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Background: Disruption of N-methyl-D-aspartate receptor (NMDAR) activity
within the septohippocampal network - a critical circuit that includes the
hippocampus, medial prefrontal cortex (mPFC) and other nuclei - is believed
to contribute to learning and memory impairments. Although animal models
using the NMDAR antagonist Dizocilpine (MK-801) replicate cognitive deficits
associated with memory and learning disorders, the direct effects of MK-801 on
brain network connectivity have not been well characterized.

Objective: This study aims to explore the effects of MK-801 on brain network
connectivity using functional ultrasound imaging (fUSI) and apply time series
analysis methods to mitigate potential statistical confounds in functional
connectivity assessments.

Methods: fUSI was employed to assess changes in cerebral blood volume (CBV) and
network connectivity in MK-801-treated mice. To account for the nonstationarity
and autocorrelation inherent in fUSI time series, an AutoRegressive Integrated
Moving Average (ARIMA) model was applied to stabilize the mean and remove
autocorrelation, ensuring more reliable signal analysis.

Results: Our analysis revealed that MK-801 significantly disrupts functional
connectivity (FC) across key brain regions, including the hippocampus, mPFC,
and striatum. We also demonstrated that removing autocorrelation from the fUSI
time series mitigates the risk of spurious associations, enhancing the reliability of
network analysis.

Conclusion: This study demonstrates the importance of accounting for
nonstationarity in fUSI time series to improve the accuracy of brain network
connectivity analysis. Our findings indicate that MK-801-induced NMDAR
inhibition disrupts connectivity both within and outside the septohippocampal
circuit, offering new insights into the neural mechanisms underlying cognitive
deficits in disorders affecting memory and learning.
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1 Introduction

Cognitive deficits in learning and memory are common features
of various neuropsychiatric and neurological disorders. One
prominent hypothesis links these impairments to reduced activity
of the N-methyl-D-aspartate receptor (NMDAR) (Lee and Zhou,
2019; Krystal et al., 1994; Newcomer et al., 1999; Clayton et al., 2002;
Liu et al., 2019). Dizocilpine (MK-801), a potent non-competitive
NMDAR antagonist, is widely used in animal studies to investigate
memory and learning disorders and cognitive dysfunction (McLamb
et al., 1990; Pitkänen et al., 1995; van der Staay et al., 2011;
Wiescholleck and Manahan-Vaughan, 2012). By binding within
the NMDAR channel and inhibiting calcium ion influx, MK-801
disrupts NMDA receptor-mediated neurotransmission, leading to
transient deficits in learning, memory, and other cognitive processes.

The effects of MK-801 extend to specific neural circuits,
particularly the septohippocampal network (Crown et al., 2024).
This network, which includes the hippocampus, medial prefrontal
cortex (mPFC), septum, cholinergic and GABAergic projections
from the septal area to the hippocampus, plays an important role in
learning and memory processes (Khakpai et al., 2013a). By blocking
NMDAR activity, MK-801 disrupts normal synaptic transmission
between the medial septum and hippocampus, impairing theta
oscillations that are essential for hippocampal function (Abad-
Perez et al., 2023). Additionally, NMDAR inhibition alters
inhibition alters neurotransmitter levels, including acetylcholine
and GABA, further exacerbating deficits in spatial learning and
memory (Gonzalez et al., 1994). Perturbations in NMDAR function
within the septohippocampal network have been implicated in
cognitive dysfunctions associated with various neuropsychiatric
disorders (Jodo, 2013).

Given the critical role of the septohippocampal network in
cognitive functions and its sensitivity to NMDAR modulation,
this network provides an ideal model for exploring the neural
mechanisms underlying cognitive impairments linked to
NMDAR dysfunction (Khakpai et al., 2013b). Recently, we
showed that intraperitoneal (i.p.) injection of MK-801 in mice
significantly reduces hemodynamic signals of areas within
(i.e., hippocampus and mPFC) and outside the septohippocampal
network (Crown et al., 2024). These findings align with clinical
studies showing reduced neural activity in the hippocampus and
prefrontal cortex of patients with schizophrenia (MacDonald et al.,
2006; Gur and Gur, 2010; Bedford et al., 2012).

Building on our previous study, we examined the effects of MK-
801 on functional connectivity (FC) between brain regions within
and outside the septohippocampal network using functional
ultrasound imaging (fUSI) technology (Tanter and Fink, 2014;
Macé et al., 2011). fUSI visualizes neural activity by mapping
local changes in cerebral blood volume (CBV), which are
indirectly linked to neuronal activity through neurovascular
coupling. This modality offers high resolution, broad spatial
coverage, and exceptional sensitivity, enabling the capture of
dynamic brain processes with precision. In this study, we made
two key contributions: (1) we demonstrated that MK-801 disrupts
dynamic FC among key brain regions, including the mPFC,
hippocampus, and striatum, which are critical for memory,
learning, and higher-order cognitive functions and (2) we
introduced the pre-whitening analysis on fUSI data–an approach

that removes autocorrelation and temporal dependencies from time
series to ensure statistical validity–illustrating the importance of
rendering data stationary before assessing FC. We demonstrated
that, without prewhitening, fUSI time series of recorded regions of
interest (ROIs) exhibit strong autocorrelation and non-stationarity,
violating fundamental assumptions of correlation analysis and
potentially misrepresenting the true associations between the
ROIs. Overall, the results showed that MK-801 not only reduces
the activity of brain regions within and outside the
septohippocampal network, but also disrupts the FC between
them as a function of time.

2 Materials and methods

2.1 Animal acquisition and surgical
procedures

Sixteen male C57BL/6 mice, aged between 8 and 12 weeks, were
procured from Charles River Laboratories (Hollister, CA) and
stratified into two principal experimental cohorts: a vehicle
control group receiving saline administration (n = 8), and a
treatment group receiving MK-801 (n = 8; 1.5 mg/kg). Prior to
experimental procedures, the mice were anesthetized with 5%
isoflurane, delivered in a carrier gas mixture comprised of oxygen
and nitrous oxide in a 1:2 ratio and then maintained at a constant
rate (1.5%–2%) through surgery and data acquisition. Body
temperature was regulated throughout recordings by placing
animals on an electric heating pad. Hair on the cranial region of
each mouse was removed using a commercially available depilatory
cream (Nair, Pharmapacks). All procedures were approved by the
University of Southern California, Institutional Animal Care and
Use Committee (IACUC #21006).

2.2 Data acquisition

Power Doppler (pD) images were obtained using the Iconeus
One scanner (Iconeus, Paris, France). Image acquisition was
performed using a linear ultrasound transducer array (fUSI
probe) with 128 channels, operating at a center frequency of
15.6 MHz and a pitch of 0.1 mm. This methodology enables a
large field of view (12.8 mm width, 10 mm depth and 400 µm
plane thickness) with a spatial resolution of 100 µm × 100 µm in-
plane. The transducer was mounted on a motorized system and
placed on the intact skull and skin along a sagittal plane on the
right side to image areas within and outside the
septohippocampal network (Figure 1A). A typical pD vascular
map from a representative animal is illustrated in Figure 2A.
Within this sagittal plane, we recorded activity from six distinct
ROIs: hippocampus, mPFC, striatum, thalamus, hypothalamus
and pallidum (Figure 2B). Note that other regions that are part of
the septohippocampal network, such as the medial septal nucleus
(MSN) were not recorded, since they were not accessible from the
selected 2D imaging plane. The experimental protocol consisted
of a 5-min baseline recording, followed by an i. p. injection of
either 0.2 cc of saline or 1.5 mg/kg of MK-801 (Figure 1B). The i.
p. injection was administered using a butterfly needle. To
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minimize the risk of motion artifacts from the injection, the
butterfly needle was inserted prior to the recording session.
Images were recorded uninterrupted for an additional 40 min
post-injection, allowing us to capture dynamic CBV changes in
response to drug administration. This approach was informed by
previous studies showing that the concentration of MK-801 in
the brain peaks approximately 40–60 min post-injection
Wegener et al. (2011).

2.3 Plane selection and imaging

The target image plane was determined by co-registering a 3D
fUSI whole-brain image of each mouse to a standard Allen Mouse
Brain Common Coordinate Framework brain atlas utilizing
dedicated software available with the Iconeus One scanner. This
enabled the identification and extraction of the 6 ROIs (Figure 2C).
The probe was fixed steadily throughout experiments on a

FIGURE 1
Experimental setup for investigating the effects of MK-801 on functional connectivity in the mouse brain using fUSI. (A) Top-down view of the
mouse brain illustration with the yellow line indicating the sagittal imaging plane used for data acquisition. The diagram includes a schematic of the
ultrasound probe placement on the mouse skull and the experimental setup, featuring an anesthetized mouse secured in a stereotaxic frame under the
Iconeus One motorized system. (B) Timeline of the experimental protocol. Following a 5-minute baseline recording, mice received an i.p. injection
of either saline (control) or MK-801 (1.5 mg/kg). fUSI data were continuously acquired for an additional 40 minutes post-injection.

FIGURE 2
Plane selection and ROI extraction for fUSI analysis. (A) Representative power Doppler (pD) image showing the normalized signal intensity across the
sagittal imaging plane. (B) Schematic illustration of the six ROIs analyzed in this study: hippocampus (1), striatum (2), pallidum (3), thalamus (4),
hypothalamus (5), and medial prefrontal cortex (mPFC) (6). (C) ROI masks overlaid on the pD image as defined through the Iconeus One system’s
automatic region selection tool. Acronyms in the image represent: (R) HPF: right hippocampal formation; (R) mPFC: right medial prefrontal cortex;
(R) STR: right striatum; (R) TLM: right thalamus; (R) HYT: right hypothalamus; and (R) PDM: right pallidum. The different colors of the ROI masks are
randomly assigned by the software solely to visually distinguish between adjacent brain regions and have no functional significance. Scale bar indicates 10
mm in the dorsal-ventral axis.
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motorized system with the field of view transverse and intersecting
the co-registered sagittal plane. The imaging data were acquired
through the compounding of 200 frames, captured at a frame rate of
500 Hz. This process employed 11 tilted plane waves, incrementally
separated by 2°, spanning from −10° to +10°. The acquisition
sequence was executed at a pulse repetition frequency (PRF) of
5.5 kHz, employing real-time continuous acquisition of successive
blocks. Each block consisted of 400 ms of compounded plane wave
images, followed by a 600 ms pause between pulses.

2.4 Data pre-processing

The Iconeus One acquisition system generated pD images pre-
processed with built-in phase-correlation based sub-pixel motion
registration and singular-value-decomposition (SVD) based clutter
filtering algorithms Ledoux et al. (1997). These algorithms were used
to separate tissue signal from blood signal to obtain pD images.
Potential physiological and motion artifacts were addressed through
the adoption of rigid motion correction techniques, which have
proven effective in fUSI and other neuroimaging modalities Stringer
and Pachitariu (2019). These motion correction techniques were
integrated with high-frequency filtering algorithms to suppress
noise-related artifacts. Specifically, a low-pass filter with a
normalized passband frequency of 0.02 Hz and a stopband
attenuation of 60 dB was implemented. This filter incorporated a
delay compensation mechanism to mitigate any temporal
distortions introduced by the filtering process itself, thereby
facilitating the effective removal of high-frequency fluctuations
from the pD signal data.

2.5 Statistical analysis tools

All analysis was performed using MATLAB 9.12.0.1927505
(R2022a) to 24.1.0.2537033 (R2024). We first calculated the
normalized percent change in CBV (ΔCBV) relative to baseline
measurements—defined as the average signal during the initial
5 min prior to saline or MK-801 injection—for the time series of
each ROI. To evaluate the effects of treatment (MK-801 vs. saline),
ROIs, and time on ΔCBV, we performed a three-way mixed analysis
of variance (ANOVA). Treatment (MK-801 vs. saline) served as the
between-subject factor, while time and brain regions (6 ROIs) served
as the within-subjects factor. For the time factor, we compared the
mean ΔCBV values from two distinct periods: the baseline period
(average of first 5 min pre-injection) and the final period (average of
last 5 min of the 40-min post-injection recording) for each ROI in
each animal. This analysis was conducted using data from eight
animals per treatment group.

To further elucidate the magnitude of the drug effects between
different ROIs, we performed a post hoc pairwise t-test analysis
comparing baseline (0–5 min) and final period (40–45 min) of
recordings for each ROI in both treatment groups. Statistical
significance was assessed using paired t-tests (two-tailed,
α � 0.05) for each ROI. To control for multiple comparisons, we
implemented the Benjamini–Hochberg (BH) false discovery rate
(FDR) correction procedure. For each experimental group, p-values
were ordered from lowest to highest, with each p-value assigned a

rank (i). The critical threshold for significance at each rank was
calculated according to Equation 1.

critical thresholdi � i

n
× α (1)

Where n represents the total number of comparisons (6 ROIs)
and α � 0.05.

Subsequently, we performed a dynamic FC analysis between the six
recorded ROIs for the two groups of animals. To characterize the
temporal evolution of FC patterns, we implemented a two-stage
analytical approach. First, we divided the 45-min recording period
into nine non-overlapping 5-min windows to visualize the
progressive changes in network FC [i.e., rolling functional
connectivity (RFC)] over time (Figure 5). For each window, we
computed the Pearson correlation matrices between all ROI pairs for
each animal, providing a snapshot of the network dynamics at different
time intervals. Prior to averaging across animals, we applied the Fisher
r-to-Z transformation - Z � 0.5 × ln((1 + r)/(1 − r)) - to each
correlation coefficient to normalize their distribution. The final
correlation matrix for each window was obtained by averaging
these Z-transformed values across all eight animals within each
experimental group and then converting the results back to the
correlation domain via the inverse Fisher transformation.

In addition to the 5-min window analysis, we implemented an
RFC approach with finer temporal resolution to quantitatively assess
temporal changes in functional connectivity. This approach used 60-
s non-overlapping windows to calculate the Pearson correlation
coefficient r(t) between pairs of prewhitened time series across the
entire recording duration (2,700 s), Equation 2.

r(k) � ∑tk+Δt
i�tk (x(i) − �xk)(y(i) − �yk)�����������������������������∑tk+Δt

i�tk (x(i) − �xk)2∑tk+Δt
i�tk (y(i) − �yk)2

√ (2)

Where

• r(k) is the Pearson correlation coefficient at the k-th 60-
second window.

• tk is the start time of the k-th window.
• Δt � 60 seconds is the window duration.
• �xk and �yk are the mean values of x and y in the
interval [tk, tk + Δt].

Following the previous analytical approach, we applied the Fisher
r-to-Z transformation to normalize the distribution of correlation
coefficients. To characterize the trends in correlation changes over
time, we fitted a linear regression model to the Z-transformed
correlation values, allowing us to identify and quantify any
significant patterns or progressive shifts in connectivity throughout
the experiment. We chose non-overlapping windows to ensure
statistical independence between observations, which is crucial for
the validity of subsequent regression analyses.

This analysis provided eight slopes per ROI pair (corresponding
to the eight animals) in each experimental group. We then conducted
two-sample independent t-tests directly comparing the distributions
of these slopes (MK-801 slopes versus saline slopes) for each ROI pair.
This approach specifically tested whether the rate of connectivity
change over time differed significantly between treatment groups for
each pair of ROIs. The resulting t-scores provided a standardized
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FIGURE 3
Transformation of non-stationary hippocampal CBV time series into stationary time series using ARIMAmodel. (A)Rawhippocampal CBV time series
data from a representative MK-801-treated mouse (left panel), exhibiting non-stationary with respect to mean and variance pattern with an overall
decreasing trend. The corresponding autocorrelation function (ACF) and partial auto-correlation function (PACF) plots (right panel) demonstrate
significant autocorrelation across multiple lags, indicating strong temporal dependencies in the non-prewhitened data. (B) First-order differenced,
ARIMA(0,1,0), hippocampal CBV time series data (left panel), showing improved stationarity with a more consistent mean and variance across the series.
The ACF and PACF plots (right panel) reveal a reduction in autocorrelation compared to the raw data, but significant correlations still persist at certain lags.
(C) ARIMA(7,1,9) prewhitened hippocampal CBV time series data (left panel), demonstrating a stationary process with constant mean (μ ≈ 0) and variance

(Continued )
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measure of the differential effects of MK-801 versus saline on the
trajectory of functional connectivity dynamics. Negative t-scores
indicated a greater connectivity decrease in the MK-801 group
compared to the saline group. To control for multiple comparisons
across all ROI pairs, we applied BH procedure for FDR correction.

2.6 Prewhitening the pD time series

Initial inspection of themotion-corrected pD time series from the six
ROIs revealed pronounced nonstationarity in the mean and strong
autocorrelation. This was demonstrated by plotting the CBV changes
alongside the AutoCorrelation Function (ACF) and Partial
AutoCorrelation Function (PACF) histograms for a representative
ROI (i.e., hippocampus) from a typical animal (Figure 3A). To
calculate the Pearson correlation coefficient r between time series, it
is essential to ensure that individual series are stationary and non-
autocorrelated (Box et al., 2015; Priestley, 1971; Granger and Newbold,
1974; Haugh, 1976). Ensuring stationarity and removing autocorrelation
from the series is crucial for obtaining valid correlation results, as failing
to do so may lead to spurious correlations that do not accurately reflect
the true relationship between the time series. A notable example from
econometrics illustrates the issue of spurious correlations, where a study
initially reported spurious results Coen et al. (1969), which were later
corrected using prewhitening techniques Box and Newbold (1971).
Recently, in neuroscience, the problem of spurious correlations arising
from nonstationary time series has gained recognition, pointing out the
necessity of appropriate preprocessing methods (Cordes et al., 2001;
Christova et al., 2011; Christopoulos et al., 2012b; Christopoulos et al.,
2012a; Zalesky et al., 2014; Sakellaridi et al., 2015).

The solution to this issue, pioneered by researchers such as Box,
Priestley, and Granger (Box et al., 1978; Priestley, 1971; Granger and
Newbold, 1974), involves transforming each univariate time series
into a stationary and non-autocorrelated form by appropriately
modeling the series and extracting the residuals, also known as
“innovations”. The correlation between the innovations represents
the true relationship between two time series, free from spurious
effects caused by nonstationarity and autocorrelation (Box et al.,
1978; Jenkins and Watts, 1968; Granger and Newbold, 1974). This
preprocessing step, known as “prewhitening”, typically involves
fitting an AutoRegressive Integrated Moving Average (ARIMA)
model Box et al. (2015). The ARIMA model combines three key
components: AutoRegressive (AR), Integrated (I), and Moving
Average (MA), represented by the parameters p, d, and q,
respectively. This approach enables modeling complex time series
by accounting for various temporal dependencies:

1. The AR(p) component models the dependency on past values.
2. The I(d) component achieves constant mean and variance

through sequential differencing.
3. The MA(q) component accounts for the dependency on past

forecast errors.

By fine-tuning these parameters, we can forecast future time
points (yt) based on their preceding values (yt−p). This process
explicitly incorporates the autocorrelation structure present in the
data. While ARIMAmodels are widely recognized as a standard tool
for time series analysis, we include a brief overview here to clarify the
specific methodology applied in our analysis.

2.6.1 Integration (I)
Forecasting models, including ARIMA, rely on the fundamental

assumption of statistical consistency in the input data, meaning that
these models require the time series to exhibit constant mean and
variance over time. To meet these criteria and stabilize a time series,
we employ differencing, which involves calculating the changes
between consecutive observations to remove trend and seasonality.

Notably, the “integrated” component d of the ARIMA model
indicates the number of times the differencing operation must be
applied to achieve consistency in the mean and variance of the time
series. To verify the effectiveness of differencing, we used the
Augmented Dickey-Fuller (ADF) test, which assesses the
presence of a unit root in the differenced data. A non-significant
result indicates the absence of a unit root, confirming that the series
has reached the desired stationarity. This ensures that the data is
now appropriate for the subsequent ARIMA modeling steps.

Figure 3B (left panel) shows the hippocampal ΔCBV for the
representative animal after applying integration - i.e., differencing.
The integration successfully removed the trend, centering the mean
ΔCBV around zero while having constant variance throughout the
series. However, while integration improved stationarity, it did not
fully eliminate autocorrelation in the residuals. The ACF and PACF
plots (Figure 3B, right panel) reveal a reduction in autocorrelation
compared to the raw data (Figure 3A, right panel). Nevertheless,
several statistically significant autocorrelations persist, particularly at
the initial lags. This is especially important for our application, as we
aim to evaluate synchronous correlations between ROIs (i.e., lag = 0).

2.6.2 Autoregressive (AR) component
The AR component of the ARIMA model captures the

dependency of the current observation on its past values. In an
AR process, each data point is predicted as a linear combination of
its previous observations, plus a random error term. The general
form of an AR(p) model, where p is the order of the autoregressive
process, can be expressed as:

AR p( ): yt � ω + ϕ1yt−1 + ϕ2yt−2 +/ + ϕpyt−p + εt (3)

Here, yt is the value of the series at time t, ω is the constant
(intercept) term, yt−1, yt−2, . . . , yt−p are the lagged values of the
series, ϕ1, ϕ2, . . . , ϕp are the weights of each lag, and εt is the error
term (white noise) at time t .

Selection of the appropriate orderp is typically based on analyzing
the PACF as it measures the direct correlation between an observation
yt and a lag of itself yt−k, while controlling for the effects of
intermediate lags. In practice, the PACF values at each lag

FIGURE 3 (Continued)

across the series. The corresponding ACF and PACF plots (right panel) show a dramatic reduction in autocorrelation, with the majority of lags falling
within the confidence interval (red lines). This indicates that the ARIMA(7,1,9) model successfully captures and removes the temporal dependencies
present in the raw hippocampal CBV time series data, resulting in a more stationary and uncorrelated process suitable for subsequent analyses.
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correspond to the coefficients of AR models of increasing order
(Equation 3), where each coefficient represents the direct effect of
that lag when controlling for all shorter lags such that the PACF at lag
k is equivalent to the coefficient ϕk in an AR(k) model. For example:

• PACF at lag 1 is ϕ1 in AR(1): yt � ω + ϕ1yt−1 + εt
• PACF at lag 2 is ϕ2 in AR(2): yt � ω + ϕ1yt−1 + ϕ2yt−2 + εt
• PACF at lag 3 is ϕ3 in AR(3): yt � ω + ϕ1yt−1 + ϕ2yt−2+
ϕ3yt−3+ εt

By identifying the lag at which PACF values become
insignificant, we can estimate the appropriate order p for our
AR model.

2.6.3 Moving averages (MA) component
The moving average component is mathematically very similar

to the AR model (Equation 3) such that:

MA q( ): yt � ω + θ1εt−1 + θ2εt−2 +/ + θqεt−q + εt (4)

Where yt is the observed value at time t, ω is a constant term,
θ1, θ2, . . . , θq are the MA coefficients at each lag, εt is the error
term at time t, and q is the order of the MA process. The key
difference between Equation 3 and Equation 4 is that while the
AR model predicts a time point based on weighted past
observations, the MA model uses weighted past forecast errors
to model the present time point. Hence, MA models the
dependence on past unobserved white noise error terms,
representing random shocks Christova et al. (2011). In the
context of the fUSI analysis, MA can capture short-term
fluctuations and measurement errors in CBV changes that are
not explained by the overall trend or the AR component. This is
particularly relevant for modeling transient changes in CBV that
may not persist over longer time scales. Incorporating the MA
component into the ARIMA model enables a more thorough
representation of the temporal dynamics in FC, which can
enhance the accuracy of the connectivity estimates.

2.6.4 ARIMA model
After determining the appropriate integration, AR and MA

processes, we combine Equation 3 and Equation 4 to construct
the general ARIMA model. The comprehensive equation for the
ARIMA model is expressed as:

yt � ω + ϕ1yt−1 +/ + ϕpyt−p + θ1εt−1 +/ + θqεt−q + εt (5)

The ARIMA model encapsulates the autocorrelation structure
inherent in the time series data (Equation 5). Consequently, we
obtain the stationary and nonautocorrelated residuals
(i.e., “innovations”) by subtracting the ARIMA model’s
predictions from the original time series. This process can be
expressed as a rearrangement of Equation 5:

εt � yt − ω +∑p
i�1

ϕiyt−i +∑q
j�1

θjεt−j⎛⎝ ⎞⎠ (6)

where εt represents the residuals at time t, yt is the original time series
at time t, and the terms within the parentheses constitute the ARIMA
model. Note that εt is called “innovation” because it represents the
unpredictable “shock” or “new information” at time t that cannot be

inferred from past values of yt or past errors. It is assumed to be
independently and identically distributed (i.i.d) with zero mean and
constant variance, i.e., εt ~ N (0, σ2)

2.6.5 Model selection
The identification of an appropriate ARIMA(p, d, q) model is

crucial for effective prewhitening across multiple time series. To
ensure consistency and facilitate valid comparisons in subsequent
analyses, we aimed to identify a single ARIMA model that could be
uniformly applied across all time series to effectively remove their
autocorrelation structure. This decision aligns with common
practices in neuroscience research aiming to minimize
preprocessing variability that could complicate the interpretation
of FC results (Christova et al., 2011; Christopoulos et al., 2012b;
Sakellaridi et al., 2015).

For each time series, we first identified multiple candidate
ARIMA models by calculating the Bayesian Information
Criterion (BIC) for various combinations of autoregressive (p)
and moving average (q) orders. Having observed that a
differencing order of d = 1 successfully achieved statistical
consistency (explained in section 2.6.1) across all time series, we
maintained this integration order throughout the model selection
process. The range of p and q and values was determined
individually for each time series by observing the cutoff of
significant lags in their respective PACF and ACF plots (see
Sections 2.6.2, 2.6.3 for details on AR and MA order selection,
respectively). For each time series, we retained the three ARIMA
specifications yielding the lowest BIC scores.

These candidate models were then systematically evaluated
across all time series to identify a single specification that could
effectively remove autocorrelation throughout the entire dataset.
The effectiveness of autocorrelation removal was assessed using
critical bounds defined by Equation 7.

±
1.96�������
T − d( )√ (7)

where T represents the length of the time series and d is the
degree of differencing. A time lag was considered to have non-
significant autocorrelation if it fell within these bounds. For
each candidate model, we computed the total number of
lags across all time series that became insignificant after
applying the ARIMA transformation. This quantitative
assessment was combined with visual inspection of the
resulting ACF and PACF plots to evaluate the effectiveness
of autocorrelation removal.

Through this comprehensive evaluation process, we identified
ARIMA(7,1,9) as the specification that consistently reduced
autocorrelation across all time series while maintaining uniform
transformation properties. Using this model, we computed the
residuals for each time series according to Equation 6. The
effectiveness of this model is demonstrated in Figure 3C, using
the representative hippocampal CBV time series, which shows both
stationary behavior in the transformed time series (left panel) and
successful removal of autocorrelation as evidenced by the ACF and
PACF plots (right panel). This unified approach ensured that
subsequent correlation analyses would be conducted on
comparably transformed data, maintaining the validity of our FC
assessments.
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3 Results

3.1 MK-801 reduces cerebral blood volume
across multiple brain regions

Consistent with our previous findings Crown et al. (2024), MK-
801 administration significantly reduced CBV across multiple ROIs
within 40 min after injection compared to saline-treated controls,
with the hippocampus showing the most pronounced decrease
(Figure 4). To quantify these observations, we conducted a three-
way mixed ANOVA with treatment (MK-801 vs. saline) as between-
subjects factor, and time (first 5 min vs. last 5 min) and ROIs as the
within-subjects factors. The analysis revealed significant main effects
for all factors: treatment (F1,84 � 40.515, p � 9.836 × 10−9), ROI

(F5,84 � 5.691, p � 0.00014), and time (F1,84 � 69.459,
p � 1.296 × 10−12). Moreover, we observed significant two-way
interactions between treatment and time (F1,84 � 17.997,
p< 0.0001), ROI and time (F5,84 � 4.0395, p � 0.0024), and
treatment and ROI (F5,84 � 3.307, p � 0.0089). Notably, there
was a significant three-way interaction among treatment, ROI,
and time (F5,84 � 3.307, p � 0.0089). These results indicate that
MK-801 not only influenced different brain regions to varying
extents but also that the progression of these effects over the 40-
min post-injection period varied significantly across regions.

To further elucidate the magnitude of the drug effects across
different ROIs, we performed pairwise t-tests comparing pre-
injection (initial 5 min) and post-injection (final 5 min) periods
for each ROI in both treatment groups. This analysis revealed that

FIGURE 4
Effects of saline and MK-801 administration on percent CBV changes (% pD change) across multiple brain regions. The time courses of mean
percent CBV changes across six ROIs are shown for saline (blue) andMK-801 (red) groups (n = 8mice per group). The shaded areas represent the standard
error of the mean. Time is displayed in seconds, with the injection (saline or MK-801) occurring at t = 300s (dashed vertical line). The last 5 minutes of
recording, highlighted in yellow, were used for the spider plot analysis. The spider plot summarizes themean % pD change during the final 5minutes
for each ROI in both groups.
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MK-801 administration led to significant decreases in ΔCBV across
all examined brain regions (p≤ 0.0406), with the hippocampus
showing the strongest response (~23% decrease, Figure 4, spider
plot), consistent with its known sensitivity to NMDAR antagonism
(Li et al., 2016; Neuhäusel and Gerevich, 2024). The mPFC also
exhibited notable changes (~13% decrease), suggesting that
NMDAR antagonism has far-reaching effects on higher-order
cognitive processes. In contrast, saline-treated animals showed no
significant changes in any ROI, confirming the specificity of the
observed effects to MK-801 treatment.

3.2 Functional connectivity analysis reveals
differential effects of MK-801 on brain
network dynamics

Following the prewhitening procedure, we examined the
temporal evolution of FC by segmenting the 45-min recording
period into distinct temporal epochs. The recordings were
partitioned into nine consecutive 5-min windows, with the first
window representing baseline activity and windows 2-9 capturing
post-injection dynamics (Figure 5). This analysis revealed striking
differences in network reorganization between saline and MK-801
groups. In the saline group, we observed relatively stable
connectivity patterns across the recordings characterized by
moderate to strong connections between most ROI pairs
(indicated by red edges). Although some fluctuations were
observed, the overall network architecture was largely maintained
throughout the recording period. In contrast, the MK-801 group
exhibited a markedly different temporal progression. During the
baseline period (Window 1), the connectivity patterns exhibited
strengths comparable to those observed in the saline
group. However, a progressive and systematic degradation of
network connectivity became apparent following MK-801
administration. The deterioration was most pronounced at
Windows 5-6 (25–30 min post-injection), characterized by a
strong reduction in both the number and strength of connections
between ROIs. By Windows 7-8 (35–40 min post-injection), the

network underwent a dramatic transformation, with most
connections substantially weakened and only sparse, isolated
connections remaining between particular pairs of ROIs. The
divergence between groups became most striking in the final
temporal window (40–45 min post-injection). While the saline
group maintained a relatively robust and interconnected network
structure, the MK-801 group displayed a disrupted connectivity
landscape, with minimal interactions between ROIs. This
progressive desynchronization of the network suggests that the
impact of MK-801 on brain connectivity is not an immediate
event but rather a time-dependent process. The gradual nature of
this connectivity breakdown potentially reflects the progressive
disruption of NMDA receptor-dependent synaptic processes
across neural networks, illustrating the complex and temporally
nuanced effects of NMDAR antagonism on brain functional
architecture.

To systematically assess the differential effects of MK-801 on
network organization compared to the saline control, we examined
the temporal dynamics of functional connectivity across treatment
groups. For each ROI pair and each animal (N = 8 per group), we
quantified the rate of change of the functional connectivity by
computing the slope of RFC using linear regression. We then
compared the resulting slope distributions between the MK-801
and saline groups using two-sample independent t-tests to evaluate
whether the rate of connectivity change over time differed
significantly between the two groups. The t-score provides a
standardized measure of the differences in connectivity
trajectories between the two groups. Based on previous findings
(Figure 5), we anticipated a reduction in functional connectivity
followingMK-801 administration. Therefore, we compared theMK-
801 group to the saline group, interpreting negative t-scores as
indicating a greater connectivity decrease in the MK-801
group (Figure 6).

The analysis revealed profound differences in network
connectivity dynamics between the MK-801 and saline groups.
All t-scores were negative, indicating a greater reduction in
functional connectivity over time in the MK-801 group
compared to the saline group. The most pronounced treatment-

FIGURE 5
Rolling functional connectivity (RFC) in saline and MK-801 groups of animals. The recorded period is divided into nine non-overlapping 5-minute
windows, showing baseline (Window 1, pre-injection) and post-injection dynamics (Windows 2-9). Network diagrams display nodes representing six
brain regions: hippocampus (1), striatum (2), pallidum (3), thalamus (4), hypothalamus (5), and medial prefrontal cortex (mPFC) (6). Edges indicate average
FC strength across mice using Fisher-transformed Pearson correlation coefficient values. In the saline group (top row), network connectivity
remains relatively stable with consistent inter-regional connections throughout the recordings. In contrast, the MK-801 group (bottom row) shows
progressive degradation of network connectivity post-injection, resulting in sparse connectivity in later windows. All connectivity values are derived from
prewhitened time series data.
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induced differences in connectivity degradation were observed in
pathways involving the hippocampus, mPFC, and striatum.
Specifically, the strongest differential effects were detected in
connections between the hippocampus and mPFC
(t-score = −3.86), hypothalamus and mPFC (t-score = −3.12),
and hippocampus and striatum (t-score = −2.95).

Notably, the mPFC exhibited consistently strong decoupling
across all circuits in the MK-801 group, except for the pallidum. The
most pronounced treatment-related differences (i.e., MK-801 vs.
saline) were observed in the reduction of connectivity with the
hippocampus (t-score = −3.86). Similarly, the striatum showed a
significantly steeper decline in connectivity following MK-801
administration compared to saline group across multiple
pathways, including those involving the hippocampus
(t-score = −2.95), hypothalamus (t-score = −2.73) and mPFC
(t-score = −2.70). These findings provide direct statistical
evidence that MK-801 administration induces a significantly
greater and progressive disruption of functional connectivity
compared to saline, with particularly pronounced effects on
limbic-cortical circuits involved in cognitive processing.

On the other hand, some interactions showed less pronounced
differences between the two groups, suggesting a relative resilience

to the influence of MK-801. In particular, the pallidum exhibited
notable stability, with its connections to other brain regions showing
no statistically significant differences between the two animal
groups. Similarly, the thalamus showed relative resistance to MK-
801, with only its connection to the mPFC exhibiting significant
changes following MK-801 administration (t = −2.64). This pattern
of selective vulnerability offers key insights into the circuit-specific
effects of NMDAR antagonism, notably disrupting connectivity in
hippocampal and prefrontal regions essential for learning, memory,
and executive function, while largely preserving pallidal- and
thalamic-based circuit.

4 Discussion

The current study offers significant insights into the effects of
MK-801 on brain functional connectivity using fUSI technology. By
recording high-resolution functional images from anesthetized mice
and applying a prewhitening technique to eliminate spurious
correlations, we investigated the time-dependent reorganization
of neural networks following MK-801 administration. The results
indicated that MK-801 disrupts functional connectivity across

FIGURE 6
Network representation of differential functional connectivity changes between MK-801 and saline treatments. The network depicts the t-values
derived from two-sample independent t-tests directly comparing the distributions of connectivity change slopes betweenMK-801 and saline groups. For
each ROI pair, the t-test evaluated whether the rate of connectivity degradation over time differed significantly between treatment groups (8 slopes per
group, one per animal). The network consists of six nodes, each representing an ROI: hippocampus (Hipp), striatum (Str), pallidum (Pal), thalamus
(Thal), hypothalamus (Hyp), and medial prefrontal cortex (mPFC). Edges represent the t-statistics, with darker blue edge colors indicating more negative
t-values and thus stronger reduction of functional connectivity across time in the MK-801 group compared to the saline group. All observed t-scores
were negative, with significant differences observed in hippocampus-mPFC (t = -3.86), mPFC-hypothalamus (t = -3.12), hippocampus-striatum
(t = -2.95), striatum-hypothalamus (t = -2.73), striatum-mPFC (t = -2.70), and thalamus-mPFC (t = -2.64) connections.
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multiple brain regions, primarily affecting a network involving the
mPFC, hippocampus, and striatum. These findings enhance our
understanding of how NMDAR hypofunction alters brain-wide
connectivity, particularly within circuits associated with cognitive
disorders that affect memory and learning.

4.1 MK-801 causes reduction of CBV signal

Our results showed that MK-801 administration caused a
significant reduction in CBV across multiple regions, with the
hippocampus and mPFC showing the most pronounced effects.
These findings align with previous studies that have reported
hippocampus and mPFC as particularly sensitive to NMDAR
antagonism, given their reliance on NMDA receptor-mediated
synaptic transmission for proper functioning (Li et al., 2016;
Neuhäusel and Gerevich, 2024; Crown et al., 2024). The
pronounced impact on the hippocampus may reflect its high
density of NMDAR expression, which are crucial for synaptic
plasticity and memory formation Yang et al. (2022). This
contrasts with regions like the thalamus and pallidum, where
differences in receptor density and synaptic architecture may lead
to more subtle responses to NMDAR antagonists. Additionally, the
significant CBV reduction observed in mPFC is also indicative of its
critical role in integrating information across cortical and
subcortical regions, processes that rely heavily on NMDAR
activity Wang et al. (2013).

4.2 MK-801 induces time-dependent
network disruption

In addition to regional brain activity reduction, the main finding
in our study is that MK-801 administration disrupted the functional
connectivity across brain regions. Statistical comparison between
treatment groups revealed that MK-801 administration consistently
induced significantly greater degradation of functional connectivity
over time compared to saline, with the most pronounced effects
observed among pathways involving the hippocampus, mPFC, and
striatum. The hippocampus-mPFC pathway, which showed the
strongest treatment-induced disruption, plays a crucial role in
integrating memory with executive control, facilitating top-down
regulation and cognitive flexibility (Preston and Eichenbaum, 2013;
Friedman and Robbins, 2022; Malik et al., 2022). Studies have shown
that the mPFC interacts with hippocampus for rapid learning and
memory consolidation, supporting decision-making processes that
require recalling appropriate actions or emotional responses in
specific contexts Euston et al. (2012). The significant differential
disruption of the hippocampus-mPFC pathway can therefore
explain memory and learning impairments commonly observed
in NMDAR dysfunction models.

Additionally, the striatum, which has a key role in reward
processing Cox and Witten (2019), habit formation Yin and
Knowlton (2006) and action selection Markowitz et al. (2018),
interacts with the mPFC Howland et al. (2022); Wilhelm et al.
(2023) and hippocampus Ross et al. (2011). The hippocampus-
striatum pathway supports the integration of spatial and contextual
memory with reward-based behavior Ross et al. (2011), while the

mPFC-striatum connection enables the regulation of goal-directed
versus habitual actions (Corbit, 2018; Balleine and O’Doherty,
2010). The disruption in striatum connectivity, particularly with
the hippocampus and mPFC can impair goal-directed behavior,
memory, decision-making process, and cognitive flexibility, leading
to maladaptive behaviors often observed in neuropsychiatric
disorders such as addiction, schizophrenia, and obsessive-
compulsive disorder (Saxena et al., 1998; Graybiel and Rauch,
2000; Sigurdsson and Duvarci, 2016; Meyer-Lindenberg et al.,
2002; Benetti et al., 2009; Henseler et al., 2010).

Interestingly, pallidum-based circuits exhibited remarkable
resilience to MK-801 administration, showing no significant
differences in functional connectivity changes compared to saline
administration. This pattern of selective resilience aligns with
previous research indicating that the globus pallidus exhibits a
minimal metabolic response to NMDAR antagonists compared to
other brain regions Miyamoto et al. (2000). Such regional specificity
may be attributed to differences in NMDAR subunit composition,
receptor density, or the unique architecture of pallidal circuitry,
suggesting that NMDAR antagonism impacts neural networks in a
heterogeneous manner.

While our study predominantly identified time dependent MK-
801-induced decreases in functional connectivity between key regions
such as the hippocampus, mPFC, and striatum, other studies reported
diverse findings regarding circuit-specific connectivity alterations in
schizophrenia models. Recent multi-modal analysis of NMDAR
dysfunction in schizophrenia has reported increased connectivity
between striato-pallido-thalamic and cortical regions of the
auditory-sensory-motor network Gaebler et al. (2023).
Furthermore, other NMDAR antagonist agents such as
Traxoprodil, have been found to increase hippocampal-prefrontal
coupling Becker et al. (2019), while ketamine has been shown to
enhance functional connectivity of the ventral striatum/nucleus
accumbens and ventromedial prefrontal cortex Dandash et al.
(2015). Conversely, other studies, along with ours, have observed
impairements in the network, including reduced hippocampal
functional connectivity and decoupling of the medial temporal,
sensorimotor, frontoparietal and lateral-temporal networks
(Samudra et al., 2015; Peer et al., 2017).

These apparent discrepancies may reflect important differences
in species-specific network organization, the effects of acute versus
chronic NMDAR hypofunction, variations in the dose and type of
agents used, or differences in methodological approaches to
connectivity analysis. Importantly, the high dose of MK-801
employed in our study, along with pharmacological differences
between the various NMDAR antagonists and modulators used
in other studies, may be particularly influential factors. Notably,
the implementation of prewhitening techniques to address non-
stationarity may reveal functional relationships obscured in
traditional correlation analyses. Furthermore, the opposite
directionality of connectivity changes may be network-specific,
wherein NMDAR antagonism disrupts the excitatory/inhibitory
balance differently across distinct neural circuits. These
complementary findings suggest that NMDAR hypofunction does
not produce uniform effects across brain networks but instead
triggers a complex interplay of hyper- and hypo-connectivity,
collectively contributing to the cognitive impairments observed in
neuropsychiatric disorders.
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4.3 Genetic insights into NMDAR
dysfunction in neurological and
psychiatric disorders

Recent advances have significantly enhanced our understanding
of the NMDAR hypothesis in a range of neurological and psychiatric
disorders Mota Vieira et al. (2020). This hypothesis has gained
considerable support through the identification of both common
and rare genetic variants associated with the NMDAR signaling
pathway. Notably, an increasing number of variants in the GRIN
genes, which encode subunits of the NMDAR, have been identified
in patients with diverse neurological and psychiatric conditions,
including autism spectrum disorder, epilepsy, intellectual disability,
attention-deficit/hyperactivity disorder, and schizophrenia (Platzer
and Lemke, 2018; Myers et al., 2019). Among these, the GRIN2A
gene, encoding the GluN2A subunit of the NMDAR, has emerged as
a significant contributor to disorders such as schizophrenia (Singh
et al., 2022; Trubetskoy et al., 2022) and the epilepsy spectrum
(Lemke et al., 2013; Samanta, 2023). The Allen Mouse Brain Atlas
reveals pronounced GRIN2A expression in both the hippocampal
formation and isocortex, particularly in medial prefrontal regions.
This can explain the increased sensitivity of these regions to
NMDAR antagonism observed in our study, where the
hippocampus and mPFC exhibited the most substantial CBV and
functional connectivity reduction. These genetic findings
complement and extend pharmacological models such as the one
employed in our study, providing converging evidence for NMDAR
dysfunction as a central mechanism in a broad range of neurological
and psychiatric disorders.

4.4 The importance for prewhitening the
power doppler time series

Functional connectivity studies often rely on correlating time
series data that have undergone various preprocessing steps, such as
filtering, adjustment, smoothing, and averaging. However, an
important aspect of time series data, such as their internal
structure - specifically nonstationarity and autocorrelation - has
not always been fully considered. When correlations are calculated
without accounting for these factors, there is a risk that the resulting
values may reflect a mix of unrelated influences, such as the intrinsic
properties of the time series, external factors, and the true relationship
between the two series, rather than providing an accurate
representation of their actual association Haugh (1976). It is worth
quoting from Granger and Newbold’s study Granger and Newbold
(1974) in 1974: “We find it very curious that whereas virtually every
textbook on econometric methodology contains explicit warnings of the
dangers of autocorrelated errors, this phenomenon crops up so
frequently in well-respected applied work” (Granger and Newbold,
1974, p. 111). This observation points out the persistent importance of
properly addressing autocorrelation in time series analysis.

A key contribution of the current study is the introduction of a
prewhitening approach to fUSI data analysis, which transforms the
recorded pD signal into a stationary process by removing time-
dependent trends and periodicities. We show that the raw pD time
series exhibit non-stationarities that, if unaddressed, can lead to
spurious correlations. By implementing prewhitening, we mitigate

these issues, ensuring a more accurate assessment of pairwise FC
analysis. This is particularly important for studying dynamic brain
connectivity, where temporal fluctuations can confound results. Our
analysis shows that prewhitening improves the reliability of FCmetrics,
with a significant reduction in spurious correlations compared to non-
prewhitened data. This methodological advance demonstrates the
necessity of preprocessing steps like prewhitening when
investigating FC in both experimental and clinical settings, offering
a robust solution to the challenges posed by non-stationary pD signals.

4.5 Limitations of the current study and
future directions

One potential limitation of our study is the use of isoflurane
anesthesia, which is a known vasodilator that can impact cerebral
blood volume (CBV) and flow (CBF) (Masamoto and Kanno, 2012;
Franceschini et al., 2010). Isoflurane also modulates NMDA and
GABA receptors McAuliffe et al. (2009), potentially interacting with
the effects of MK-801 on NMDAR function. Previous studies have
shown that isoflurane can alter functional connectivity patterns,
particularly in thalamocortical and cortico-cortical connections,
with these effects varying based on anesthesia depth (Grandjean
et al., 2014; Bukhari et al., 2017). However, since both control and
MK-801-treated groups underwent identical anesthesia
protocols, the between-group differences in our study can
primarily be attributed to MK-801 administration.
Additionally, since our study was conducted in anesthetized
animals, we were unable to observe the behavioral effects of
MK-801 and directly link them to changes in brain activity and
connectivity. Given that MK-801 affects regions involved in
memory and learning, future studies should involve awake,
behaving animals performing memory- and learning-
associated tasks, such as novel object recognition and the
Barnes Maze. These studies should incorporate fUSI
recordings to correlate behavioral changes with brain activity
and connectivity alterations. Additionally, a future awake-
behaving experiment would also be valuable in isolating the
specific effects of MK-801 from those potentially influenced by
anesthesia. Furthermore, while we explored connectivity changes
in key brain regions, such as the hippocampus and mPFC, we
were unable to assess the potential effects of MK-801
administration on other regions within the septohippocampal
network, including the nucleus accumbens (NAc), amygdala, and
medial septal nucleus (MSN), as these areas were not accessible in
the selected sagittal 2-dimensional imaging plane. Future studies
will involve the newly developed 3-dimensional ultrasonic
probes, such as matrix arrays and raw column arrays (RCA)
(Rabut et al., 2019; Sauvage et al., 2020; Bertolo et al., 2021) to
generate volumetric images of the mouse brain providing access
to all areas of the septohippocampal network. Furthermore, the
current study implements only a single-dose protocol of MK-801,
which may not fully capture the dose-dependent effects of the
agent. Given the established dose-dependent effects of MK-801
on hippocampal theta and gamma oscillations Saunders et al.
(2012), it is important for future studies to evaluate how different
doses affect CBV and functional connectivity in the recorded
brain areas. Overall, despite the limitations, our study provides
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direct evidence that MK-801 disrupts connectivity between key
brain regions involved in learning, memory and other higher-
order cognitive functions. These findings offer valuable insights
into the neural basis of cognitive impairments associated with
various neuropsychiatric disorders and open new avenues for
future research into targeted interventions.
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