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Objective: This study aims to investigate the molecular mechanisms by which
quercetin facilitates the treatment of diabetic foot ulcers (DFU).

Methods: Transcriptome sequencing datasets for DFU, specifically GSE80178,
GSE134431, and GSE147890, along with single-cell dataset GSE165816, were
retrieved from the Gene Expression Omnibus (GEO) online database (https://
www.ncbi.nlm.nih.gov/geo/). The single-cell data were subjected to processing,
annotation, differential gene expression analysis, and staining. The transcriptome
sequencing data were analyzed using weighted gene co-expression network
analysis (WGCNA), followed by assessment of immune infiltration. By integrating
transcriptomic data and differentially expressed genes identified through
WGCNA, co-expressed differentially expressed genes were obtained, and a
protein-protein interaction (PPI) network was constructed followed by
enrichment analysis. Core genes were screened using four machine learning
models (Random Forest, Lasso, XGBoost, and SVM). Drug prediction was
performed to identify potential therapeutic agents, and molecular docking
simulations were conducted to assess the binding interactions between the
macromolecular proteins encoded by the core genes and quercetin. A rat
model of diabetic foot ulcer (DFU) was established and randomly divided into
three groups: control, model, and treatment groups. Tissue samples were
collected at 3, 7, and 14 days post-intervention for RT-qPCR, hematoxylin and
eosin (H&E) staining, Masson’s trichrome staining, and immunofluorescence
staining to evaluate the therapeutic effects of quercetin via modulation of the
core genes on DFU.

Results: The analysis identified 275 differentially co-expressed genes that are
extensively involved in the IL-17 signaling pathway, metabolic pathways, the PI3K/
Akt signaling pathway, Staphylococcus aureus infection, complement and
coagulation cascades, among others. From these, four core genes (CIB2,
SAMHD1, DPYSL2, IFI44) were selected using machine learning techniques.
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Immune infiltration analysis demonstrated a strong correlation between SAMHD1,
IFI44, DPYSL2, and macrophages. Molecular docking studies revealed that
quercetin exhibits a lower binding energy with the target protein binding site,
forming a stable structure. Single-cell analysis indicated that SAMHD1 is
predominantly expressed in macrophages, whereas DPYSL2 is expressed not
only in macrophages but also significantly in vascular endothelial cells and other
cell types. This suggests that SAMHD1 and DPYSL2 may exert their effects by
modulating these cells, as corroborated by basic experimental findings. The
improvement in wound tissue morphology observed in the treatment group
was more favorable compared to the model group. In comparison to the acute
group, the gene expression profile in the model group aligned with bioinformatics
predictions. Furthermore, the alterations in core gene expression following
quercetin treatment were statistically significant.

Conclusion: Quercetin may enhance the healing of diabetic foot ulcers by
modulating macrophage activity through the regulation of SAMHD1 and
DPYSL2, thereby contributing to the recovery process.

KEYWORDS

macrophage, diabetic foot ulcers, single cells, bioinformatics, quercetin,
molecular docking

1 Introduction

Diabetes is widely acknowledged as one of the most critical
global health challenges. Currently, over 500 million adults
worldwide are affected by diabetes, with approximately 10% of
the global population being diabetic. Projections indicate that by
2030, this figure will increase to 643 million. Among the most
severe complications of diabetes is diabetic foot, which can result
in circulatory and sensory impairments in the patient’s feet.
Notably, around 20% of patients with diabetic foot ulcers
(DFUs) require lower limb amputation (Armstrong et al., 2017),
significantly diminishing the quality of life for individuals with
advanced diabetes. Quercetin, a flavonoid, exhibits promising anti-
diabetic (Dhanya, 2022), anti-inflammatory (Yuan et al., 2020),
and blood circulation-enhancing properties (Larson et al., 2010).
Additionally, flavonoids have been demonstrated to aid in the
prevention of neurodegenerative diseases and may delay
neurodegeneration processes (Khan et al., 2019). This suggests
that quercetin treatment could potentially address diabetic foot
ulcers through multiple mechanisms. However, the precise
mechanism by which quercetin modulates macrophages to
facilitate wound healing in diabetic foot conditions remains
unclear. This study seeks to investigate the effects of quercetin
on wound healing in diabetic wounds through multi-omics
integration and analysis, alongside fundamental experiments, to
elucidate its mechanisms.

2 Methods

2.1 Bioinformatics

2.1.1 Download raw data
GEO (http://www.ncbi.nlm.nih.gov/geo) (Edgar et al., 2002)

is a public database that contains a large number of sequencing
results submitted by research institutions from around the

world. Transcriptome data on diabetic foot ulcers
(GSE134431 (Sawaya et al., 2020), GSE80178 (Ramirez et al.,
2018), GSE147890 (Leon et al., 2020)) and single-cell data
(GSE223964 (Chen et al., 2024)).

2.1.2 Weighted gene co-expression
network analysis

In the Weighted Gene Co-expression Network Analysis
(WGCNA), the topology calculation employs a soft threshold
power ranging from 1 to 20. Utilizing the optimal soft threshold
power (β = 19), the correlation matrix is transformed into an
adjacency matrix, which is subsequently converted into a
topological overlap matrix (TOM). The TOM is then used to
conduct average linkage hierarchical clustering on modules
comprising a minimum of 300 genes. Following this, similar
modules are merged based on a cutting height of 0.25. The
Pearson method is employed to compute the correlation between
the combined modules and the incidence of diabetic foot ulcers,
leading to the identification of the module with the highest
correlation as the core module. The genes within this core
module will be utilized in the subsequent phase of the analysis.

2.1.3 Differential expression visualization
Integrate the transcriptome datasets (GSE134431, GSE80178,

and GSE147890) and conduct batch effect correction,
normalization, and standardization. Differential gene expression
(DEG) selection criteria are set at |log2FC| > 1 and an adjusted
p-value <0.05. Utilize the DAVID online platform (https://david.
ncifcrf.gov/) to perform Gene Ontology (GO) and KEGG pathway
analyses on the common differential genes identified through
Weighted Gene Co-expression Network Analysis (WGCNA) and
transcriptome data (Kanehisa et al., 2023; Kanehisa, 2019). Employ
the Microbioinformatics online platform (http://www.
bioinformatics.com.cn/) to visualize the common DEGs,
producing heatmaps, volcano plots, Venn diagrams, and
bubble plots.

Frontiers in Pharmacology frontiersin.org02

Xin et al. 10.3389/fphar.2025.1561179

http://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.bioinformatics.com.cn/
http://www.bioinformatics.com.cn/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1561179


2.1.4 Machine learning
The dataset was partitioned into a training set comprising 70%

of the data and a test set comprising 30%. The Random Forest
machine learning model was implemented using the randomForest
package in R to analyze the predictor variables. A 10-fold cross-
validation approach was employed to train the model, resulting in
the identification of the top 15 genes as hub genes based on their
importance ranking. Predictions on the test set were conducted
using LASSO regression, SGBoost, and SVM algorithms to further
pinpoint key genes influencing patient prognosis, also utilizing 10-
fold cross-validation.

2.1.5 Core gene validation
The model’s diagnostic performance was evaluated using the

Receiver Operating Characteristic (ROC) curve and the Area Under
the Curve (AUC) metric. To verify the transcription levels of core
genes, a t-test was conducted on the original datasets (GSE134431,
GSE80178, and GSE147890) using SPSS 26.0 software, with a
P-value of less than 0.05 considered statistically significant.
Additionally, ROC analysis of the hub genes was performed
using the Xiantao Academic Online Analysis Platform (https://
www.xiantaozi.com/).

2.1.6 Immune infiltration analysis
The CIBERSORT algorithm is employed to analyze gene

expression matrices and estimate the subpopulations of
infiltrating immune cells within samples. Samples are filtered
using an adjusted P-value threshold of less than 0.05, and the
outputs of the MOABS algorithm, along with the immune cell
infiltration matrix, are calculated. The R package “GSVA” is
utilized to conduct single-sample Gene Set Enrichment
Analysis (ssGSEA) on the disease group. Furthermore, the R
package “pheatmap” (available at https://CRAN.R-project.org/
package=pheatmap) is used to visualize the correlations
between samples.

2.1.7 Single-cell genomics
Single-cell data were obtained from the Gene Expression

Omnibus database (accession number GSE223964), comprising
eight samples from patients with diabetic foot ulcers (DFU).
The data were processed and analyzed using the Seurat R
package, resulting in the creation of Seurat objects. Quality
control parameters were established, including the expression
of genes per cell ranging from 200 to 5,000, and mitochondrial
gene expression was restricted to less than 8%. Subsequently,
the Seurat object was normalized, and highly variable genes
along with cell cycle scores were computed. The RunHarmony
command was employed to mitigate batch effects. For
dimensionality reduction, principal component analysis
(PCA) and uniform manifold approximation and projection
(UMAP) were utilized to reduce the dimensionality of the
highly variable genes. Unsupervised clustering of the cells
was performed using the FindClusters command with a
resolution parameter set to 0.2. Based on established cell-
specific markers, these clusters were annotated into
13 distinct cell types. The distribution of hub genes across
different cell types was visualized using cell staining
techniques and horn plots.

2.1.8 Drug prediction and molecular docking
experiments

Utilize Enrichr (available at https://maayanlab.cloud/Enrichr/)
(Kuleshov et al., 2016) for the analysis of DSigDB. The crystal
structures of the relevant key proteins can be retrieved from the
Protein Data Bank (accessible at https://www.rcsb.org/). All
molecular docking experiments were performed using the
Autodock software, version 1.5.7. The outcomes are reported in
terms of binding energy. The final visualization is generated using
the Pymol plugin for Python 37.

2.2 Basic experiment

2.2.1 Preliminary preparations
2.2.1.1 Animal origin

SPF-grade Wistar male rats, 30 individuals, 12 weeks old, body
weight 220–250 g, produced by Changsha Tianqin
Biotechnology Co., Ltd.

2.2.2 Experimental methods
2.2.2.1 Experimental grouping and modeling

Following a 1-week acclimatization period in a specific
pathogen-free (SPF) laboratory environment, 30 SPF-grade
Sprague-Dawley male rats were randomly allocated into three
groups: an acute group (n = 10), a model group (n = 10), and a
treatment group (n = 10). To establish a rat model of type 1 diabetes,
the rats were fasted for 12 h with unrestricted access to water. On the
day of model induction, the rats were weighed, and blood samples
were collected from the tail vein to determine baseline blood glucose
levels using a glucometer. Streptozotocin was dissolved in a 0.1 mol/
L citric acid-sodium citrate buffer solution at pH 4.2 to create a 1%
solution. The rats of model group and treatment group were induced
with diabetes mellitus via a single intraperitoneal injection of STZ at
a dose of 100 mg/kg body weight, whereas the control group rats
received an equivalent volume of the citric acid-sodium citrate
buffer solution via intraperitoneal injection. Seventy-two hours
following the administration of streptozotocin (STZ), fasting
blood glucose levels should be assessed using blood obtained
from the tail vein. Rats exhibiting blood glucose levels exceeding
16.7 mmol/L, along with characteristic symptoms such as
polydipsia, hyperphagia, polyuria, and weight loss, are classified
as diabetic mellitus (DM) rats. Weekly assessments of the rats’ body
weight and blood glucose levels should be conducted. To establish
the diabetic foot ulcer (DFU) model, once blood glucose levels in the
diabetic rats have stabilized, the rats should be anesthetized with
ketamine (75 mg/kg, intraperitoneally) and thioridazine (10 mg/kg,
intraperitoneally). Subsequently, near the popliteal fossa, the
femoral artery should be ligated, and a soft transparent plastic
template should be used to create a rectangular wound
measuring 1 cm by 2 cm on the dorsum of each rat’s foot,
thereby establishing an acute ischemic DFU model.

2.2.2.2 Intervention therapy
Following successful modeling, the rats in the treatment group

underwent wound cleaning with a 1/5000 furacin solution and had
their dressings changed every 8–12 h using quercetin dissolved in
DMSO, which was applied directly to the wound. In contrast, the
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control groups received wound cleaning with the same furacin
solution and a saline application.

2.2.2.3 Specimen collection
On days 3, 7, and 14 post-modeling, 3, 3, and 4 rats were

randomly selected from each group, respectively. After anesthesia,
the entire wound along with the surrounding tissue, extending
0.5 cm from the wound edge, was excised down to the fascia
layer. A portion of the excised tissue was stored at 4°C for
histological examination via pathological sections. The remaining
tissue samples were temporarily placed in liquid nitrogen and then
promptly transferred to a −80°C freezer. Upon completion of sample
collection at the three designated time points, all samples were
uniformly subjected to reverse transcription quantitative
polymerase chain reaction (RT-qPCR) detection and analysis.

2.2.2.4 Observe wound healing
Systematically monitor the wound healing process in rats across

different groups by documenting growth conditions and capturing
images of the wounds at standardized focal lengths on days 3, 7, and
14 post-intervention. This approach facilitates a comparative
analysis of the wound healing progression and condition at each
time point within each group.

2.2.2.5 Observation of organizational forms
Employ hematoxylin-eosin (HE) staining to assess pathological

morphological changes: dehydrate the wound tissue, clear it, embed
it in paraffin, section the paraffin block, mount, adhere, and bake the
sections, followed by deparaffinization, hydration, and HE staining.

Examine the sections under a biological microscope to observe
morphological changes within each tissue group and capture
images. Utilize Masson’s Trichrome Stain to evaluate alterations
in collagen growth during skin wound healing: replicate the
dehydration to hydration steps as in HE staining, then proceed
with Masson staining. Observe under a biological microscope,
capture images, and analyze collagen volume using ImageJ software.

2.2.2.6 Real-time quantitative PCR (RT qPCR) method
Total RNA was extracted from tissue samples, followed by RNA

electrophoresis and reverse transcription using the TIANScript RT
Kit. The mRNA expression levels of CIB2, IFI44, DPYSL2, and
SAMHD1 were subsequently quantified using the RT-qPCR
method. A fluorescent quantitative PCR instrument was
employed to determine the cycle threshold (Ct) values through
specialized software. Relative quantification of the gene expression
data was conducted using the 2̂ −△△CT method.

2.2.2.7 Immunofluorescence staining
The tissue was fixed in 10% formaldehyde in phosphate-buffered

saline (PBS) for 10 min, followed by three rinses with PBS.
Subsequently, the tissue was incubated at room temperature for
1 h in a solution containing 5% normal serum and 0.25% Triton X-
100 in PBS. The tissue was then incubated overnight at 4°C with
primary antibodies against CIB2, DPYSL2, IFI44, and SAMHD1 at a
dilution of 1:200. After three additional rinses with PBS, each lasting
5 min, the tissue was exposed to an Alexa Fluor 488-conjugated goat
anti-rabbit antibody at a dilution of 1:1000 for 20 min. For nuclear
staining, 4′,6-diamidino-2-phenylindole (DAPI) was applied, and

FIGURE 1
WGCNA. (A) Soft threshold; (B) Gene clustering tree; (C) Clinical trait correlation module.
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imaging was performed using a confocal scanning microscope.
Fluorescence intensity of CIB2, DPYSL2, IFI44, and
SAMHD1 was subsequently analyzed using ImageJ software.

2.2.2.8 Statistical methods
Statistical analyses were conducted using SPSS version 26.0 to

represent measurement data and to compare multiple samples
through one-way analysis of variance (ANOVA). Based on the
results of the homogeneity of variance test, the Least Significant
Difference (LSD) method was employed when variances were equal,
while the Tamhane’s T2 method was utilized in cases of unequal
variances. A p-value of less than 0.05 was considered indicative of
statistical significance.

3 Result

3.1 Weighted gene co-expression
network analysis

To elucidate the relationship between clinical data and key
genes, we performed a Weighted Gene Co-expression Network
Analysis (WGCNA). We executed topological calculations within
a soft threshold power range of 1–20, identifying an optimal soft
threshold power of 19 (Figure 1A). Utilizing this soft threshold, we
transformed the correlation matrix into an adjacency matrix, which
was subsequently converted into a Topological Overlap Matrix
(TOM). Through average linkage hierarchical clustering based on
the TOM, we classified relevant gene modules, ensuring each

module comprised a minimum of 300 genes (Figure 1B). We
then merged similar gene modules to identify three distinct
modules (Figure 1C). Additionally, we calculated the correlation
between module-specific genes and clinical characteristics. Notably,
the blue module, encompassing 1,477 genes, demonstrated the
highest significance concerning the incidence of diabetic foot
ulcers (DFU), with a P-value of 9e-06. Therefore, the genes in
the blue module were selected for subsequent analysis.

3.2 Differential expression visualization

By intersecting differentially expressed genes identified through
Weighted Gene Co-expression Network Analysis (WGCNA) and
transcriptomic analysis, we identified 275 common differentially
expressed genes (DEGs) (Figure 2C). Subsequently, we generated
heatmaps (Figure 2A) and volcano plots (Figure 2B) to visualize
these common DEGs. To explore the biological functions and
pathways associated with these DEGs, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses (Figure 2D). After applying
an adjusted p-value threshold of <0.05, we selected the top five
significantly enriched GO terms and the top five KEGG pathways. In
terms of biological processes, the common DEGs are predominantly
associated with keratinocyte differentiation, keratinization, peptide
cross-linking, intermediate filament organization, and epidermal
development. The analysis of cellular components reveals a
significant enrichment of common differential genes within the
extracellular space, extracellular region, exosomes, keratinized

FIGURE 2
Differential expression visualization. (A) Differential gene heatmap; (B) Volcano plot; (C) Venn diagram; (D) GO and KEGG enrichment analysis.
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FIGURE 3
Machine learning. (A) Hub genes selected by Random Forest; (B) RF algorithm; (C) RF variable importance; (D) Hub genes selected by Lasso; (E,H)
SVM-REF algorithm; (F,I) Lasso algorithm; (G) Hub genes selected by XGBoost; (J) Venn diagram of four machine learning algorithms.

FIGURE 4
Validation of core genes and ROC diagnostic analysis. (A) Bar chart of core gene expression levels; (B) ROC curve of core genes.
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envelope, and extracellular matrix. The molecular function analysis
indicates that these genes are predominantly enriched in epidermal
structural components, protein binding, calcium ion binding,
structural molecule activity, and heparin binding. Furthermore,
the KEGG pathway analysis demonstrates that the common
differential genes are significantly associated with pathways such
as complement and coagulation cascades, IL-17 signaling pathway,
Staphylococcus aureus infection, PI3K-Akt signaling pathway,
metabolic pathways, among others.

3.3 Machine learning and core gene
validation

To identify disease-related core genes, we developed four
algorithmic models: Random Forest (Figures 3A–C), Lasso
(Figures 3D,F,I), XGBoost (Figure 3G), and Support Vector
Machine (SVM) (Figures 3E,H). By integrating the outcomes of
these models (Figure 3J), we identified the hub genes: SAMHD1,
DPYSL2, CIB2, and IFI44. To assess the accuracy of the
differentially expressed genes, we conducted a t-test using SPSS
version 26.0. The results demonstrated that the P-values for
SAMHD1, DPYSL2, CIB2, and IFI44 were all less than 0.001
(Figure 4A), indicating statistically significant differences.
Subsequently, we performed Receiver Operating Characteristic
(ROC) analysis on the differentially expressed genes
(Figure 4B). The analysis revealed that the Area Under the
Curve (AUC) for SAMHD1 was 0.929, for DPYSL2 was 0.96,
for CIB2 was 0.96, and for IFI44 was 0.953, thereby confirming that
SAMHD1, DPYSL2, CIB2, and IFI44 exhibit considerable
diagnostic potential.

3.4 Immune infiltration analysis

Inflammation is a pivotal factor in the onset and progression of
diabetic foot ulcers (DFU). To assess the level of inflammation, the
CIBERSORT algorithm was utilized to estimate immune cell
infiltration in patients with DFU. The analysis of the relative
abundance of various immune cell subsets in DFU identified
B cells, plasma cells, CD4 T cells, natural killer (NK) cells, and
macrophages as the predominant infiltrating immune cell types
(Figure 5A). Within the cohort of M1 macrophages, a positive
correlation with SAMHD1 was observed; similarly, in the
M2 macrophage cohort, SAMHD1, IFI44, and DPYSL2 were
positively correlated (Figure 5C). Correlation coefficient analysis
in DFU revealed a significant association between core genes and
immune cell infiltration levels, suggesting a link between DFU and
immune infiltration.

3.5 Single-cell annotation and
enrichment analysis

In the GSE165816 dataset, we selected foot tissue samples from
eight patients diagnosed with diabetic foot ulcers (DFU). Following
this, we undertook data normalization, filtered for highly variable
genes, performed dimensionality reduction, and addressed batch
effects. Further dimensionality reduction was achieved using
UMAP, and graph-based clustering was employed, resulting in the
identification of 13 distinct cell clusters. Annotation of these clusters
was performed utilizing the ACT online database (http://xteam.xbio.
top/ACT/) and the PanglaoDB database (https://panglaodb.se/
#google_vignette). This analysis revealed the presence of epithelial

FIGURE 5
Immune infiltration analysis. (A) Box plot of immune cell infiltration expression in the disease group versus the control group; (B) Relative abundance
of different immune cell subsets in diabetic foot ulcers; (C) Heatmap of the correlation between core genes and immune infiltration; (D) Heatmap of
immune infiltration correlation across various datasets.
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cells, fibroblasts, vascular endothelial cells, stem cells, goblet cells,
pericytes, macrophages, T cells, B cells, mast cells, lymphatic
endothelial cells, basal cells, and melanocytes (Figure 6A). To
explore the expression of core genes within specific cell types, we

conducted cellular staining (Figure 6B) and generated expression
funnel plots (Figure 6C) for the samples. The findings indicated
that DPYSL2 and SAMHD1 are predominantly expressed in
macrophages, suggesting a potential role in macrophage regulation.

FIGURE 6
Single-cell genomics. (A) Cell annotation; (B) Cell staining; (C) Hub gene funnel plot and cluster annotation.
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3.6 Drug prediction and molecular docking
experiments

The chemical-protein interaction network serves as an essential
research tool for elucidating protein functions and facilitating
advancements in drug discovery. Utilizing enrichment analysis
from the DSigDB database, we focused on the core genes
associated with diabetic foot ulcers (DFU), specifically
SAMHD1 and DPYSL2, to identify potential drug candidates.
The top 10 drug molecules were selected based on their binding
affinities, with the top five candidates being 2-nonenal, 4-hydroxy-,
lycorine, anisomycin, cobalt chloride, and quercetin (Figure 7A).
Molecular docking analyses were conducted to predict the
interactions of lycorine and quercetin with SAMHD1 and
DPYSL2. The findings (Figures 7B–D) indicated that quercetin
exhibited lower stabilization energy at the binding sites of the
target proteins and formed a stable complex. The binding energy,
along with the number and positions of hydrogen bonds formed
between quercetin and SAMHD1/DPYSL2, were assessed using

AutoDock calculations. Consequently, quercetin may possess
potential therapeutic effects for the treatment of DFU.

3.7 Observe wound healing

Following the modeling procedure, all rats maintained normal
dietary habits, water consumption, and activity levels. By the third
and seventh days post-modeling, the model group displayed yellow
purulent deposits on their wounds. In contrast, the acute and
treatment groups exhibited no significant tissue edema or
purulent discharge from the early to mid-stages of wound
healing. By the 14th day, the wound area in the model group
remained larger than that observed in the other three groups.
The wounds in the control group were almost completely healed,
while those in the treatment group were mostly healed, with
substantial new hair growth surrounding the wound perimeters
(Figure 8A). Statistical analysis conducted using ImageJ indicated
that wound healing was delayed in the model group, whereas the

FIGURE 7
Drug prediction and molecular docking experiments. (A) Drug prediction; (B)Molecular docking of lycorine with DPYSL2; (C)Molecular docking of
lycorine with SAMHD1; (D) Molecular docking of quercetin with DPYSL2; (E) Molecular docking of quercetin with SAMHD1.
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control and treatment groups showed superior healing outcomes
compared to the model group (Figure 8B).

3.8 RT-qPCR

On the third day following modeling and intervention
treatment, the model group exhibited a statistically significant
increase in the expression levels of all core genes compared to
the control group at the corresponding time point (P < 0.001).
Conversely, in the treatment group, the expression levels of
SAMHD1 and IFI44 were significantly decreased and the

expression of DPYSL2 increased (P < 0.001). By the seventh
day post-intervention, the model group continued to show a
significant elevation in the expression levels of all core genes
relative to the control group (P < 0.005). In the treatment
group, the expression levels of all core genes were similarly
increased, with statistical significance (P < 0.001). On the 14th
day after modeling and intervention, the model group
demonstrated a statistically significant reduction in the
expression levels of all core genes compared to the control
group (P < 0.05). In the treatment group, the expression levels
of IFI44, DPYSL2, and CIB2 were also significantly decreased (P <
0.05) (Figure 9).

FIGURE 8
Wound healing (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001). (A) Wound healing; (B) Wound healing rate.

FIGURE 9
RT-qPCR (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001).
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3.9 The wound tissue was stained
morphologically

The results of hematoxylin and eosin (HE) staining are
presented in Figure 10. In the model group, observations on
the third day of intervention revealed prominent red blood cells,

hemorrhagic zones, marked edema, infiltration of inflammatory
cells, a limited proliferation of disorganized fibroblasts, and an
absence of new capillaries. By day 14, inflammatory cell
infiltration persisted, along with a small number of
fibroblasts, sparse collagen fibers, and a few new capillaries.
In contrast, the treatment group exhibited minimal

FIGURE 10
HE staining.

FIGURE 11
Masson staining (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001). (A) Masson staining; (B) Volume analysis of collagen.
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inflammatory cell infiltration, fibroblast proliferation, loose
collagen fibers, and capillary neovascularization by the
seventh day. By day 14, there was a significant reduction in
inflammatory cells, the presence of mature fibroblasts, numerous
dense collagen fiber bundles, a more mature epidermis, and the
presence of most skin appendages. Masson staining results,

depicted in Figure 11A, demonstrated that, compared to the
collagen disorganization and loss observed in the model group,
the collagen volume in the wound significantly increased
following quercetin treatment (Figure 11B). These findings
suggest that quercetin treatment substantially enhances
wound healing in diabetic foot rats.

FIGURE 12
Immunofluorescence staining (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001). (A) Immunofluorescence diagram of each Hub gene on the
seventh day; (B) Mean fluorescence intensity.
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3.10 Immunofluorescence staining

To corroborate the experimental findings, immunofluorescence
staining was conducted on Hub genes within wound tissue collected
on day 7 (Figure 12A). The analysis revealed that the fluorescence
intensity of the target proteins was markedly elevated following
quercetin treatment compared to the model group (Figure 12B),
indicating a significant upregulation in the expression of these
proteins post-treatment.

4 Discussion

Wound healing is a complex process that can be categorized
into four distinct stages: hemostasis, inflammation, proliferation,
and remodeling. These stages are intricately connected, and
prolonged inflammation can negatively impact subsequent
tissue regeneration (Martin and Nunan, 2015). In the context of
diabetic wounds, hyperglycemia and the vascular damage it
induces can extend the inflammatory phase, thereby impeding
the healing process (Morton and Phillips, 2016). Such delays in
wound healing may lead to Ricco et al. (2013) complications such
as wound infection and destruction of the vascular bed, further
exacerbating the healing challenges and creating a deleterious
feedback loop. For patients with diabetes, it is imperative to
interrupt this cycle promptly. Research indicates that quercetin
possesses significant anti-diabetic (Dhanya, 2022), anti-
inflammatory (Yuan et al., 2020), and circulatory-enhancing
properties (Larson et al., 2010). Additionally, flavonoids have
been demonstrated to modulate macrophage activity, thereby
facilitating the repair of diabetic wounds (Fu et al., 2020). In
this study, we explored the potential of puerarin to enhance
wound healing in diabetic mice through the modulation of
macrophages. The study yielded the following conclusions: (1)
The topical application of puerarin effectively promotes wound
healing in diabetic foot rats; (2) Quercetin facilitates wound
healing by modulating the expression of CIB2, IFI44, DPYSL2,
and SAMHD1; (3) Bioinformatics analysis suggests that
quercetin’s regulation of DPYSL2 and SAMHD1, which
contributes to wound healing, may occur through the
modulation of macrophage activity. These findings provide a
significant theoretical foundation for the treatment of refractory
skin wounds in patients with diabetic foot.

Macrophages constitute a heterogeneous cell population that
can be categorized into the pro-inflammatory M1 phenotype and
the pro-reparative M2 phenotype. Prior research has
demonstrated that M1 macrophages are pivotal in the initial
stages of wound healing, primarily through the production of
elevated levels of pro-inflammatory cytokines and the facilitation
of a sustained inflammatory response (Qing et al., 2019).
Conversely, the polarization of M2 macrophages has been
associated with the enhancement of tissue repair processes.
Increasing evidence suggests that M2 macrophages play a
regulatory role in collagen production, myofibroblast
differentiation, fibroblast regeneration, and angiogenesis
during wound healing (Wynn and Vannella, 2016; Snyder
et al., 2016). Furthermore, several studies have indicated that
the depletion of M2 macrophages leads to a downregulation of

growth factor levels during the proliferative phase of wound
healing (Sica et al., 2015; Okizaki et al., 2015). Furthermore,
increased concentrations of proinflammatory mediators (Mirza
et al., 2015), including inducible nitric oxide synthase (iNOS) and
interleukin-1 beta (IL-1β), are correlated with non-healing
wound phenotypes. Chronic wounds are frequently
characterized as being “stalled” in the inflammatory phase,
which is linked to an impeded transition from M1 to
M2 macrophage phenotypes during the later stages of
wound healing.

This study employed machine learning techniques to identify
four key genes—DPYSL2, CIB2, IFI44, and SAMHD1—that
potentially play a significant role in the pathogenesis and
progression of diabetic foot ulcer (DFU) disease. Through
immune infiltration and single-cell omics analyses, it was
determined that DPYSL2 and SAMHD1 may influence DFU
development by modulating macrophage activity. Furthermore,
quercetin may facilitate the healing of DFU wounds by
modulating DPYSL2 and SAMHD1, thereby affecting
macrophage function.

DPYSL2, or dihydropyrimidinase-like 2, encodes a member of
the collapsing protein response mediator protein family. Folding
reaction mediator proteins are capable of forming both
homologous and heterotetrameric complexes, thereby
facilitating neuronal guidance, growth, and polarity. The
protein encoded by DPYSL2 is instrumental in promoting
microtubule assembly and is essential for Sema3A-mediated
growth cone collapse. Additionally, it plays a significant role in
synaptic signaling through its interactions with calcium channels.
The regulation of DPYSL2 is closely associated with the mTOR
signaling pathway, which is known to promote cell growth and
division (Miloslavski et al., 2014; Patursky-Polischuk et al., 2009),
regulate macrophage polarization (Guertin and Sabatini, 2007;
Efeyan and Sabatini, 2010), and is widely implicated in cancer
biology. Analyses of immune infiltration and single-cell omics
have indicated a correlation between DPYSL2 and macrophage
activity. Furthermore, findings from foundational experiments
provide preliminary support for these bioinformatics results,
suggesting that the dysregulation of macrophages in diabetic
foot ulcers (DFU) may be linked to alterations in
DPYSL2 expression.

Macrophages, as central effector cells of innate immunity,
critically rely on spatiotemporally regulated calcium ion (Ca2+)
channel-mediated signaling dynamics to coordinate the initiation,
execution, and resolution of immune responses (Feske et al., 2015).
Upon pathogen recognition via pattern recognition receptors,
macrophage activation triggers phospholipase C (PLC)-dependent
inositol trisphosphate (IP3) generation, which mobilizes
endoplasmic reticulum Ca2+ stores through IP3 receptors.
Subsequent store depletion activates store-operated calcium entry
(SOCE) via STIM1/Orai1 complexes (Dahiya et al., 2021), driving
sustained extracellular Ca2+ influx that potentiates NF-κB and
MAPK pathway activation, thereby inducing transcription of pro-
inflammatory cytokines. During phagocytosis, localized Ca2+

transients mediated by channels such as TRPM2 regulate
pseudopod extension and phagosome formation, while
calmodulin (CaM)-dependent Ca2+ signaling facilitates lysosomal
fusion for pathogen degradation. Calcium signaling further
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orchestrates macrophage polarization: the pro-inflammatory
M1 phenotype relies on SOCE-NFAT axis activation to amplify
inflammatory mediators (Liu et al., 2024; Liu et al., 2025), whereas
the anti-inflammatory M2 phenotype may engage TRPV4-STAT6
pathways to promote tissue repair (Sumioka et al., 2023).
Dysregulation of this balance underlies pathologies such as
atherosclerosis and immunodeficiency disorders. Therapeutic
strategies targeting these pathways are emerging, including SOCE
inhibitors for autoimmune diseases, TRP channel modulators to
skew polarization toward M2 phenotypes in fibrosis, and STIM1/
Orai1 antagonists in clinical trials (Wulff et al., 2019). Collectively,
Ca2+ channels serve as molecular hubs governing macrophage
functions—from pathogen clearance to inflammatory
homeostasis—making them pivotal targets for precision therapies
in infection, cancer, and immune-metabolic disorders (Lee et al.,
2024; Chen et al., 2021; Vera et al., 2023; Morotti et al., 2022; Nguyen
et al., 2017; Grimaldi et al., 2016).

SAMHD1, or SAM domain and HD domain-containing protein
1, is an evolutionarily conserved innate immune molecule prevalent
in both eukaryotic and prokaryotic organisms. It serves as a potent
restriction factor for deoxynucleotide triphosphate hydrolase and
human immunodeficiency virus type 1 (HIV-1), and it plays a
crucial role in DNA damage repair and innate immune
responses. Additionally, SAMHD1 is implicated in the regulation
of macrophagepolarization (Li et al., 2022). Bioinformatics analyses
have demonstrated that the expression levels of SAMHD1 mRNA
are significantly reduced in patients with diabetic foot ulcers (DFU)
compared to healthy individuals, a finding corroborated by
experimental data. This suggests that SAMHD1 may be a
therapeutic target of quercetin in the treatment of DFU. Immune
infiltration analysis revealed a positive correlation between
SAMHD1 expression and both M1 and M2 macrophages.
Furthermore, single-cell analysis indicated that SAMHD1 is
involved in macrophage regulation, implying that quercetin
might facilitate DFU wound healing by modulating macrophage
polarization via SAMHD1.

This study underscores the multifaceted role of macrophages in
DFU pathogenesis and positions quercetin as a promising candidate
for modulating macrophage polarization. Beyond diabetic wounds,
these findings may inform therapeutic strategies for other chronic
inflammatory conditions characterized by dysregulated macrophage
activity, such as atherosclerosis, rheumatoid arthritis, or non-healing
surgical wounds. For example, the IL-17 and PI3K/Akt pathways,
which were enriched in our analysis, are also implicated in
autoimmune disorders, suggesting that quercetin’s pleiotropic
effects could be harnessed for broader applications. The
integration of multi-omics and machine learning approaches
demonstrates a robust framework for identifying novel
therapeutic targets in complex diseases. This methodology could
be adapted to explore other understudied pathologies, such as
pressure ulcers or burn injuries, where macrophage dysfunction
plays a critical role. Furthermore, combining transcriptomic data
with proteomic or metabolomic profiling may uncover additional
layers of regulation, such as post-translational modifications or
metabolic rewiring, that influence quercetin’s mechanism of
action (Bowen et al., 2024). Future research should prioritize
elucidating the precise molecular pathways through which
quercetin regulates SAMHD1 and DPYSL2. CRISPR-based gene

editing or siRNA knockdown experiments could validate the causal
roles of these genes in macrophage polarization and wound healing.
Additionally, investigating quercetin’s synergistic effects with
existing therapies—such as antibiotics (to combat Staphylococcus
aureus infection) or recombinant growth factors—may optimize
clinical outcomes. For instance, combination therapies could
mitigate biofilm formation while enhancing tissue regeneration.
Long-term toxicity studies and explorations of alternative
delivery methods are also critical to address bioavailability
challenges and ensure patient safety. Quercetin’s poor water
solubility and rapid metabolism often limit its therapeutic
efficacy, necessitating innovative formulations to improve its
pharmacokinetic profile.

While our findings highlight quercetin’s therapeutic
potential, certain limitations inherent to animal models must
be acknowledged. The STZ-induced diabetic rat model primarily
mimics type 1 diabetes, whereas human diabetic foot ulcers
(DFUs) predominantly arise in type 2 diabetes patients.
Differences in metabolic regulation, immune responses, and
wound healing kinetics between rodents and humans may
influence the translatability of these results. Additionally, the
study utilized male rats exclusively, omitting potential sex-
specific variations in immune function or drug response. To
bridge this gap, future studies should incorporate type 2 diabetes
models, such as high-fat diet-fed rodents, and include both sexes
to enhance clinical relevance. While our study provides
mechanistic insights into quercetin’s role in DFU healing,
future work should prioritize human-relevant models. For
instance, ulcerated skin explants from diabetic patients
cultured ex vivo could be treated with quercetin to assess
SAMHD1/DPYSL2 expression and macrophage polarization.
Such models (Kubilus et al., 2004) better recapitulate the
diabetic microenvironment and would validate our findings in
a translational context. Notably, quercetin is currently regulated
as a dietary supplement in many regions, necessitating rigorous
pharmacokinetic studies and standardized formulations before
clinical trials. Future research should explore its bioavailability,
optimal dosing, and safety profiles in diabetic populations to
facilitate its transition from a nutraceutical to a therapeutic agent
(Williamson et al., 2018; Andres et al., 2018).

5 Conclusion

In summary, this study advances our understanding of
quercetin’s role in DFU healing and highlights macrophage
modulation as a key mechanism. By addressing the
aforementioned limitations and expanding research horizons,
these insights could pave the way for innovative, targeted
therapies to alleviate the global burden of diabetic complications.
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