AKT/mTOR (Virginia

et al., 2019; Changlong et al., 2021). Cellular stress responses are
governed by a delicate equilibrium between autophagy and
apoptosis. Under mild stress, autophagy promotes cell survival by
degrading dysfunctional components, whereas severe injury shifts
the balance toward apoptosis. Dysregulated autophagy leads to ROS
accumulation and myofibroblast activation, while excessive
apoptosis releases proinflammatory cytokines, fueling fibroblast
proliferation and ECM deposition (Wafa Ali et al., 2025; Y et al.,
1997; Xing-Chen et al., 2019; Siwei et al., 2021; Hui Z. et al., 2022).
TCM modulates this balance by downregulating cyclic GMP-AMP
synthase (cGAS)/stimulator of interferon genes (STING) signaling,
thereby limiting DNA damage-induced inflammation (Meifang
et al., 2024; Kathy et al., 2016). Moreover, TCM exerts influence
on JAK/STAT6 signaling pathways as well as Wnt/β-Catenin to
inhibit inflammation and tubular dedifferentiation. Ultimately
though, the antifibrotic effects conferred by compounds derived
from TCM target critical signaling nodes such as TGF-β/Smad
which play pivotal roles in EMT and ECM synthesis (Na et al.,
2018) (Figures 2, 3). This provides a broad application prospect for
the application of TCM in the treatment of renal fibrosis. Therefore,
we provide an introduction to the key natural products in TCM that
have had ameliorative effects on renal fibrosis (Supplementary Table
S1) and review their associated mechanisms of action. Concurrently,
given the prevalence, complexity, and consequences of renal fibrosis,
this study aims to promote the development of TCM for treating
renal fibrosis.

2 Single components of natural
products used for renal fibrosis

Natural product constituents demonstrate notable efficacy in
reversing or mitigating renal fibrosis through diverse molecular
mechanisms. Based on a comprehensive literature review, this
paper highlights five principal bioactive classes derived from
TCM: glycosides, flavonoids, phenolic compounds,
anthraquinones, and terpenoids. Each category exhibits distinct
yet synergistic renoprotective effects, targeting key pathways
implicated in fibrotic progression.

2.1 Glycosides

2.1.1 Astragaloside IV
Astragali radix is deemed a safe herb and is frequently found in

dietary supplements and health foods (Meifang et al., 2024).
Glycosides are major constituents of A. radix. The glycosides
identified include astragalosides I-VIII, acetylastragaloside,
isoastragaloside I, isoastragaloside III, astramembrannin II,
cycloastragenol, cyclosieversigenis, soyasaponin I, soyasapogenol
B, and lupeol (Kathy et al., 2016). Among these, Astragaloside IV
(AS-IV) was selected as a chemical marker in the Chinese
pharmacopoeia for quality control purposes (Yiwei et al., 2023;
Patrick Kwok-Kin et al., 2012). Moreover, it is also an important
active constituent of Astragali radix, with multiple biological
activities to ameliorate renal fibrosis, including the inhibition of
oxidative stress and inflammation, as well as the modulation
of autophagy.
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Extant studies have found that AS-IV has protective effects on
the kidneys and improves renal fibrosis by enhancing the expression
of phosphorylated (p-) Smad3 C/p21 and nuclear factor (erythroid-
derived 2)-like 2(Nrf2)/Heme oxygenase-1(HO-1), thereby
inhibiting p-Smad 3L/plasminogen activator inhibitor (PAI)-
1 and reducing ROS and α-SMA levels (Qin et al., 2023). And
AS-IV mitigates Tacrolimus-induced chronic nephrotoxicity by
enhancing the phosphorylation of p62, which subsequently
promotes the nuclear translocation of Nrf2. This cascade effect
ultimately alleviates the accumulation of ROS and attenuates
renal fibrosis (Ping et al., 2021).

Notably, microRNAs (miRs) are short noncoding RNAs that
negatively regulate gene expression posttranscriptionally. AS-IV can
inhibit excessive mesangial cell proliferation and renal fibrosis via
the modulation of the TGF-β1/Smad/miR-192 signaling pathway
(Qian et al., 2019). In addition, AS-IV ameliorates renal function
and renal fibrosis by inhibiting podocyte dedifferentiation and
mesangial cell activation, which is induced by miR-21 (Xiaolei
et al., 2018a).

In contrast, AS-IV inhibits inflammatory cell infiltration and
inflammatory cytokine secretion (TNF-α, IL-6, and IL-1β) by
inhibiting inflammation via toll-like receptor 4 (TLR4)/nuclear
factor-κB (NF-κB), both in vivo and in vitro (Xiangjun et al.,
2016; Jia-Long et al., 2022). Furthermore, AS-IV inhibits glucose-
induced EMT of podocytes via the Sirt-NF-κB p65 axis (Xiaolei

et al., 2018b). Besides, in vivo and in vitro experiments have revealed
that AS-IV can also effectively ameliorate renal fibrosis by alleviating
EMT procession. This may be due to the AS-IV-induced
upregulation of the expression of ALDH2, which inhibits
autophagy by regulating the AKT/mTOR pathway (Dong et al.,
2023). In addition, the cGAS/STING signaling cascade represents a
pivotal mechanism in mediating DNA-driven immune responses
and inflammatory processes within inflammatory cells, including
immune cells and injured renal parenchymal cells implicated in
renal fibrosis (Yadan et al., 2024; Hui et al., 2024). These cells
synthesize and release a plethora of profibrotic cytokines, such as
TGF-β1, Wnt ligands, and angiotensin II. Subsequent activation of
signaling pathways-including TGF-β, Wnt, renin-angiotensin-
aldosterone system (RAAS), and Notch-elicits myofibroblast
differentiation and accelerate ECM overproduction (Qian et al.,
2022). Notably, in macrophages, this pathway is triggered during
renal fibrogenesis by double-stranded DNA emanating from injured
renal tubular epithelial cells (RTECs), thereby instigating a robust
inflammatory cascade (Baihai et al., 2025). Experimental studies
using cGAS- or STING-deficient murine models demonstrated
marked attenuation of proinflammatory macrophage activation,
myofibroblast accumulation, collagen deposition, and ECM
synthesis following obstructive renal injury (Dong et al., 2023).
Furthermore, chronic thermal stress was shown to amplify cGAS-
STING pathway activity, concomitant with upregulated

FIGURE 1
The pathophysiology of renal fibrosis. Renal fibrosis is a complex pathological process that occurs mainly by activation of EMT and fibroblasts under
various factors such as cytokines, growth factors, oxidative stress, hypoxia, pathogens, and viruses, which in turn leads to an imbalance between synthesis
and catabolism of the ECM leading to fibrosis. The drawings in this review were made by Figdraw.
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transcription of fibrosis-associated genes (e.g., collagen (COL) 1A1,
α-SMA, and TGF-β) in renal tissues (Fumika et al., 2023).

2.1.2 Ginsenoside Rg1
Ginseng, often referred to as the “king of herbs” is a valuable herb

to remedy tissue growth related to fibrosis. Ginseng extract and its
formulations can effectively inhibit the excessive deposition of ECM
resulting from repeated injuries. Among its components,
ginsenoside Rg1 is a prominent active ingredient in ginsenoside
triol saponin, celebrated for its anti-inflammatory, anti-tumor, and
antioxidant benefits.

Studies have found that ginsenoside Rg1 effectively lowers TGF-
β1 activity and p-Smad levels. And it leads to significant inhibition of
thrombospondin-1(TSP-1) expression, a cytokine known to
promote TGF-β1 mRNA transcription and activation (Xie et al.,
2008). Ginsenoside Rg1 also effectively inhibits decreases in α-SMA
and E-calmodulin levels by suppressing the expression of p-ERK1/2,
thereby leading to reduced COL Ⅰ and fibronectin levels in a dose-
dependent manner, thus inhibiting EMT (Xi-Sheng et al., 2008). In
addition, ginsenoside Rg1 protects against renal fibrosis by

regulating the Klotho/TGF-β1/Smad signaling pathway (Sha-Sha
et al., 2018).

Furthermore, study has demonstrated that ginsenoside
Rg1 significantly improves lipid deposition, fibrosis, and ROS
production by modulating MAPK and the downstream pathways
in kidneys (Pengmin et al., 2023). Additionally, ginsenoside
Rg1 exhibits nephroprotective effects by the upregulation of
Nrf2-mediated HO-1 expression (Bin et al., 2019). Integrative
informatics analysis identifies that ginsenoside Rg1 improves
renal fibrosis through the regulation of autophagy (Yingying
et al., 2024) and effectively increases superoxide dismutase (SOD)
activity (Nan et al., 2014). Moreover, it reduces autophagy via the
AMPK/mTOR (Nikolaos, 2020; Erine et al., 2021) and AKT/GSK3β/
β-catenin pathways (Yimin et al., 2020).

2.1.3 Salidroside
Salidroside (Sal) is an active compound derived from Rhodiola

rosea L., which is a perennial alpine plant from the Crassulaceae
family and is renowned for its unique medicinal properties that
exhibit various pharmacological effects, including antifibrotic,

FIGURE 2
TGF-β/Smads signaling pathway. TGF-β/Smads is one of the classic pathways of fibrosis. The canonical pathway refers to the TGF-β/Smads signaling
pathway. Ligands such as TGF-β, activins, and nodal bind complexes of transmembrane receptor types I and II on the cell surface, p-Smad2, and
p-Smad3. Then, these ligands form a complex with Smad4. The activated Smad complex is transferred to the nucleus and binds to site-specific
recognition sequences in the promoter regions of target genes to directly regulate transcription. In noncanonical pathways, the TGF-β receptor
complex signals through other factors—such as β-catenin, MAPK (ERK1/2, p38 and JNK), JAK1/3-STAT1/3/5/6, and the PI3K-AKT-mTOR signaling
pathway—which are indirectly activated by TGF-β target genes and involved in EMT, proliferation, differentiation, and stroma formation. In addition, AMPK
inhibits mTOR, thereby affecting the PI3K-AKT pathway, which is involved in the regulation of fibrosis.
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anticancer, antidepressant, anti-inflammatory, antioxidant,
antiulcer, and cardioprotective properties (Meihua et al., 2022).

Treatment with Sal can ameliorate tubular injury and deposition
of the ECM components (including COLI and COLⅢ) as well as
suppress EMT. Additionally, Sal also reduces the levels of serum
biochemical markers (serum creatinine, blood urea nitrogen (BUN),
and uric acid (Sixia et al., 2022) and decreases the release of
inflammatory cytokines (IL-1β, IL-6, TNF-α). Treatment with Sal
also significantly decreases the release of inflammatory cytokines
and inhibits the TLR4/NF-κB and MAPK signaling pathways (Rui
et al., 2019).

Further, the administration of Sal improves proteinuria,
enhances nephrin and podocin expressions, and alleviates renal
fibrosis and glomerulosclerosis primarily by inhibiting the β-catenin
signaling pathway (Xinzhong et al., 2019). Furthermore, it decreases

the mRNA and protein levels of Wnt1, Wnt3, TGF-β1, Axin-2,
fibronectin, COLIII, p-Smad3, β-catenin, and the level and activity
of cleaved caspase-3. Notably, Sal also reduces fasting blood glucose
levels and renal ROS, while it increases SOD and glutathione levels.
This has been found to ultimately result in the protection of rat
kidneys from injury and fibrosis. These protective effects are
achieved through GS3Kβ-mediated inhibition of Wnt1/Wnt3a β-
catenin, combined with hypoglycemic and antioxidant effects (Ali
and Mohammad, 2020).

Briefly, of the three glycoside natural products described above,
AS-IV can improve renal fibrosis through multiple pathways. In
addition, ginsenoside Rg1 has the potential to ameliorate renal
fibrosis; however, the slow growth cycle, low seed yield, and
prolonged generation time of ginseng have led to a disparity
between the demand for and supply of ginsenosides.

FIGURE 3
Mechanisms by which natural products ameliorate renal fibrosis. Fibrotic progression is driven by the interplay of multiple signaling pathways. The
TGF-β/Smad pathway is initiated when TGF-β binds to TβRI and TβRII receptors, leading to the phosphorylation of Smad2/3. These molecules form a
complex with Smad4, which translocates to the nucleus to regulate fibrogenic gene expression. The PI3K/Akt/mTOR pathway is activated by upstream
signals such as CD28, resulting in the phosphorylation of PIP3 and Akt, which subsequently activatemTOR and Erk1/2, promoting fibrosis. The AMPK
pathway mitigates fibrosis by enhancing autophagy, regulating oxidative stress through Sirt1 and SOD2 activation, and promoting apoptosis via Beclin-1.
In the JAK/STAT6 pathway, IL-4 binding to cell surface receptors activates JAK1/3 kinases, leading to STAT6 phosphorylation and nuclear translocation,
where it regulates target gene transcription. The cGAS/STING pathway mediates DNA-induced immune responses; cGAS recognizes cytosolic DNA and
synthesizes cGAMP, which activates STING and downstream IRF3/7 and NF-κB pathways, inducing type I interferons (IFN-I) and pro-inflammatory
cytokines (e.g., CCL4, TNF-α, IL-1β). Additionally, the Wnt/β-catenin pathway, when activated, stabilizes β-catenin, allowing its nuclear translocation to
regulate genes involved in fibrosis. Natural products attenuate renal fibrosis by targeting these pathways, modulating inflammation, oxidative stress,
apoptosis, and autophagy.
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Additionally, we found that Sal has protective effects mainly in
cardiovascular and neurodegenerative diseases. Therefore, the
mechanism by which Sal ameliorates renal fibrosis needs to be
further explored.

2.2 Flavonoids

2.2.1 Quercetin
Quercetin, the predominant flavonoid found in Flos Sophorae

Immaturus, has been extensively researched for its protective effects
on the kidneys. Studies have demonstrated that the use of quercetin
leads to a reduction in fibrosis, apoptosis, nephrotoxicity, and
inflammation associated with various kidney diseases (Azar et al.,
2021; Priyanka et al., 2021).

Further, research indicates that quercetin mitigates endoplasmic
reticulum stress by promoting Sirt1-mediated deacetylation of Nrf2,
NF-κB p65, eIF2α, and xbp-1 (Ghedeir et al., 2021). Moreover,
quercetin prevents CKD by regulating inflammation and oxidative
stress (Wahyu et al., 2022). It also alleviates fibrosis and the
accumulation of inflammation-related proteins through the IL33/
ST2 signaling pathway (Hsin-Yuan et al., 2022). In human kidney-2
(HK-2) and the normal rat renal tubular epithelial cell line, quercetin
counteracts EMT and renal fibrosis by activating mTORC1/p70S6K
(Qian et al., 2015). Furthermore, it hampers Hedgehog signaling
activation, thereby reducing obstructive renal fibrosis and EMT by
downregulating the Amphiregulin/epidermal growth factor receptor
pathway (Qi et al., 2022).

Cao et al. found that quercetin demonstrates the ability to
attenuate TGF-β-induced fibrosis by inhibiting miR-21 and
increase the levels of PTEN as well as the tissue inhibitor of
metalloproteinase 3 (Yaochen et al., 2018). According to Tu et al.
(Haitao et al., 2021), quercetin effectively treats renal fibrosis by
modulating PIK3R1 and inhibiting the PI3K/Akt pathway, which
helps alleviate fibrosis and apoptosis in renal tissues. Furthermore, it
also mitigates renal fibrosis by decreasing the senescence of RTECs
via the Sirt1/PINK1/mitochondrial autophagy pathway (Tao
et al., 2020).

2.2.2 Baicalin
Baicalin is a key ingredient found in Scutellaria, one of the

substances used in TCM in China (Yongqiang et al., 2023). Recent
studies have revealed the significant anti-fibrotic capabilities of
baicalin. The protective effect of baicalin on fibrosis is largely
attributed to its ability to block TGF-β and inflammatory
reaction (Ning et al., 2021). Specifically, baicalin treatment can
alleviate renal interstitial fibrosis, and the mechanism may be
related to the inhibition of TGF-β1 expression by inhibiting the
Notch1 signaling pathway (Qin et al., 2017; Hui W. et al., 2022; Yi
et al., 2017; Yu-Jie et al., 2016).

In addition, Baicalin exerts antifibrotic effects in the kidney by
modulating signal transducer and activator of transcription 6
(STAT6) signaling. Mechanistically, STAT6 mediates
transcriptional repression of peroxisome proliferator-activated
receptor α and its downstream fatty acid oxidation-related genes,
culminating in lipid accumulation within RTECs—a metabolic
perturbation that drives fibrotic progression (Youjing et al.,
2023). Concurrently, STAT6 activation facilitates macrophage-to-

myofibroblast trans-differentiation and amplifies M2 macrophage
polarization, a subset known to secrete profibrotic mediators that
exacerbate renal fibrogenesis (Tianhui et al., 2023). This process is
further reinforced by glycoprotein non-metastatic melanoma
protein B, which synergizes with the IL-4-STAT6 axis to
potentiate M2 polarization (Yahong et al., 2020; Letian et al.,
2017). Under hyperglycemic conditions, mesangial cells exhibit
elevated expression of fibrogenic markers, including TGF-β,
fibronectin, and collagen.

2.2.3 Puerarin
Puerarin is an isoflavonoid isolated from the root of the plant

Pueraia and has been widely used in traditional Chinese herbal
medicine for the treatment of various renal diseases, such as renal
fibrosis, diabetic kidney disease, kidney stone, acute kidney injury
(AKI) and CKD (Xueling et al., 2024; Zujian et al., 2024; Yuexian
et al., 2024). Consequently, puerarin has garnered significant
attention for its therapeutic potential.

A recent study revealed that puerarin alleviates unilateral
ureteral obstruction (UUO)-induced inflammation and fibrosis by
regulating the NF-κB p65/STAT3 and TGFβ1/Smads signaling
pathways (Jingyu et al., 2021). Furthermore, puerarin treatment
ameliorates renal fibrosis by inhibiting epithelial cell apoptosis
through the MAPK signaling pathway (Xiangjun et al., 2017).
Additionally, puerarin alleviates oxidative stress and ferroptosis
during renal fibrosis induced by ischemia/reperfusion injury via
TLR4/(NADPH) oxidase (Nox) four pathway in rats (Jun et al.,
2023). Moreover, research using in silico prediction and
experimental validation identified puerarin’s protective
mechanism against excessive ECM accumulation through
inhibiting ferroptosis (Biyu et al., 2023).

Overall, flavonoids are potent antioxidants with the potential to
attenuate tissue damage. Considering the multicomponent nature of
natural products with diverse effects and characteristics, there
remains a need for more in-depth research on its
pharmacological effects and related mechanisms in
modern medicine.

2.3 Phenols

2.3.1 Curcumin
Curcumin, a polyphenol pigment derived from turmeric, is

extensively used in the food industry to enhance the color and
flavor of consumable products, such as pasta, meat, and beverages.
Beyond its use as a food coloring, curcumin provides numerous
biological and pharmacological benefits, potentially offering anti-
fibrosis, anti-cancer, anti-thrombotic, anti-heart failure, anti-
inflammatory, and blood pressure-lowering properties, which
makes it valuable in medical context (Aliabbas et al., 2020;
Mahvash et al., 2023). Therefore, it is widely utilized.

Prior studies have proved that curcumin can ameliorate renal
fibrosis by inhibiting the TGF-β1/Smad signaling pathway (Chen
et al., 2021; Chadanat and Visith, 2024), and the mechanism blocks
its profibrotic actions on renal fibroblasts through the
downregulation of TβRII, partial inhibition of c-Jun activity (Jens
et al., 2004), and through reversing ADAMTS18 gene methylation
(Ben et al., 2023). Furthermore, curcumin ameliorates renal fibrosis
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by inhibiting local fibroblast proliferation and ECM deposition,
upregulating the expression of peroxisome proliferator-activated
receptor gamma (PPAR-γ), and downregulating the expression of
p-Smad2/3 (Xiangjun et al., 2014). In addition, it prevents fibroblast
activation through the mitigation of intracellular free radicals and
TGF-β secretion (Chadanat and Visith, 2024).

Curcumin can also alleviate oxidative stress and inflammation
(Cecilia Gabriela et al., 2024). Specifically, curcumin has been found
to be able to scavenge—in a concentration-dependent
manner—superoxide anion, hydroxyl radical, peroxyl radical,
singlet oxygen, peroxynitrite anion, hypochlorous acid, and
hydrogen peroxide (Joyce et al., 2015). In 5/6 nephrectomized
rats, curcumin has been found to induce Nrf2 nuclear
translocation; prevent glomerular hypertension, hyperfiltration,
and oxidant stress; decrease antioxidant enzymes; and reverse
glomerular hemodynamic alterations (Edilia et al., 2012). It may
also be significant in cellular antioxidant defense through the
activation of the Nrf2-keap1 pathway (Xiuli et al., 2015; Vivian
et al., 2012). Moreover, it has anti-fibrosis effects via the inhibition of
the activation of the TLR4-NF-κB signal pathway (Zhaohui et al.,
2020) and reversing caveolin-1 Tyr14 phosphorylation (Li-Na
et al., 2014).

2.3.2 Epigallocatechin-3--gallate
Polyphenols derived from green tea have been reported to

possess a wide range of profound functions (Wang et al., 2019).
Epigallocatechin-3-O-gallate (EGCG) is the most active and
abundant polyphenol in green tea (Avila-Carrasco et al., 2021).
And EGCG has been reported in several renal disease models, such
as AKI, cisplatin-induced nephrotoxicity, obstructive nephropathy,
glomerulonephritis, lupus nephritis, diabetic nephropathy, and
high-fat diet-induced kidney injury (Luo et al., 2020).

In an UUO mice model, EGCG was found to attenuate renal
fibrosis by inhibiting the accumulation of ECM and EMT, and this
renoprotective effect might be associated with its effect of the
alleviation of inflammatory responses and TGF-β/Smad signaling
pathway inhibition (Wang et al., 2015a). Additionally, EGCG was
found to ameliorate the CdCl2-induced renal injury and fibrosis,
inhibit the level of oxidative stress, normalize renal enzymatic
antioxidant status and E-cadherin level, as well as attenuate the
over-generation of vimentin and α-SMA (Chen et al., 2016).
Similarly, through its antioxidant and epigenetic modulation
capacities, EGCG has protective effects against arsenic-induced
cytotoxicity and fibrogenic changes in kidney epithelial cells
(Iheanacho et al., 2024).

Luo et al. found that EGCG could lower MDA levels, reduce the
numbers of infiltrated macrophages and T cells, and induce
apoptosis (Luo et al., 2020). Specifically, it can reduce B-cell
lymphoma-2 (Bcl-2) and increase Bax and cleaved caspase 3
(Wang et al., 2015b).

2.3.3 Resveratrol
Resveratrol is a versatile phenolic compound commonly found

in various plants-particularly knotweed-as well as in mulberry,
peanuts, buyer’s twine, and Korean acacia (Uddin et al., 2021). In
vitro and in vivo studies have confirmed the health benefits of
resveratrol in kidney diseases (Den Hartogh and Tsiani, 2019).
Resveratrol, an SIRT1 activator, effectively prevented ROS

generation, production of ECM proteins, mitochondrial damage,
and senescence (Dong Ryeol et al., 2019).

Studies have revealed that resveratrol inhibits renal interstitial
fibrosis by regulating the AMPK/NOX4/ROS pathway (Ting et al.,
2016). Furthermore, AKT/FOXO3a signal pathway mediates the
protective mechanism of resveratrol on renal interstitial fibrosis and
oxidative stress (Rongrong and Qu, 2022). Specifically, resveratrol
decreased the levels of MDA and 8-OHdG, and increased the level of
SOD, which protects cells against ROS damage (Jin et al., 2013).
Sener Göksel et al. found that resveratrol exerts renoprotective
effects via its radical scavenging and antioxidant activities, which
appear to involve the inhibition of tissue neutrophil infiltration
(Felix et al., 2024). Additionally, resveratrol has a protective effect on
EMT by suppressing oxidative stress and a possible involvement of
TGF-β/Smad signaling pathway (Beshay et al., 2020).

Resveratrol can act on the TGF-β pathway through multiple
targets and subsequently attenuate renal injury and fibrosis. For
example, resveratrol can inhibit matrix metalloproteinase (MMP) 7
(Zhou et al., 2015). Huang et al. demonstrated that SIRT1 can bind
to Smad3 via co-immunoprecipitation. Resveratrol treatment
enhanced this binding and reduced the acetylation levels of
Smad3. Simultaneously, resveratrol inhibited the transcription
activity of Smad3 (Xin-Zhong et al., 2013).

Another important property of resveratrol is its anti-aging
resistance. Senescence contributes to tubular epithelial cell
damage (Deping et al., 2024). The serum levels of advanced
glycation end-products and renal function markers BUN,
creatinine, and cystatin C in mice have been found to
significantly increase after the administration of D-galactose, and
this outcome could be significantly reversed by treatment with
resveratrol (Kuo-Cheng et al., 2023). Furthermore, resveratrol
treatment alleviated age-related EMT in aging kidneys, which was
accompanied by the activation of AMPK-mTOR signaling (Dan
et al., 2017). Moreover, it reinforces the therapeutic effect of
mesenchymal stem cell-derived exosomes against renal fibrosis by
suppressing EMT (Fuhe et al., 2024).

2.3.4 Salvianolic acid B
Salvianolic acid B (SalB) is the principle water-soluble active

component of Salvia miltiorrhiza, derived from three salvianin
molecules and one caffeic acid molecule.

Recent findings have revealed that SalB protects against renal
fibrosis by reversing EMT. Wang et al. discovered that SalB activates
the TGF-β1/Smads signaling pathway both in vivo and in vitro,
which helps to prevent EMT (Wang et al., 2010). In a study by He
et al., SalB was found to improve renal function and lower the levels
of fibronectin, α-SMA, and TGF-β. In addition, SalB mitigated EMT
related to renal fibrosis via SIRT1-mediated autophagy (He et al.,
2020). Furthermore, SalB regulates the expression of miR-106b-
25 and preserves the epithelial traits of HK-2 cells by lowering α-
SMA levels and increasing the E-cadherin level (Tang et al., 2014).

In order to investigate the effect of SalB on renal
tubulointerstitial fibrosis and explore the potential mechanisms,
Lin et al. used two models of renal fibrosis-UUO and aristolochic
acid nephropathy. The results revealed that it significantly increased
the levels of Scr and BUN, suppressed the expression of fibronectin
and α-SMA, increased PTEN, and decreased p-Akt, which
correlated with the downregulation of the enhancer of zeste
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homolog-2 (EZH2) and histone H3 lysine 27 trimethylation
(H3K27me3) (Lin et al., 2023). EZH2 is a methyltransferase that
induces H3k27me3 and regulates gene transcription in fibrogenesis
(Diana Valeria, 2020). Additionally, SalB alleviates renal fibrosis by
modulating platelet-derived growth factor (PDGF)-C/PDGFR-α
pathway (Yao et al., 2022) and heparinase/syndecan-1 axis (Hu
et al., 2020).

Phenols, as widespread secondary metabolites in plants, have
significant biological activities, but their efficacy is often limited by
self-deficiency such as low absorption of curcumin, poor stability of
resveratrol, and easy and rapid degradation of SalB, which leads to
insufficient bioavailability. However, there have been many
successful cases demonstrating the critical role of nanomaterials:
for example, natural ursolic acid-based carriers can deliver
resveratrol in a targeted manner to repair renal injury (Nie et al.,
2023). Methoxypolyethylene glycol-chitosan to enhance the oral
delivery and kidney-targeted distribution of SalB (Zhang et al.,
2023). These advances suggest that the inherent defects of the
molecule can be effectively circumvented by tailor-designed
nano-delivery systems, thereby substantially enhancing its
bioavailability. Thus, phenolic compounds are expected to be
important new strategies for renoprotection and antifibrosis.

2.4 Anthraquinones

2.4.1 Rhein
Rhein is identified as an anthraquinones and serves as a vital

ingredient in several types of TCM, including Rheum palmatum L.,
Polygonum multiflorum, and aloe vera (Cheng et al., 2021; Zhu
et al., 2022).

Recent studies have emphasized rhein’s ability to inhibit
mesangial cell proliferation, ECM production, and TGF-β1
expression in human renal cells. Additionally, rhein alleviates
desmoplastic anemia and EMT by influencing the Ras-related
C3 botulinum toxin substrate 1/NOX1/β-catenin signaling
pathway (Xiong et al., 2023). In a UUO model, rhein was found
to reduce renal interstitial fibrosis by modulating the Sonic
hedgehog-Glioma-related cancer gene homologous proteins 1-
Snail signaling pathway (Luo et al., 2022). In addition, rhein
reduces renal fibrosis by promoting Cpt1a-mediated fatty acid
oxidation through the Sirt1/STAT3/twist1 pathway (Chen Y.
et al., 2019; Song et al., 2022), thereby leading to an
improvement in renal function and reducing interstitial damage
and collagen fiber accumulation by activating the Sirt3/FOXO3a
pathway (Wu et al., 2020). Based on the integrated network
pharmacology and the construction of the rhein-target-metabolic
enzyme-metabolite network, Xiao et al. found that rhein played an
antifibrotic role through the PPAR-α-CPT1A-l-palmitoyl-carnitine
axis (Qiming et al., 2022).

Interestingly, rhein reversal of DNA hypermethylation-
associated Klotho suppression ameliorates renal fibrosis (Zhang
et al., 2016), and it also provides renal protection through the
regulation of DNA methyltransferases expression and
methylation at the Klotho promoter (Zhang et al., 2017).
Furthermore, treatment with rhein has effectively reversed
alterations in Klotho and TLR4, thereby reducing inflammatory
responses (Bi et al., 2018).

2.4.2 Emodin
Rheum palmatum is a commonly used herb in TCM for the

treatment of AKI. Themain active component of rhubarb is emodin,
which was first recorded in Shennong’s Classic of Materia Medica.
Emodin has been found to be effective against renal fibrosis and has
been widely studied for its effects on kidney diseases (Liu
et al., 2022).

Emodin reduces proteinuria and alleviates renal fibrosis. The
potential mechanisms by which emodin exerts its renoprotective
effects are through suppressing cell apoptosis and enhancing the
autophagy of podocytes via the AMPK/mTOR signaling pathway in
the kidney (Liu H. et al., 2021). Additionally, studies have
demonstrated that emodin ameliorates renal injury and fibrosis
via regulating the miR-490-3p/high migration protein A2 axis
(Wang L. et al., 2023), retarding renal fibrosis through regulating
HGF and TGF-β/Smad signaling pathway (Ma et al., 2018),
hindering EMT via regulation of bone morphogenetic protein-7/
TGF-β1 in renal fibrosis (Liu W. et al., 2021), suppressing IL1β-
induced mesangial cells proliferation and ECM production via
inhibiting p38 MAPK (Wang et al., 2007), and improving renal
fibrosis in CKD by regulating mitochondrial homeostasis through
the mediation of peroxisome proliferator-activated receptor-gamma
coactivator-1 α (Feng L. et al., 2024).

Interestingly, deoxycholic acid-chitosan coated liposomes
combined with in situ colonic gel enhances renal fibrosis therapy
of emodin (Xu et al., 2022). However, the poor solubility, limited
colonic irrigation retention time, and inadequate colon adhesion of
emodin hinder its clinical application. Consequently, Lu et al.
combined emodin with the nanoparticles to prepare an emodin-
nanoparticle system (emodin-NP) and studied their efficacy in
delaying CKD progression. The emodin-NP alleviates kidney
dysfunction and tubulointerstitial fibrosis by mediation through
the modification of gut microbiota disorders (Lu et al., 2020).

In summary, there remains a lack of clinically relevant data on
rhein and emodin, thereby necessitating further exploration into its
clinical efficacy as well as appropriate dosing and treatment
regimens. Simultaneously, future research should focus on the
application of network pharmacology and bioinformatics.

2.5 Terpenoids

2.5.1 Poricoic acid A
Poricoic acid A (PAA) isolated from Poria cocos is a potent anti-

fibrotic agent. Studies have suggested that the suppression of TGF-
β1-induced renal fibroblast ECM accumulation, fibrosis formation,
and proliferation by PAA is mediated via the inhibition of the
PDGF-C, Smad3, and MAPK pathways (Chen et al., 2020). In the
UUO mice model, PAA reduced the activity of the Wnt/β-catenin
signaling pathway by enhancing the expression of tryptophan
hydroxylase-1 and also inhibited renal cell injury and fibroblast
activation, thereby exerting an anti-fibrosis effect (Dan-Qian et al.,
2020). Molecular docking analysis revealed that there may be a
potential interaction between SIRT3 and PAA. Then, in both in vivo
and in vitro models, PAA was found to attenuate renal fibroblast
activation and interstitial fibrosis by upregulating SIRT3 and
inducing β-catenin K49 deacetylation (Chen et al., 2023).
Interestingly, PAA enhances melatonin inhibition of AKI-to-
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CKD transition by regulating Gas6/Axl NFκB/Nrf2 axis (Chen et al.,
2019b). Combined melatonin and PAA inhibit renal fibrosis
through modulating the interaction of Smad3 and the β-catenin
pathway in the AKI-to-CKD continuum (Chen et al., 2019c).

2.5.2 Tanshinone IIA
Tanshinone IIA is a diterpene extracted from S. miltiorrhiza, a

popular and safe herb medicine that has been widely used
in China.

Tanshinone IIA was used to target oxidative stress and
inflammation for the improvement of fibrosis (Lu et al., 2022;
Jiang et al., 2016). Mechanistically, tanshinone IIA ameliorates
renal fibrosis by suppressing the TGF-β/TSP-1 (Fan et al., 2024),
regulating NRF2/NLRP3 (Zhang et al., 2024), NF-κB (Wang D.
et al., 2015), miR-34-5p/Notch1 axis (Zhang and Yang, 2022),
and TGF-β/Smad signaling pathways. Moreover, tanshinone IIA
ameliorates EMT via the Akt/mTOR/p70S6K (Jiang et al., 2019),
Vitamin D receptor/Wnt/β-catenin signaling pathways (Zeng
and Bao, 2021; Zeng et al., 2024; Cao et al., 2017). In addition,
the kidney protective and antifibrotic effect of tanshinone IIA
was likely attributable to an early inhibition of renal recruitment
of fibrocytes positive for both CD45 and COL I (Jiang et al.,
2015). Meanwhile, tanshinone IIA may be associated with
reduced ER stress via attenuating PERK signaling activities
(Xu et al., 2020).

2.5.3 Bixin
Bixin, a carotenoid derived from the seeds of Bixa orellana,

belongs to a distinctive subclass of terpenoids and exhibits
multifaceted pharmacological properties, including antifibrotic,
anti-inflammatory, and antioxidant activities (Jianzhong et al.,
2020a; C et al., 2001; Shasha et al., 2016). Mechanistically, bixin
suppresses the TLR4/MyD88/NF-κB and TGF-β1/Smad3 signaling
axes, attenuating the secretion of proinflammatory cytokines such as
TNF-α and IL-1β (Jie-Qiong et al., 2020; Jianzhong et al., 2020b).
Additionally, it enhances proteasomal degradation of STAT6,
thereby mitigating renal interstitial fibrosis (Jianzhong et al.,
2020a). Bixin further demonstrates antioxidative efficacy by
upregulating endogenous defense systems, including SOD,
catalase, glutathione peroxidase, PPAR-γ, NAD(P)H quinone
dehydrogenase 1, HO-1, and Nrf2. Concurrently, it
downregulates profibrotic mediators such as MMP9, TGF-β1,
and fibronectin, collectively ameliorating oxidative stress and
halting fibrotic progression in renal tissues (Shasha et al., 2016;
Jie-Qiong et al., 2020; Jianzhong et al., 2020b; Hong et al., 2018).

In addition to those previously mentioned (Table 1), several
other herbs such as likeanthocyanins (Li et al., 2022), mangiferin
(Lum et al., 2022), coffee leaf tea extracts (Zhou et al., 2023), Lycium
barbarum (Liu et al., 2024; Lu et al., 2019), dihydromyricetin (Wen
et al., 2024; Liu et al., 2019), berberine (Ahmedy et al., 2022; Yang
et al., 2017; Hassanein et al., 2022), licorice (Liao et al., 2020; Li et al.,
2010), and mulberry leaf (Wu, 2019; Hung et al., 2023; Ji et al., 2019)
have been found to enhance renal fibrosis. However, the current
studies on this are few and the mechanisms need to be further
confirmed; additional research will likely provide new ideas for
improving renal fibrosis. Overall, the protective effects of natural
products for kidney health present a valuable area for further in-
depth exploration.

3 Combined application of TCM

In recent years, natural products have garnered significant
attention as therapeutic agents for renal fibrosis. While single-
herb interventions remain foundational in TCM research, the
unique advantage of TCM lies in the synergistic integration of
multiple bioactive compounds within formulated preparations.
These formulations, meticulously designed to amplify therapeutic
efficacy, represent the cornerstone of TCM’s holistic approach.

One innovative strategy involves the co-delivery of total rhubarb
anthraquinone (TRA) and total astragalus saponin (TAS) via a self-
nanoemulsifying drug delivery system (SNEDDS), optimized
through ternary phase diagrams to enhance oral bioavailability.
To address stability and drug-loading challenges, TRA/TAS-
loaded SNEDDS were solidified into pellets using fluid-bed
coating. Further refinement incorporated astragalus
polysaccharides (APS) into colonic site-specific pellets through
sustained-release and enteric coatings. Encapsulating TRA/TAS
and APS pellets at a 1:2 mass ratio in hard capsules
demonstrated spatiotemporal payload release via CHP Type I
dissolution testing. In UUO rat models, this combined pellet
system (CPs) attenuated renal histopathological damage,
suppressed collagen deposition, and reduced proinflammatory
cytokines. Notably, CPs restored gut microbiota dysbiosis and
preserved intestinal barrier integrity, underscoring their multi-
target therapeutic potential (Qibin et al., 2024).

Mechanistic studies reveal that classic TCM formulations exert
antifibrotic effects through diverse pathways. The Astragali radix
and Angelicae sinensis radix decoction modulates plasminogen
activator/PAI and MMP/TIMP imbalances to mitigate ECM
accumulation (Liqiang et al., 2012). Similarly, Huangqi-Danshen
decoction targets stearoyl-CoA desaturase 1 to inhibit cGAS-STING
signaling, disrupting fibrotic cascades (Dong et al., 2023; Hong et al.,
2018; Yu et al., 2025). Synergistic combinations, such as AS-IV with
ginsenoside Rg1, alleviate oxidative stress and TGF-β/Smad3-driven
fibrogenesis (Erine et al., 2021). Fushengong Decoction, anchored by
Astragalus, regulates the PTEN/PI3K/AKT/NF-κB axis to preserve
renal function, with PTEN’s phosphatase activity counteracting
oncogenic PI3K/AKT/mTOR signaling (Virginia et al., 2019;
Changlong et al., 2021). Bioinformatic analyses further implicate
PTEN/TGF-β crosstalk in renal fibrosis progression, influencing cell
migration and motility (Yongchao et al., 2019). The Rhubarb-
Astragalus Capsule mitigates apoptosis via TGF-β1/p38 MAPK
inhibition in UUO models (Xian et al., 2020), while Perindopril
Erbumine combined with Huangqi-Danshen Decoction attenuates
adenine-induced CKD through Sirtuin3-mediated mitochondrial
dynamics (Xian et al., 2022). Intriguingly, Shenqi Detoxification
Granule suppresses EMT by modulating TGF-β1/Smad/ILK
signaling alongside P311, a conserved profibrotic protein
(Pingping et al., 2018).

Classic polyherbal formulations exemplify TCM’s multi-
component synergy. The Shenkang Injection, comprising
Astragalus, Rhubarb, Safflower, and Sage, attenuates fibrosis via
dual targeting of IκB/NF-κB and Keap1/Nrf2 pathways, enhanced
by anthraquinones like rhein and emodin (Fu et al., 2019; Liang-Pu
et al., 2022). Liuwei Dihuang Pill, integrating Rehmannia, Coptis,
and Cornu Cervi Pantotrichum, inhibits TGF-β1/MAPK signaling
to reduce inflammation and interstitial fibrosis (Zhu et al., 2024).
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TABLE 1 Description of natural products used in the treatment of renal fibrosis.

Categories Monomers Herbal
sources

Structure* Molecular mechanisms References

Glycosides Astragaloside IV Astragali radix Anti-oxidant, anti-inflammatory, anti-
fibrotic

Yiwei et al. (2023), Patrick
Kwok-Kin et al. (2012)

Ginsenoside Rg1 Ginseng Anti-inflammatory, anti-tumor, anti-
oxidant

Xie et al. (2008)

Salidroside Rhodiola rosea L Anti-fibrotic, anti-cancer, anti-depressant,
anti-inflammatory, anti-oxidant, anti-ulcer
and cardioprotective

Meihua et al. (2022)

Flavonoids Quercetin Flos Sophorae
Immaturus

Anti-oxidant, anti-inflammatory, anti-
apoptotic and anti-fibrotic

Azar et al. (2021), Priyanka
et al. (2021)

Baicalin Scutellaria Anti-oxidant, anti-inflammatory, anti-
infectious and anti-tumor

Yongqiang et al. (2023)

Puerarin Pueraia Anti-fibrotic, antioxidant, anti-
inflammatory and immunomodulator

Jingyu et al. (2021)

Phenols Curcumin turmeric Anti-cancer, anti-thrombotic, anti-heart
failure, inhibits inflammatory response and
lowers blood pressure

Chen et al. (2021), Chadanat
and Visith (2024)

Epigallocatechin-
3--gallate

Green tea Anti-oxidant, NO-scavenging, anti-
inflammatory, anti-arthritic and apoptosis

Luo et al. (2020)

Resveratrol Knotweed Regulating blood lipid levels, preventing
LDL oxidation, anti-platelet aggregation,
and anti-aging

Dong Ryeol et al. (2019)

(Continued on following page)
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The Shen-Qi-Huo-Xue formula, validated pharmacopeial herbs
including Pseudostellaria heterophylla and Salvia miltiorrhiza,
restores Hypoxia-inducible factor (HIF)-1α/HIF-2α homeostasis
to counteract tubular ferroptosis and EMT in diabetic
nephropathy (Ronglu et al., 2025).

In summary, these studies elucidate the mechanistic and practical
paradigms of TCM’s combinatorial strategies, encompassing herbal
synergies, chemical drug integrations, and advanced delivery systems.
By targeting multifaceted pathways—from ECM regulation to
mitochondrial dynamics and microbiota modulation—these
approaches offer transformative insights for both preclinical research
and clinical translation in renal fibrosis management.

4 Discussion

4.1 Challenges in natural product utilization

4.1.1 Phytochemical complexity and
mechanistic ambiguity

Natural products are inherently complex, comprising hundreds
of bioactive constituents with unpredictable synergistic or
antagonistic interactions. This heterogeneity complicates the
elucidation of pharmacokinetic and pharmacodynamic profiles,
particularly in compounded preparations, thereby hindering
standardization and clinical validation.

TABLE 1 (Continued) Description of natural products used in the treatment of renal fibrosis.

Categories Monomers Herbal
sources

Structure* Molecular mechanisms References

Salvianolic acid B Slaviae
miltiorrhizae

anti-inflammatory, anti-oxidant,and anti-
apoptotic

Wang et al. (2010)

Anthraquinones Rhein Rheum
palmatum L

Anti-tumor, anti-inflammatory, anti-
bacterial

Nie et al. (2023), Zhang et al.
(2023)

Emodin Rheum
palmatum L

Anti-fibrotic anti-inflammatory Zhang et al. (2017)

Terpenoids Poricoic acid A Wolfiporia
cocos

Anti-fibrotic Xu et al. (2022)

Tanshinone IIA Salvia
miltiorrhiza

Anti-fibrotic Chen et al. (2019b), Chen
et al. (2019c)

Bixin Bixa orellana anti-fibrotic, anti-inflammatory, and
antioxidant

Jiang et al. (2015), Xu et al.
(2020), Jianzhong et al.

(2020a)

*Represents the structures in this review were made by ChemDraw.
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4.1.2 Geographical variability and quality control
The chemical composition of medicinal plants is significantly

influenced by environmental factors (e.g., soil composition,
climate, and cultivation practices), and geographic differences
lead to variations in plant chemical composition, which in turn
affects quality control and production stability. For example,
Klein-Junior et al. (2021) noted that phenotypic differences in
plants are due to geographic variation, which poses a challenge to
batch-to-batch stability, and thus affects consistency in large-
scale production. Therefore, modern quality control methods
must be employed to counteract the effects of this geographic
variability on the consistency of drug quality.

4.1.3 Optimization of delivery modalities
Route of administration has a crucial impact on drug efficacy.

Different modes of administration such as oral administration,
intravenous injection and topical application affect the bioavailability
and therapeutic efficacy of drugs.Wang H. et al. (2023) showed that
geographical variability of herbs not only affects their chemical
composition, but also has a significant impact on drug absorption
and bioavailability. For example, the absorption of certain herbal
components may be unstable when administered locally, and thus the
delivery method needs to be optimized for the characteristics of different
herbs to improve the therapeutic efficacy. In this way, the therapeutic
efficacy of drugs can be significantly improved by rationally selecting the
route of administration.

4.1.4 Drug development and safety
profiling barriers

Isolation of high-purity bioactive compounds from complex
herbal matrices remains technically challenging, particularly for
low-abundance metabolites. Although natural products are
perceived as safer than synthetic drugs, their toxicological
profiles-especially organ-specific effects-are undercharacterized.
For instance, celastrol demonstrates antifibrotic efficacy in
pulmonary models (Divya et al., 2018; Divya et al., 2016), yet its
renal implications remain unexplored (Zhou et al., 2022),
necessitating targeted toxicokinetic evaluations.

4.1.5 Limitations in clinical evidence and
translational relevance

Current clinical research on natural products is marred by
methodological deficiencies, including small cohorts, inadequate
controls, and non-standardized endpoints. Preclinical findings from
animal or in vitro models often fail to replicate human
pathophysiology due to interspecies metabolic and immunological
disparities. Human trials must account for variables such as sex-
specific pharmacokinetics, age-related renal decline, and gut
microbiota diversity, which modulate therapeutic response.

4.2 Future directions and strategic
innovations

To overcome these challenges, interdisciplinary collaboration
integrating medicinal chemistry, pharmacology, and chemical

biology is imperative. Emerging technologies—such as artificial
intelligence-driven drug design, bioinformatics, and
nanobiotechnology—offer novel avenues to enhance compound
bioactivity and reduce toxicity. Metabolomics and network
pharmacology can elucidate drug mechanisms and identify
disease-specific molecular targets (Luo et al., 2024; Li et al.,
2023). Additionally, semi-synthetic and biosynthetic approaches
may address sourcing limitations while improving solubility and
bioavailability.

Despite inherent challenges, natural products hold
transformative potential for CKD and renal fibrosis management.
By harmonizing TCM’s holistic principles with modern precision
medicine, and leveraging technological advancements, future
research can bridge the gap between empirical tradition and
evidence-based therapeutics.
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Glossary
α-SMA α-smooth muscle actin

AKI acute kidney injury

APS astragalus polysaccharides

AS-IV Astragaloside IV

BUN blood urea nitrogen

cGAS cyclic GMP-AMP synthase

CKD chronic kidney diseases

CPs combined pellet system

ECM extracellular matrix

EGCG Epigallocatechin-3-O-gallate

NP nanoparticle

EMT epithelial-mesenchymal transition

EZH2 enhancer of zeste homolog-2

H3K27me3 histone H3 lysine 27 trimethylation

HO-1 Heme oxygenase-1

IL-1β interleukin-1β

miRs microRNAs

MMP7 matrix metalloproteinase7

PAA Poricoic acid A

PAI plasminogen activator inhibitor

PDGF platelet-derived growth factor

RAAS renin-angiotensin-aldosterone system

RTECs renal tubular epithelial cells

Sal Salidroside

SalB Salvianolic acid B

SNEDDS self-nanoemulsifying drug delivery system

SOD superoxide dismutase

STAT6 signal transducer and activator of transcription 6

STING stimulator of interferon genes

TAS total astragalus saponin

TCM Traditional Chinese Medicine

TRA total rhubarb anthraquinone

TSP-1 thrombospondin-1

UUO unilateral ureteral obstruction
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