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Myelodysplastic syndromes (MDS) are a group of malignancies characterized by
clonal proliferation of hematopoietic stem cells, ineffective hematopoiesis,
peripheral cytopenias, and a high risk of transformation to acute myeloid
leukemia. Current therapeutic strategies for MDS have limited efficacy. Thus,
identifying new therapeutic targets and prognostic biomarkers is a critical future
research direction. Ferroptosis, a new type of iron-dependent programmed cell
death, has become a recent hotspot in the field of oncology research. Recent
results have demonstrated that iron metabolism, lipid metabolism, and other
pathways can be targeted to induce ferroptosis in MDS cells. In addition,
ferroptosis-related genes are of significance in the prognosis and diagnosis of
MDS. This article reviews the current research progress on ferroptosis in MDS,
including its potential for targeting as a therapeutic intervention strategy.
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1 Introduction

Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic malignancies
characterized by morphological dysplasia of bone marrow cells, as well as anemia,
neutropenia, or thrombocytopenia (Arber et al., 2016). The annual incidence of MDS is
approximately 4 cases per 100,000 (Sekeres and Taylor, 2022), with higher incidence among
elderly patients (Li et al., 2022). Treatment options for MDS are limited, in part because its
pathogenic mechanisms remain incompletely elucidated. Currently, the main treatments
include supportive care, such as blood transfusions, demethylating agents, chemotherapy,
and hematopoietic stem cell transplantation (Cazzola, 2020). However, demethylating
agents and other pharmacological treatments have suboptimal efficacy. Currently,
hematopoietic stem cell transplantation is the only potentially curative therapy, but due
to the median age of MDS patients (around 70 years), stem cell transplantation is usually
considered unsafe or impractical in the elderly. Therefore, there is an urgent need to
investigate the pathogenesis of MDS and develop new therapeutic approaches.

Ferroptosis, a novel form of cell death that is distinct from apoptosis, autophagy, and
necrosis; is triggered by the accumulation of iron-dependent lipid peroxides; and is
regulated by various cellular metabolic pathways, including redox homeostasis, iron
metabolism, and the metabolism of amino acids, lipids, and glucose (Dixon et al., 2012;
Galy et al., 2024; Conrad and Pratt, 2019; Ursini and Maiorino, 2020; Conrad et al., 2018).
Studies have shown that ferroptosis induction in tumor cells exhibits anticancer potential in
various malignant tumors (Lei et al., 2024). Tumor cells that are resistant to conventional
treatments may be more sensitive to this form of death due to imbalances in the lipid
peroxidation system. In the field of MDS research, recent studies have shown that
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ferroptosis signaling pathways regulate the progression of MDS,
which suggests that ferroptosis-targeting drugs hold promise as a
new MDS therapy approach (Suarez and Gore, 2013). Furthermore,
the specific value of ferroptosis-related genes (FRGs) in the diagnosis
and prognosis of MDS has been considered. This article summarizes
the current domestic and international research progress on
ferroptosis in the field of MDS.

2 overview of ferroptosis

Ferroptosis is a form of cell death induced by the
accumulation of iron-dependent lipid peroxides. Its key
processes include abnormal iron metabolism, lipid ROS
generation, dysregulation of the antioxidant system, and
accumulation of lipid peroxides (Jiang et al., 2021).
Ferroptosis is distinct from traditional forms of cell death
such as apoptosis, necrosis, and pyroptosis, and it has unique
biological characteristics and regulatory mechanisms. Therefore,
therapeutic targeting of ferroptosis has been studied as an
intervention approach for various diseases, including cancer.

Accumulating research has elucidated regulatory mechanisms of
ferroptosis, providing new perspectives and research directions for
preventing the occurrence and development of various diseases. In
radiation-induced heart disease, total extracts from A. manihot (L.)
have been demonstrated to prevent ferroptosis in cardiomyocytes by
regulating the NOX4/xCT/GPX4 axis to inhibit redox reactions (Xu
et al., 2024a). Furthermore, in calcific aortic valve disease, Nesfatin-1
has been demonstrated to inhibit ferroptosis in aortic valve
interstitial cells by regulating the GSH/GPX4 and ZIP8/
SOD2 axes (Wang et al., 2024). Similarly, in repetitive traumatic
brain injury, SCH79797 inhibits neuronal ferroptosis and reduces
NLR family pyrin domain containing 3 (NLRP3) inflammasome
activation by promoting PPAR-γ/Nrf2-mediated antioxidant
responses (El-Gazar et al., 2024). Each of these studies support
the use of ferroptosis-related pathways as potential targets for
disease prevention or treatment.

Studies on ferroptosis in tumors are also becoming more
widespread (Zhou et al., 2024). In liver cancer, serine beta-
lactamase-like protein inhibits the ferroptosis of hepatocellular
carcinoma cells by regulating the p53/HSPA8 axis (Zeng et al.,
2024); and aristolochic acids suppress ferroptosis via modulation of
the p53/GADD45A/NRF2/SLC7A11 pathway (Hou et al., 2024). In
non-small cell lung cancer (NSCLC), targeting and regulation of the
NRF2/PHKG2 axis promotes ferritinophagy, increases intracellular
iron levels, and enhances the radiosensitivity of NSCLC cells
through mitochondrial stress-dependent ferroptosis (Han et al.,
2024). Likewise, the EGR1/miR-139/NRF2 axis plays a role in
ionizing radiation-induced ferroptosis in NSCLC cells (Zhang L.
et al., 2024a). In breast cancer, dihydroartemisinin enhances the
radiosensitivity of breast cancer cells by inducing ferroptosis via the
hsa_circ_0001610/miR-139-5p/SLC7A11 pathway (Zhang Y. et al.,
2024b). Furthermore, overexpression of hypoxia-inducible factor-1α
(HIF1α) increases the sensitivity to Adriamycin and inhibit the
proliferation and invasion abilities of breast cancer cells by
activating ferroptosis (Yu et al., 2024).

Current research suggests that ferroptosis may also have a
key role in hematological diseases. In Acute Myeloid Leukemias

(AML), FLT3 inhibitors enhance the sensitivity of FLT3-mutant
AML cells to lipid oxidative stress by inhibiting the C/EBPα/
SCD axis, thereby inducing ferroptosis (Sabatier et al., 2023).
Furthermore, Imetelstat, a first-in-class telomerase inhibitor
with clinical efficacy in myelofibrosis and MDS, has been
demonstrated to induce ferroptosis in AML cells by
promoting the formation of polyunsaturated fatty acid-
containing phospholipids, leading to excessive lipid
peroxidation and oxidative stress (Bruedigam et al., 2024). In
lymphoma, 7-Dehydrocholesterol, an endogenous metabolite,
enhances the survival ability of lymphoma cells by protecting
their lipids from peroxidation and reducing their sensitivity to
ferroptosis, especially for DHCR7-mutated Burkitt lymphoma
(Freitas et al., 2024). BRD4 is a bromodomain and extra-
terminal domain (BET) protein that positively regulates the
expression of ferroptosis suppressor protein 1 (FSP1). BET
inhibitors have been shown to reduce the antioxidant capacity
within GCB subtype Diffuse Large B-cell Lymphoma cells by
decreasing FSP1 expression, thereby increasing their sensitivity
to ferroptosis. Moreover, BET inhibitors affect the expression of
ferroptosis-related genes, such as SLC7A11 (Schmitt et al.,
2023). In Multiple Myeloma (MM), the loss of leukocyte
immunoglobulin-like receptor B1 reduces the uptake of LDL/
cholesterol by MM cells but activates the cholesterol synthesis
pathway to maintain intracellular cholesterol levels. A key
intermediate in this pathway is squalene, an effective
antioxidant that protects cells from lipid peroxidation
damage; cholesterol synthesis pathway activation leads to
decreased squalene levels, which causes cells to become more
susceptible to ferroptosis (Xian et al., 2024). Additionally, AP-1
inhibitor (T-5224) induces ferroptosis in MM cells by inhibiting
the PI3K/AKT signaling pathway (Tang S. et al., 2024a).

3 Regulatory mechanisms of
ferroptosis in MDS

As a hematological malignancy, MDS has been the focus of
studies on apoptosis (Lambert et al., 2016; Economopoulou
et al., 2010; Lefèvre et al., 2017; Czibere et al., 2006; Jing
et al., 2024; Liu et al., 2024; McBride et al., 2019; Rivella,
2015) and autophagy (Alexander et al., 2011; Zha et al., 2021;
Jacquel et al., 2018; Ames et al., 2023; Weber et al., 2020), but the
role of ferroptosis in MDS is not well characterized.
Nevertheless, accumulating evidence is consistent with the
role of ferroptosis in MDS (Figure 1). Increased Fe3+

promotes the generation of ROS (Callens et al., 2010), and
iron overload is not uncommon during MDS (An et al.,
2023). MDS cells show increased Fe3+ uptake and decreased
Fe3+ efflux, with varying degrees of abnormalities in transferrin,
transferrin receptors, and iron metabolism-related proteins. For
example, one study demonstrated increased levels of Fe2+and
elevated expression of transferrin receptor mRNA in CD33+ cells
of MDS patients (Li J. et al., 2024a). Repeated blood transfusions
to improve anemia during treatment is the main cause of iron
overload (Pullarkat, 2009; Lindsey and Alex, 2018). Intrinsic
ineffective erythropoiesis, a form of hemolysis caused by
chemotherapy and hematopoietic stem cell transplantation,
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further exacerbates iron overload. Additionally, in MDS
patients, the activation of NLRP3 inflammasomes is a redox-
dependent, hallmark feature that leads to clonal expansion and
pyroptosis (Sallman and List, 2019; Sallman et al., 2016), which
results in increased ROS levels (Montalban-Bravo et al., 2020;
Grignano et al., 2020). Molecular processes related to MDS, such
as mutations in NLRP3, as well as drugs like decitabine, affect
the production of ROS (Lv et al., 2020). The high ROS state
makes MDS cells more prone to ferroptosis. Therefore, inducing
ferroptosis in MDS cells by increasing cellular ROS levels is a
potentially beneficial approach for treating MDS.

Current evidence suggests that MDS cell ferroptosis is
induced through the System Xc - glutathione (GSH) -
glutathione peroxidase 4 (GPX4) pathway (Figure 2). The
System Xc−-GSH-GPX4 pathway is a classic regulatory
pathway of ferroptosis. Within this pathway, System Xc-is a
cystine/glutamate antiporter on the cell membrane,
responsible for transporting extracellular cystine into the cell
to synthesize GSH; GSH is an important intracellular antioxidant

that maintains the cellular redox balance; and GPX4 is a GSH-
dependent antioxidant enzyme that reduces lipid peroxides on
the cell membrane, preventing lipid peroxidation damage. When
the System Xc--GSH-GPX4 pathway is inhibited, intracellular
GSH synthesis decreases and GPX4 activity is reduced, leading to
the accumulation of lipid peroxides on the cell membrane. Excess
lipid peroxides cause damage to the cell membrane, ultimately
inducing ferroptosis. In support of the role of this pathway in
MDS, treatment of the MDS cell line SKM-1 and two myeloid
leukemia cell lines (KG-1 and K562) with the ferroptosis inducer
erastin was demonstrated to induce ferroptosis by depleting GSH
and reducing GPX4 activity.

Decitabine, a natural adenosine analogue of 2′-deoxycytidine
nucleotide that is classified as an S-phase cell cycle-specific drug,
exerts demethylation by inhibiting DNA methyltransferase, which
activates tumor suppressor genes and inhibits cancer cell proliferation;
thus, decitibine has been employed in the treatment ofMDS andAML
(Suarez andGore, 2013). Notably, decitabine can significantly increase
ROS levels and promote the release of iron ions in MDS cells, which

FIGURE 1
Main molecular mechanisms and signaling regulation of ferroptosis. The mechanisms and related signaling pathways of ferroptosis mainly include
iron metabolism disorders, imbalance of the amino acid antioxidant system, accumulation of lipid peroxides, and related signaling pathways mediated by
FSP1/CoQ10, GCH1/BH4, and DHODH. GPX4, glutathione peroxidase 4; Se, selenium; Glu, glutamate; SLC7A11, solute carrier family 7 member 11;
SLC3A2, solute carrier family 3 member 2; GSH, glutathione; GSSG, oxidized glutathione; PUFAs, polyunsaturated fatty acids; ACSL4, acyl-
coenzyme A synthetase long chain family member 4; CoA, coenzyme A; LPCAT3, lysophosphatidylcholine acyltrans-ferase 3; PUFA-PE, polyunsaturated
fatty acid-phosphatidyl ethanolamine; CoQ10, ubiquinone; CoQ10H2, ubiquinol; DHODH, dihydroorotate dehydrogenase; FSP1, ferroptosis suppressor
protein 1; BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; DHFR, dihydrofolate reductase; FSP1, ferroptosis suppressor protein 1.
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further generates reactive oxygen species through the Fenton reaction,
thus exacerbating oxidative stress; as a consequence, decitabine
reduces GSH levels and inhibits GPX4 activity, leading to the
accumulation of lipid peroxides. These findings are consistent with
the possibility that ferroptosis may be the main mechanism by which
decitabine induces death in MDS cells.

4 Prognostic studies of ferroptosis-
related genes (FRGs) in MDS

Multiple genes are involved in the regulation of ferroptosis (Su
et al., 2024). GPX4 is an inhibitor of ferroptosis that prevents cell
death by reducing phospholipid peroxides (Seiler et al., 2008; Roveri
et al., 1994; Mishima et al., 2023; Mao et al., 2021; Friedmann Angeli
et al., 2014). Moreover, SLC7A11 indirectly inhibits ferroptosis by
promoting glutathione synthesis (Xu et al., 2019), while FSP
1 inhibits ferroptosis through coenzyme Q10 (Doll et al., 2019;
Bersuker et al., 2019). Additionally, GCH1 inhibits ferroptosis
through antioxidant mechanisms (Kishi et al., 2012; Ahn et al.,
2023). Conversely, ACSL4 (Ding et al., 2023), ALOX15 (Sui et al.,
2024), and NCOA4 (Xu M. et al., 2024) enhance ferroptosis
sensitivity by promoting lipid peroxidation and iron ion
accumulation via parallel pathways, while TFRC promotes iron
ion uptake, increasing the risk of ferroptosis.

With increasing research on ferroptosis genes, the roles of FRGs
in hematological diseases are gradually being uncovered. For
example, a prognostic model including six FRGs (VEGFA,
KLHL24, ATG3, EIF2AK4, IDH1, HSPB1) can optimize risk
stratification for AML patients (Jiang et al., 2023). In lymphoma,

a risk scoring model containing 16 survival-related FRGs (DRD4,
TFAP2C, AKR1C3, CHAC1, ULK2, CXCL2, GABARAPL1, TRIB3,
CYBB, IREB2, EPAS1, MT1G, ATG3, ATF4, CAPG, UBC) shows
good efficacy in predicting the survival of DLBCL patients (Xiong
et al., 2022). In MM, a risk scoring model including five FRGs
(YY1AP1, AURKA, CDKN1A, RRM2, STEAP3) can accurately
predict the prognosis of MM patients (Wang et al., 2023).

Ferroptosis is also a promising target for MDS therapy, and
specific roles of FRGs in MDS diagnosis have been proposed. Using
MDS-related microarray data and clinical information from the
Gene Expression Omnibus (GEO), the predictive ability of FRGs
was evaluated using nomogram analysis and external datasets. A set
of six feature genes (SREBF1, PTPN6, PARP9, MAP3K11, MDM4,
EZH2) demonstrated high accuracy in MDS diagnosis. These
findings underscore the complex relationship between FRGs and
MDS (Zhu et al., 2024).

In an alternate study, another group of FRGs (BNIP3, MDM2,
and RRM2) were demonstrated to serve as biomarkers for the
diagnosis, treatment, and prognosis of MDS. Researchers
identified these FRGs using RNA sequencing data and clinical
information from GEO, extracting fFRGs from the FerrDb
website, and performing differential expression analysis using the
R package. Subsequently, Kaplan-Meier and Cox regression analyses
were employed to assess the prognostic roles of these three genes.
The diagnostic and prognostic efficacy of these genes in MDS was
confirmed through Receiver Operating Characteristic curve analysis.
Although this prognostic model constructed solely with BNIP3,
MDM2, and RRM2 is relatively one-sided, the findings deepen the
understanding ofMDS pathogenesis, improve risk stratification, and
build a more precise MDS prognostic system (Chen et al., 2023).

FIGURE 2
Mechanisms of ferroptosis in MDS.
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5 Research progress on targeting
ferroptosis in MDS

Targeting ferroptosis is of importance in tumor therapy, with
potential to provide new strategies for refractory and drug-resistant
tumors. Recent studies have shown that targeting of ferroptosis may
also provide therapeutic benefits to MDS patients by overcoming
resistance to traditional therapies and reducing side effects on
normal cells due to its ability to selectively induce death in MDS
cells. Additionally, ferroptosis induction can function synergistically
with existing treatments by enhancing antitumor effects and shows
broad clinical prospects. Three such synergistic strategies are
presented below.

5.1 Ferroptosis induction combined with
cytotoxic chemotherapy

Erastin is a small-molecule compound that promotes the
accumulation of lipid peroxides by inhibiting the Xc− system and
reducing GSH production, ultimately inducing ferroptosis in MDS
cells (Yagoda et al., 2007). Cytarabine is a key chemotherapeutic
drug used to treat hematological malignancies such as MDS and
AML; it is a cell cycle-specific antimetabolite drug that mainly
inhibits DNA synthesis to suppress tumor cell proliferation and
survival (Magina et al., 2017; Löwenberg, 2013). Studies have shown
that erastin-induced ferroptosis can enhance the sensitivity of MDS
cells to cytarabine.

5.2 Ferroptosis induction combined with
demethylating agents

Decitabine is an antimetabolite drug classified as a
demethylating agent; it inhibits tumor cell proliferation by
altering DNA methylation status and restoring tumor suppressor
gene expression. Studies have shown that when the ferroptosis
inducer erastin is used in combination with decitabine, it can
further reduce GSH levels and enhance the toxic effects of
decitabine on MDS cells.

5.3 Ferroptosis induction combined with
cuproptosis

Cuproptosis is a novel form of cell death induced by various
copper ion carrier drugs such as Elesclomol, Disulfiram, and
NSC319726 (Tang D. et al., 2024). Studies have shown that
targeting ferroptosis and cuproptosis by inhibiting the xCT-
GSH-GPX4 pathway can synergistically enhance the effect of
DSF/Cu in MDS treatment, providing insights for this combined
therapeutic strategies (Li H. et al., 2024). Other research results
indicate that the combined use of ES-Cu and IKE has synergistic
effects in MDS treatment, enhancing therapeutic efficacy by
inducing multiple programmed cell death pathways (Gao
et al., 2024). In the latter study, the induction of cuproptosis
and ferroptosis in MDS cells by ES-Cu/IKE was enhanced by

modulating the xCT-GSH-GPX4 axis, providing new strategies
for MDS treatment.

6 Summary and outlook

In conclusion, ferroptosis has a close relationship with MDS.
Ferroptosis induction in MDS cells via ferroptosis-related signaling
pathways, or in combination with existing cytotoxic
chemotherapeutic drugs and demethylating agents, may provide
new directions in the field of MDS research. Current research on
ferroptosis in MDS is mostly at the in vitro and animal model stages
and has not yet expanded to clinical studies in patients. Therefore,
transforming the basic research of MDS treatment with ferroptosis
regulators into clinical practice is a key area for future exploration.
The use of FRGs to stratify and evaluate prognosis may facilitate the
precise diagnosis and treatment of MDS patients. Because research
on ferroptosis in MDS has just begun, its mechanisms of
pathogenesis, diagnosis, treatment, and prognosis require further
exploration.
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