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Background: Tumor metabolism reprogramming is a hallmark of cancer, but
metabolite-mediated intercellular communication remains poorly understood.
To address this gap, we estimated and explored communication events exploring
based on single-cell RNA data, to explore the metabolic landscape of tumor
microenvironment (TME) in lung adenocarcinoma (LUAD) and identify novel
metabolite signaling axis.

Methods: The scRNA-seq dataset was subjected to dimensionality reduction
using the Seurat package. Cell annotation was manually performed using typical
markers from Cell Marker 2.0 and previous studies. Single-cell metabolite
abundance and communication events were inferred using MEBOCOST. The
TCGA-LUAD datasets was used to estimate and analyze immune cell infiltration
levels and tumor hot score using the ESTIMATE and ssGSEA algorithms.
Additionally, survival analysis was conducted on genes within relative signaling
axis. All analysis above in TCGA-LUAD dataset was validated by two Gene
Expression Omnibus (GEO) datasets. The expression patterns of PTGDR and
PTGDS were validated by RT-qPCR and fluorescence in situ hybridisation.

Results: Five landmark metabolites across cell types were identified as
prostaglandin D2 (PGD2), D-Mannose, Choline, L-Cysteine, and Cholesterol
of TME in LUAD. Prostaglandin D2 (PGD2) emerged as a key player, primarily
produced by fibroblasts and plasmacytoid dendritic cells (pDCs) by via the
PTGDS gene and by mast cells via the HPGDS gene. PGD2 signaling was shown
to primarily be received by the PGD2 receptor (PTGDR) on NK/T cells and
transported by the SLCO2A1 transporter on endothelial cells. CX3CR1+ NK/T
cells, which are prominent cytotoxic populations, as a PGD2 autocrine signaling
axis, are involved in PGD2 autocrine signaling, while KLRC2+ NK, DNAJB1+ NK
cells and CD8+ MAIT cells participate in PGD2 paracrine signaling. PGD2 may
also assist lactate efflux via SLCO2A1 on endothelial cells. The clinical relevance
of the PGD2 signaling axis was validated across multiple bulk RNA datasets,
showing that it is associated with the infiltration of above immune cells such as
DNAJB1+ NK cells, and linked to better prognosis in LUAD. Furthermore, we
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found that a risk model developed based on this signaling axis could predict
responses to immune therapy in hot and cold tumors, suggesting potential drugs
that may benefit low-risk patients. These findings were further supported by
RT-qPCR and immunofluorescence data, which confirmed the downregulation
of PTGDS and PTGDR in LUAD tumor tissues compared to normal tissues.

Conclusion: Collectively, these results suggest that PGD2 and its signaling axis
play a significant role in tumor-suppressive and anti-inflammatory effects in
LUAD, with potential applications in prognosis management and therapy
decision-making.

KEYWORDS

metabolic signaling, lung adenocarcinoma, prostaglandin D2, CX3CR1+ NK/t cells,
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Introduction

Over the past 2 decades, reprogramming of tumor metabolism
within the tumor microenvironment (TME) and its role in the
development of cancer therapies have garnered significant attention
(Mao et al., 2024; Nong et al., 2023; Park et al., 2020). Additionally,
exploring the connections between cellular metabolism, cancer, and
the immune system has led to an understanding of tumor
metabolism, facilitating the development of metabolite-based
therapies. Actually, many metabolites and can be released into
the extracellular where they enter other cells to exert their effects,
facilitating intercellular crosstalk (Wang and Lei, 2018; Liu et al.,
2014; Mao et al., 2024). For example, cancer-associated fibroblasts
(CAFs) play a critical role in pancreatic cancer metabolism by
secreting cysteine, a process mediated by the TGF-β/SMAD3/
ATF4 signaling axis (Zhu et al., 2024). However, due to technical
limitations, most mechanisms through which metabolites mediate
intercellular interactions and their roles whin TME remain
underexplored. In recent years, advancements in metabolism
inference algorithms based on single-cell transcriptomic data
have provided new opportunities to address these gaps
(Alghamdi et al., 2021; Nathaniel et al., 2023; Wagner et al.,
2021; Zheng et al., 2022). Among them, MEBOCOST contains a
large amount of metabolite data from the fluid environment (Zheng
et al., 2022).

Lung cancer is the most frequently diagnosed cancer,accounting
for one in eight cancers worldwide (Bray et al., 2024). Lung
adenocarcinoma (LUAD) is the most prevalent histological type
of Lung cancer (Chen et al., 2014). The discovery of metabolic
markers in lung cancer, particularly LUAD, is gaining interest,
though research is often limited by small sample sizes
(Klupczynska-Gabryszak et al., 2024; Moreno et al., 2018; Zhao
et al., 2020; Nie et al., 2021). A systematic review has reproted that
more than 150 metabolites are linked to altered lung cancer
metabolism (Madama et al., 2021). However, the clinical
application of these potential biomarkers is limited due to a high
rate of false positives and insufficient understanding of disease
mechanisms. Although extensive research has been conducted on
LUAD prognosis in relation to histology, mutations, gene
expression, proteomics, and the microbiome, studies focusing on
metabolites and intercellular metabolic signaling axes remain scarce.

In this study, we collected a single-cell RNA sequencing
(scRNA-seq) dataset of baseline LUAD to investigate metabolite

abundance and infer their crosstalk events (Figure 1A). Among the
identified metabolites, prostaglandin D2 (PGD2) emerged as a key
player in the tumor microenvironment (TME) of LUAD, actively
mediating intercellular communication. We identified the main
sender cells of PGD2 and its receiver cells, uncovering its anti-
tumor effects through the activation of T cells and NK cells via the
PGD2 receptor (PGDR). Simultaneously, we validated the mRNA
and protein expression patterns of these key genes in retrospectively
collected samples. This mechanism was further validated across
three bulk RNA-seq datasets, highlighting the potential clinical
relevance of the PGD2-associated metabolic signaling axis. Our
findings not only elucidate the functional characteristics of
PGD2 in LUAD but also provide a novel perspective on
exploring metabolic biomarkers.

Methods

Data collection

The scRNA-seq dataset GSE131907 (Kim et al., 2020) was
download from GEO database, containing 208,506 immune cells
after the quality measures so as to remove less informative cells. Of
which15 tumor tissues, 11 distant normal lung, 10 normal lymph
node, 10 metastatic brain tissue and seven metastatic lymph node
samples from 44 LUAD patients with treatment-nai€ve (58 samples).
Additionally five pleural fluid samples were obtained from LUAD
patients with malignant pleural effusion. After further quality
control, the sample EBUS_49 (GSM3827138) from an advanced-
stage patient was removed due to significant red blood cell
contamination. We also filtered out cells based on the following
criteria: Reads Count <500, Feature Numbers <200, Mean unique
molecular Identifier (UMI) count per genes <0.8, Mitochondrial
gene percentage >10% and Ribosomal gene percentage >60%.
Additionally, potential doublets were excluded using
DoubletFinder with a DoubletRatePer threshold of 0.005. After
filtering, the remaining high-quality cells count for
GSE131907 was 185,197, which were used for subsequent analysis.

A total of three independent bulk RNA LUAD datasets were
collected for this study. Standardized RNA-seq expression data
(TPM matrix) comprising 562 samples, including 504 tumor
samples and 58 distant normal lung samples, were obtained
from TCGA (https://portal.gdc.cancer.gov/). Additionally, two
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FIGURE 1
Schematic workflow diagram of this study and single-cell transcriptome atlas of LUAD. (A)Workflow diagram. (B) Uniform manifold approximation
and projection (UMAP) plot of 177,042 cells colored by cell type. Raw grouped clusters were presented in Supplementary Figure S1C. (C)Dot plot for the
expression pattern of marker genes of major cell type. The intensity of color represents Expression (Z-score normalized mean expression level); the dot
size indicates the percentage of the respective cell type. (D) UMAP plot of 177,042 cells colored by lung tumor and normal tissues. (E)Overview of
cell type composition across various tissue locations. (F) Overview of cell type composition across different stages (Early stage include stage I-III,
advanced stage is stage IV). The sample proportions of each cell type and the cellular composition of each sample are shown in Supplementary Figure S2.
(G)UMAP plot of 177,042 cells colored by early stage and advanced stage. (B) B cells; Endo: endothelial cells; Epi: epithelial cells; Fibro: fibroblasts; Mast:
mast cells; Myeloid: myeloid cells (excluding pDC and Mast); NK: Natural Killer cells; Oligo: Oligodendrocytes; pDC: Plasmacytoid dendritic cells;
T: T cells.
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microarray datasets, GSE31210 (225 LUAD tumor samples) and
GSE37745 (106 LUAD tumor samples), were sourced from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). The microarray
datasets were preprocessed by mapping probe IDs to gene
symbols based on the corresponding microarray chip platforms.
For genes represented by multiple probes, the mean value of all
probes was used.

Clustering and major cell type identification
in scRNA-seq data

All analyses were conducted using the Seurat v5.1.0 package (Hao
et al., 2024). Initially, NormalizeData was applied with method =
“LogNormalize” to normalize read counts. Cell cycle scoring was
performed using the CellCycleScoring function with 43 S phase and
54 G2M phase genes (Supplementary Table S1), estimate each cell’s
S.Score, G2M.Score, Phase and CC.Difference = S.Score - G2M.Score.
Variable features were identified using the FindVariableFeatures function
(method = vst, nfeatures = 2000) and filtered to exclude mitochondrial
genes, hemoglobin genes, ribosomal protein genes, immunoglobulin
genes, T-cell receptor genes, and AC233755.1. Data scaling was
performed using the ScaleData function with features from variable
features and vars.to.regress set to nCount_RNA, nFeature_RNA, and
CC.Difference. Principal component analysis (PCA) was conducted
(RunPCA, npcs = 30) for unsupervised clustering. To address batch
effects, samples were integrated using the RunHarmony function from
the harmony v1.2.1 package with default parameters (Korsunsky et al.,
2019). Subsequently, neighbors were identified using FindNeighbors
(reduction = “harmony”, n.neighbors = 40, min.dist = 0.5, dims = 1:
30), and clusters were determined using FindClusters at a resolution 0.1.
After reviewing the UMAP plot, 8,155 cells that mixed with epithelial
clusters but expressed CD3D and not EPCAM were removed. Finally,
177,042 remaining cells were reanalyzed following the steps above,
resulting in the final valid clustering (Supplementary Figure S1).

The cell type of each cluster was defined based on recognized cell
marker genes from previous studies and the CellMarker 2.0 database
(Supplementary Figure S2A). Clusters one and five were identified as
Myeloid cells based on the expression of LYZ, CD68, and CD14.
Cluster three was classified as NK cells expressing KLRB1 and
NKG7, while cluster four was identified as B cells with markers
MS4A1 and CD79A. Cluster six was designated as Fibroblasts
expressing DCN, and cluster 7 as Mast cells with markers
TPSAB1, KIT, and MS3A2. Cluster eight was defined as
Endothelial cells based on VWF and CLDN5, and cluster 9 as
pDCs expressing MZB1, DERL3, and LILRA4. Cluster 10 was
identified as Epithelial cells with markers EPCAM, KRT19, and
CDH1, and cluster 11 as Oligodendrocytes expressingMOG. Finally,
clusters 0, 12, 13, and 14 were identified as T cells based on the
expression of CD3D, CD3E, CD3G, IL7R, CD2, and CCR7.

Metabolic cell-cell communication analysis
by MEBOCOST

To estimate metabolic communication stress, we downsampled
major cell types exceeding 6,000 cells to 6,000 randomly selected
cells, creating a metabolite estimation object (Supplementary Table

S2). Using the infer_commu function in MEBOCOST v1.0.4 (Zheng
et al., 2022), we set cutoff_exp and cutoff_met to 0 (retaining all
nonzero metabolites or sensors) and cutoff_prop to 0.01 (at least 1%
of cells expressing the sensor or presenting the metabolite in the
specified cell type). Communication events were assessed for
significance using permutation_test_fdr, retaining events with
pval_cutoff = 0.9 based on the default database configuration
(Supplementary Table S3).

To evaluate differences in metabolite abundance among cell
types, we created a Seurat object from the estimated metabolite
abundance matrix. Cells were clustered by selecting the top
200 features using FindVariableFeatures and applying
unsupervised clustering (RunPCA, FindNeighbors, FindClusters)
with parameters consistent with prior clustering in the scRNA-
seq data analyses.

Communication Results were visualized using custom
thresholds (pval_cutoff = 0.01, comm_score_cutoff = 1, cutoff_
prop = 0.1 for sender and receiver sensors/metabolites, details in
Supplementary Table S4). The top 20 metabolites for each cell type
were identified by log2FoldChange >0 and p.adjust <0.001
(Wilcoxon test) with comm_score >1 (Supplementary Table S5).
Considering unknown sensors for some metabolites, only top
metabolites associated with detectable communication events
were labeled, as shown in Figure 2C.

Re-clustering of NK and T cells

We extracted 24,489 NK cells and 56,674 T cells for further
analysis. The analysis followed similar methods as prior
clustering in the scRNA-seq data. VariableFeatures
(nfeatures = 2000) were selected, followed by scaling, PCA
(npcs = 30), and clustering as previously described. For NK
cell clustering, the top 30 PCs were selected with a resolution
parameter of 0.4 and min.dist = 0.3. we first filtered out 6,146 cells
that were CD3D negative but expressed EPCAM, which were
considered contamination. Subsequently, for the remaining
50,528 cells, the top 15 PCs were selected with a resolution
parameter of 0.4 and min.dist = 0.3.

We annotated 13 NK cell clusters based on PTGDR and PTGDS
gene expression as well as referenced markers from previous studies
(Tang et al., 2023). Clusters one was identified as CX3CR1+ NK
based on the expression of CX3CR1. Cluster eight was classified as
DNAJB1+ NK highly expressing DNAJB1, while cluster 0, 5, 7,
10,11 were identified as KLRC2+ NK with marker KLRC2. Clusters
2, 3, and six were designated as RGS1+ NK, marked by RGS1. Due to
the lack of distinct reference markers, Cluster nine was designated as
Unknown NK1; Clusters 4 and 13 as Unknown NK2; and Cluster
12 as Unknown NK3.

Using T cell markers (CD8A and CD4), we identified T cells
and revealed two major populations. The CD8+ T cells were
further divided into three clusters: CD8+ T1, characterized by
MAIT markers (SLC4A10, ZBTB16, NCR3, RORA, and KLRB1);
CD8+ T2, marked by naïve T cell markers (CCR7, SELL, TCF7
and LEF1); and CD8+ T3, identified by cytotoxic markers
(GZMH, GNLY, GZMK, NKG7 and GZMA). Recent studies
have also provided additional markers for CD8+ T cells,
including KIR2DL4, CX3CR1, TYROBP, CXCR5, CD69,
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RPS12, CD52 and NME1, which help in further characterizing
CD8+ T cell populations and their functional states (Zheng
et al., 2021).

All feature plots with gene expression density were greated using
the plot_density function from the Nebulosa v1.14.0 package
(Alquicira-Hernandez and Powell, 2021).

FIGURE 2
Estimation of metabolites and their differential abundance with sensor expression across cell types. (A) UMAP plot of cells based on top 200 variable
metabolite abundance, colored by cell type. (B) Dot plot of communications between cell types in pairwise, where x-axis was the sender cell types, the
y-axis was the receiver cell types. The dot size indicated the number ofmetabolite-sensor communications between a sender and a receiver. The color of
the dot represented the overall confidence of communications between the sender and receiver. Only metabolite communication scores >1 and
metabolite proportions in senders and sensor proportions in receivers >0.1 are shown. (C) Volcano plots of differential metabolites (log2FoldChange >0)
across 10 cell types. Metabolites with Wilcoxon test p.adjust <0.001 are shown in red. The top 20 metabolites with the highest fold change in each cell
type (also appearing in the events of (B) are highlighted with larger, differently colored circles. Details was in Supplementary Table S4. (D)Heatmap of the
top differential metabolites. Colors represent the mean abundance level in each cell type. (E) Dot plot of metabolite-sensor communications for
differential metabolites (Prostaglandin D2, L-Cysteine, D-Mannose, Choline and Cholesterol). Rows represent metabolite-sensor pairs, columns
represent sender cell types. Prostaglandin D2 is highlighted in red.
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Validation expression of genes in
PGD2 signaling axis

To validate the involvement of PGD2 signaling components, we
utilized several publicly available integrated datasets derived from
pan - cancer studies. These datasets consolidate single-cell data from
multiple studies, focusing on major cell lineages such as fibroblast
cells (Gao et al., 2024), myeloid cells (Cheng et al., 2021), NK cells
(Tang et al., 2023), and T cells (Zheng et al., 2021). For this analysis,
we specifically extracted data related to LUAD or lung tissue,
including normal samples.

The integrated fibroblast dataset (http://pan-fib.cancer-pku.cn)
was used to investigate PTGDS expression, identifying its
predominant cell subtypes and tissue localization. For myeloid
cells, including pDCs and mast cells, the myeloid dataset (http://
panmyeloid.cancer-pku.cn) provided information on the
distribution of PTGDS and HPGDS across various lineages and
tissues. The NK cell dataset facilitated the examination of PTGDS
and PTGDR in the context of PGD2 signaling reception. Lastly, the
T-cell dataset (http://cancer-pku.cn:3838/PanC_T) offered detailed
insights into PTGDS and PTGDR expression specifically in CD8+

T cells. These datasets collectively facilitated a detailed cross-
validation of PGD2 signaling components in various cell types
and biological contexts.

Definition of gene sets for signature
calculation

To evaluate the functional variations between
SLCO2A1+/−Endo cells, PTGDS+/−NK cells, PTGDR+/−NK cells,
and PTGDR+/−T cells, we defined L-lactate dehydrogenase,
cytotoxicity, inflammatory and stress-related gene sets after
comprehensive compilation of previous studies (Tang et al.,
2023). The L-lactate dehydrogenase gene sets were defined as
LDHA and LDHB; The cytotoxicity gene sets were defined as
GZMA, GZMB, GZMH, GZMM, GZMK, GNLY, PRF1 and CTSW.
The inflammatory gene set was defined as CCL2, CCL3, CCL4,
CCL5, CXCL10, CXCL9, IL1B, IL6, IL7, IL15 and IL18. The
general stress gene set was defined as BAG3, CALU, DNAJB1,
DUSP1, EGR1, FOS, FOSB, HIF1A, HSP90AA1, HSP90AB1,
HSP90B1, HSPA1A, HSPA1B, HSPA6, HSPB1, HSPH1, IER2,
JUN, JUNB, NFKBIA, NFKBIZ, RGS2, SLC2A3, SOCS3, UBC,
ZFAND2A, ZFP36 and ZFP36L1. Each score was calculated by
AUCell, as described below.

A previous study developed a scoring system to identify
immunologically active tumors, referred to as “hot tumors”
(Foy et al., 2022). The hot tumor gene set includes CCL19,
CCR2, CCR4, CCR5, CD27, CD40LG, CD8A, CXCL10,
CXCL11, CXCL13, CXCL9, CXCR3, CXCR6, FASLG, FGL2,
GZMA, GZMH, IDO1, IFNG, IRF8, LAG3, LYZ, MS4A1,
PDCD1, TBX21, TLR7 and TLR8. This score was calculated by
ssGSEA in our bulk datasets, as described below.

The eight major cell types, NK and T cell populations we further
subdivided were collected. We then used the FindMarkers function
in Seurat to identify representative markers for these cell
populations, selecting the top 20 markers with a p-value less than
0.05 (Supplementary Table S6).

Calculation of signature score

For scRNA-seq data, we used the R package AUCell v1.26.0
(Aibar et al., 2017) to calculate the signature score of a specific gene
set. We first built the ranked expression matrix using the AUCell_
build Rankings function, and then calculated the AUC value using
the AUCell_calc AUC function. Detailed gene sets used in this study
were defined in the above section.

We used single-sample gene set enrichment analysis (ssGSEA)
in GSVA v1.52.3 (Subramanian A et al., 2005) to score the
expression of feature genes of all major populations we identified
above. The parameters for the gsva function were set as mx.diff = T,
method = ssgsea, and kcdf = Gaussian. The ssGSEA score was
introduced to quantify the relative infiltration of cell populations in
the tumor microenvironment based on bulk RNA-seq and
microarray data. Additionally, the Hot score, based on a 27-gene
expression signature above mentioned, was calculated to evaluate
the immunologically active tumors in the same samples. Specifically,
a Hot score greater than 0 was considered to indicate hot tumors,
while a score less than 0 indicated cold tumors.

Survival analysis

Survival analysis was performed using the survival method in the
R packages survival v3.7.0 (Therneau, 2024) and survminer v0.5.0
(STHDA, 2016). The coxph function was used to construct both
univariate and multivariate risk models for overall survival (OS),
estimate the regression coefficients for each factor, and calculate the
hazard ratios (HR) and p-values. After constructing the gene-based
risk model, we used the vif function in car package to assess the
multicollinearity of the candidate genes, ensuring that non-
collinearity was maintained. The forest plot was generated using
the forestplot. The surv_cutpoint function was used to select the
optimal cutoff value, while the survfit function was applied to fit the
survival model and calculate the p value of the log rank test. Finally,
the ggsurvplot function was used to generate Kaplan-Meier (KM)
survival curves. To evaluate the prognostic performance of the risk
score, we performed time-dependent ROC analysis using the
survivalROC v1.0.3.1 package (Patrick and Heagerty, 2000) with
cut-off points at 365 (1-year), 1,095 (3-year), and 1828 (5-year) days.

Therapeutic response prediction

Predicted half maximal inhibitory concentrations (IC50) of the
common antitumor drugs in LUAD were calculated using the
calcPhenotype in oncoPredict v1.2 R package (Maeser et al.,
2021). The training dataset was selected GDSC2Data (built into
the oncoPredict package), which includes 198 drugs and
805 training samples. All parameters were set to their default values.

Clinical tissue collection

LUAD tissue samples were procured from patients diagnosed at the
Fuyang People’s Hospital. The study excluded patients who had
undergone any pre-surgical treatment and those with a history of
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other malignancies (see Supplementary Table S7 for details). All
samples included both tumor and distant normal lung tissues. Prior
to sample collection, all participants provided their written informed
consent for the clinical application and research use of their
tumor tissues.

RT-qPCR

Total RNA was extracted from liquid nitrogen–ground tissues
using TRIzol reagent (TaKaRa RNAiso Reagent 9,180). The tissue
powder was mixed with 1 mL of TRIzol and incubated at room
temperature for 5 min, followed by the addition of 200 μL of
chloroform. After centrifugation at 12,000 × g for 15 min to
separate the phases, the aqueous phase was mixed with an equal
volume of isopropanol to precipitate RNA. The RNA was washed
with 75% ethanol and dissolved in 20 μL of RNase-free water. The
quality and purity of RNA were assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific) and 1.5%
agarose gel electrophoresis. Subsequently, reverse transcription was
performed using the PrimeScript™ RT Reagent Kit with gDNA
Eraser (TaKaRa, RR047A). The specific procedure was as follows:
genomic DNA was removed by incubation at 42°C for 2 min,
followed by reverse transcription at 37°C for 15 min and
termination of the reaction by heating at 85°C for 5 s. Real-time
quantitative PCR was carried out using TB Green Premix Ex Taq™
(TaKaRa, RR420A) on a Bio-Rad CFX96 system. The PCR reaction
mixture (20 μL) contained 10 μL of TB Green Premix Ex Taq II, 0.4 μL
of forward primer (10 μmol/L), 0.4 μL of reverse primer (10 μmol/L),
1 μL of cDNA template, and 8.2 μL of RNase-free water. The internal
reference primers used were β-actin. The PCR program was as follows:
initial denaturation at 95°C for 30 s; followed by 45 cycles of 95°C for 5 s
and 60°C for 30 s; and finally, melting curve analysis was performed.
Primers for nine genes used in real-time PCR are listed in
(Supplementary Table S8). The relative expression levels were
calculated using the 2̂ (-ΔΔCt) method, and the experimental results
were expressed as the mean ± standard deviation.

Multiplex immunofluorescence staining

The method of multiplex immunofluorescence staining is as
follows: Paraffin sections were placed in xylene I for 12 min, xylene
II for 12 min, absolute ethanol I for 6 min, 95% ethanol for 6 min, and
85% ethanol for 6 min in turn, and washed with distilled water to
complete dewaxing and rehydration. Subsequently, the sections were
placed in EDTA repair solution (pH 8.0) for microwave antigen repair
(medium heat for 8 min, stop heating for 8 min, medium-low heat for
7 min), and then cooled naturally. After washing with PBS (pH 7.4) for
5 min three times, 3% hydrogen peroxide was added to block
endogenous peroxidase at room temperature for 25 min, followed
by washing with PBS three times. The sections were blocked with 3%
BSA at room temperature for more than 30 min. The primary antibody
against CD8 diluted at 1:50 was added and incubated at 4°C overnight.
After washing with PBS, the corresponding fluorescently labeled
secondary antibody (haokebio, HKI0029, Alexa Fluor 488) was
added and incubated at room temperature in the dark for 50 min.
After washing with PBS, the Flare signal amplification reagent was

added for 3–5 min to enhance the signal, and then washed with PBS
three times. The above steps (starting from antigen repair) were
repeated to incubate with the primary antibody and the
corresponding labeled secondary antibody (haokebio, HKI0029,
Alexa Fluor 594) to complete the second labeling. Finally, the nuclei
were stained with DAPI at room temperature in the dark for 8 min,
washed with PBS, and then mounted with an anti-fade mounting
medium. The primary antibodies used are as follows: PTGDR
(sanjingbio, Sj-AB11585), PTGDS (sanjingbio, Sj-AB16367), α-SMA
(haokebio, HKA50033), CD56 (haokebio, 14255-AP), and CD8
(haokebio, I10361A).

Statistical analysis

All statistical analyses were conducted using R software v4.1.1.
Statistical analyses in this study included theWilcoxon rank sum test
and Student’s t-test, as described in the figure legends. Pearson
correlation was applied to assess correlations between PTGDR and
PTGDS expression levels in NK cells, while Spearman correlation
was used to evaluate the relationship between gene expression levels
and other factors in the heatmap. We used the plotROC
v2.3.1 package to generate ROC curves for classifying tumors as
hot or cold based on gene expression and the risk model. The area
under the curve (AUC) was calculated to quantify the model’s ability
to distinguish hot and cold tumors.

Results

Overall metabolic landscape of cells in LUAD

To elucidate the cellular and metabolic composition and
crosstalk events of tumors and other relative tissues in LUAD,
tumor lung (T:14), and normal lung (N:11, adjacent normal
tissue), metastasis brain (M.brain:10), metastasis lymph node
(M.LN:7), normal lymph node (N.LN:10) and pleural fluids
(MPE: 5) were obtained from dataset GSE131907 (Kim et al.,
2020), a dataset from 44 patients with treatment - nai€ve LUAD
during endobronchial ultrasound/bronchoscopy biopsy or surgical
resection. After filtering the scRNA - seq data to exclude damaged or
dead cells and putative cell doublets, a total of 177,042 cell
transcriptomes were retained for subsequent analysis. Following
gene expression normalization for RNA reads count, gene numbers
and Cell Cycle scores (see methods), we applied principal
component analysis (PCA) based on top 2000 highly variably
expressed genes across the sequenced cells. We used the
Harmony algorithm (Korsunsky et al., 2019) to integrate data,
effectively reducing batch effects without noticeable differences at
the sample or cell cycle levels (Supplementary Figure S1A, B). We
further employed the Harmony-corrected principal components to
generate a unified UMAP embedding space and then performed
graph-based clustering (Supplementary Figure S1C) and annotated
each cluster with their respective markers (Supplementary Figure
S2A, B). The cells were classified into ten major cell types
(Figure 1B), including epithelial cells (Epi; n = 26,144), T cells
(T; n = 56,674), B cells (B; n = 21,903), fibroblasts (Fibro; n = 4,430),
plasmacytoid dendritic cells (pDC; n = 861), natural killer cells (NK;
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FIGURE 3
PGD2 and its enzymes and sensors levels. (A) Flow diagram showing the information flow of metabolite-sensor communications from sender cell
type to receiver cell type through Prostaglandin D2 and its sensors SLCO2A1 and PTGDR. The size of dots represented the number of connections,
indicating the frequency of usage among all the communications. The lines connect the sender, metabolite, sensor, and receiver. The solid red lines
indicate communication scores >1, with the width of the lines representing the communication scores. The calculation follows the samemethod as
the overall confidence shown in Figure 2E. The dashed gray line indicates the events that communication scores <1. (B) Violin plot of Prostaglandin
D2 abundance levels in the top three sender cells (excluding Oligo) in Tumor Lung and Normal Lung). More detailed grouped expression patterns are
shown in Supplementary Figure S5A. (C) Violin plot of Prostaglandin D2 abundance levels in the top three sender cells (excluding Oligo) in early stage and
advanced stage. More detailed grouped expression patterns are shown in Supplementary Figure S5B. (D) Violin plot of Prostaglandin D2 abundance levels
in the top three sender cells excluding Oligo) in different cell differentiation states. More detailed grouped expression patterns are shown in
Supplementary Figure S5C. All significance levels, determined using the Wilcoxon test, is indicated by adjusted p-values: *p < 0.05, **p < 0.01, ***p <
0.001, andNS. > 0.05. (E)UMAP plot colored by the expression levels of enzyme genes PTGDS andHPGDS. (F)UMAP plot colored by the expression levels
of sensor genes PTGDR and SLCO2A1. The rarely expressed PTGDR2 gene is shown in Supplementary Figure S5D. (G) Heatmap of PTGDS, PTGDR and
SLCO2A1 expression levels across different groups (same as B-D) in top sender and receiver cells. The color represents expression (Z-score normalized
mean expression level) in each cell type.
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n = 24,489), myeloid cells excluding pDC and mast cells (Myeloid;
n = 36,294), endothelial cells (Endo; n = 2,107), and
oligodendrocytes which were derived from brain metastasis
samples (Oligo; n = 655). All cell types marked by markers in
Figure 1C. The grade of infiltration for each of these major cell types
was different from tissue and tumor stage (Figures 1D–G).
Obviously, among different tissues, tumor and metastasis
locations with higher numbers of epithelial cells show fewer
immune cells (e.g., NK cells), and this trend becomes more
pronounced between early and advanced stages of tumors.

Cells from major cell types were extracted into the metabolite-
estimated object, with over 6,000 cells fromNK,Myeloid, T, Epi, and
B cell types downsampled to 6,000. The abundance of 560 secretory
metabolites across all cells was estimated using MEBOCOST (Zheng
et al., 2022), with each metabolite present in more than 1% of cells in
at least 1 cell type. To assess the overall metabolic differences across
different cell types, we applied PCA based on top 200 highly variably
metabolite across cells in the metabolite-estimated object. We
further employed the 30 principal components to generate a
unified UMAP embedding space and then performed graph-
based clustering (Figure 2A) and colored cells by their types. We
found that Myeloid, Fibro, Epi, Mast, pDC and Oligo cells exhibited
distinct secretory metabolic patterns compared to Lymphoid cells.
Furthermore, all of the metabolites, sensors, and metabolite-sensor
signaling axes have been reported of 10 cell types in the TME
(Supplementary Figure S4A–C; Supplementary Table S4). Metabolic
cell-cell communication events that Myeloid, Fibro, Mast, and Oligo
cells tend to act as senders, communicating with Endo, NK, Fibro,
pDC, Epi and Myeloid cells (Figure 2B). We aimed to identify
landmark metabolites for each cell type by analyzing metabolites
specific to each type and extracting the top 20 involved in cell-cell
communication. Five metabolites—prostaglandin D2 (PGD2),
D-Mannose, Choline, L-Cysteine, and Cholesterol—were
highlighted (Figures 2C, D; Supplementary Table S5). Further
analysis revealed that the metabolic signaling axes among cell
clusters include the following pairs: prostaglandin D2 ~
SLCO2A1, prostaglandin D2 ~ PTGDR, L-Cysteine ~ SLC43A2,
D-Mannose ~ SLC2A3, Choline ~ SLC44A2, Choline ~ SLC44A1,
Cholesterol ~ RORA, Cholesterol ~ LDLR and Cholesterol ~ CD36
(Figure 2E). Among these, Choline, L-Cysteine, and Cholesterol
have been widely reported to play crucial roles in tumor occurrence
and development (Song et al., 2024; Hua et al., 2020; Fan et al., 2023).
Interestingly, PGD2 emerged as a noteworthy metabolite showing
higher mean abundance observed in Mast, Oligo, Fibro, and pDC
cells, which are rarely studied in oncology (Figure 2D). More
specifically, PGD2 plays a pivotal role in signaling through its
associated aixes, such as PGD2 ~ SLCO2A1 and PGD2 ~
PTGDR, suggesting potential metabolic implications in
tumorigenesis, tumor invasion and metastasis. Notably, PGD2 ~
SLCO2A1 is primarily mediated by sender cells to Endo cells, while
PGD2 ~ PTGDR is linked to interactions with NK cells (Figure 2E).

Tumor-suppressive role of PGD2 and its
signaling axis

Focusing on PGD2, we further discovered that it is primarily
produced in Oligo, Mast, Fibro, and pDC cells. Its metabolic

signaling axes are primarily PGD2 ~ SLCO2A1, which mediates
communication prior to non-Lymphoid cells, and PGD2 ~ PTGDR,
which facilitates communication between Lymphoid cells
(Figure 3A; Supplementary Table S9).

Notably, Oligo cells are present only in brain metastasis samples,
so they will not be discussed further (Supplementary Figures
S5A–C). In comparison, among the other three top PGD2-
abundant cell types, the abundance of PGD2 shows a significant
decreasing trend in Fibro cells and pDCs across normal lung, tumor
lung, and metastatic brain tissues (Figure 3B), as well as in early and
advanced stages (Figure 3C) and at different differentiation levels
(well, middle, and poor; Figure 3D). Although the abundance of
PGD2 is higher in mast cells, the associated trend is not as
pronounced. PTGDS and HPGDS were signed as key emzymes
for producing PGD2 in cells. We found that Mast, Fibro, pDC,
and even NK/T cells produce PGD2 through PTGDS, while HPGDS
is specifically expressed in Mast cells (Figure 3E). Additionally,
PTGDR is specifically expressed in some NK/T cells, while
SLCO2A1 is primarily found in Endo and a small subset of Epi
cells (Figure 3F), as inferred results from Figure 3A. The expression
of PTGDS, PTGDR and SLCO2A1 also shows a decreasing trend
across normal lung, tumor lung, and metastatic brain tissues, as well
as in early and advanced stages and at different differentiation levels.
Based on these, we infer that PGD2 and its intercellular signaling
axis play a tumor-suppressive role in LUAD.

To further validate this finding, we incorporated several publicly
available integrated datasets from pan-cancer studies. We
specifically extracted data related to LUAD or lung tissue,
including normal samples, and confirmed that the cellular
localization and disease progression relationships of PTGDS,
PTGDR, HPGDS and SLCO2A1 were consistent with our study
(Supplementary Figure S6; Supplementary Figure S8;
Supplementary Figure S9). These resources allowed us to cross-
validate and enhance our findings, offering a broader perspective on
the role of the PGD2 signaling axis in different cellular contexts
within the tumor microenvironment.

Function of PGD2 signaling axis in
receiver cells

To determine how PGD2 and relative signaling axis exert their
tumor-suppressive function, we assessed the function of the sensors
in the corresponding receiver cells. SLCO2A1, which encodes the
solute carrier organic anion transporter family member 2A1 was a
transporter of PGD2, facilitating its entry through lactate exchange
(Lu et al., 1996). In our study, LDHA (encoding L-lactate
dehydrogenase A chain) and LDHB (encoding L-lactate
dehydrogenase B chain) are widely expressed in all cell types,
including endothelial cells (Figure 4A). L-lactate dehydrogenase
score for Endo cells base on LDHA and LDHB expression was
calculated. We found that SLCO2A1+ Endo cells have a higher
L-lactate dehydrogenase score, with statistical significance indicated
by a p-value of (p < 0.05; Figure 4B). Therefore, we propose that the
PGD2 ~ SLCO2A1 signaling axis may be associated with lactate
efflux in Endo cells.

In NK cells, we observed that NK cell PGD2 autocrine signaling
occurs, though potentially lower than paracrine signaling

Frontiers in Pharmacology frontiersin.org09

Liu et al. 10.3389/fphar.2025.1562261

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1562261


(Figure 3A). We therefore assessed the correlation of PTGDS, which
encodes prostaglandin-H2 D-isomerase, and PTGDR, which
encodes the PGD2 receptor protein 2, in NK cells, providing
evidence that NK cells can mediate the PGD2 ~ PTGDR process
through autocrine signaling (Figure 4C). This weak correlation also
suggests that the PGD2 ~ PTGDR process in NK cells may
simultaneously rely on paracrine pathways. We further examined
the gene expression signatures to elucidate the impact of genes
PTGDS and PTGDR on function of NK and T cells. Notably, PTGDS
+ NK cells, PTGDR + NK cells, and PTGDR + T cells exhibited
significantly higher cytotoxicity and inflammatory scores, indicating
their enhanced immune activity and implying a antitumor effects
(Figure 4D). However, their influence on general cell stress was
modest, as reflected by median stress scores, despite showing
statistical significance.

PGD2 signaling axis in NK and T cells

We further deciphered the subpopulations of NK and T cells
which participate PGD2 signaling axis aiming to identify more
specific functional subpopulations (Figure 5; Figure 6), with raw
clusters described in the classifications shown in Supplementary
Figures S7A–C, 9A.

The NK cells were classified into six subpopulations
(Figure 5A). As a previous study of pan-cancers NK cells
reported that NK cells can be subdivided into two major
populations, CD56dimCD16hi and CD56brightCD16lo (Tang
et al., 2023). We considered PTGDS + NK cells in LUAD
samples mainly belongs to CD56dimCD16hi, while PTGDR +
NK cells are present in both populations, with a higher

proportion in the CD56dimCD16hi population (Figure 5B,C).
Therefore, the PGD2 signaling axis seemed not to have a
strong association with the distinction between CD56 and
CD16 NK cell populations. Interestingly, CX3CR1+ NK cells
exhibited high expression of both PTGDS and PTGDR
(Figure 5B,C), suggesting a potential correlation between
CX3CR1 expression and the PGD2 autocrine signaling axis in
NK cells. Meanwhile, DNAJB1+ NK cells and KLRC2+ NK cells
predominantly expressed PTGDR, implying their association
with the PGD2 paracrine signaling axis. Additionally,
Unknown NK1, one of the subpopulations expressing IL32
and likely involved in NK cell inflammatory responses, was
also found to exhibit low-level expression of PTGDR. These
gene expression correlations mentioned above were also
validated in the online dataset (Supplementary Figure S8).

The T cells were classified into CD8+ and CD4+ T cells
(Figure 6A), based on the high expression of canonical cell
markers, CD8A and CD4 (Figures 6B,C). Since the genes PTGDS
and PTGDR were mainly expressed in CD8+ T cells (Figure 6C), we
further classified CD8+ T cells into three groups: CD8+ T1, CD8+
T2 and CD8+ T3. PTGDS and PTGDR highly expressed in CD8+
T1 and CD8+ T3 cells. CD8+ T1 cells tend to express cytotoxic
markers such as GZMA, GZMH, GZMK, GNMY, and NKG7, while
CD8+ T3 cells, which resemble mucosal-associated invariant T cells
(MAIT), express markers as SLC4A10, ZBTB16, NCR3, RORA and
KLRB1. Interestingly, both CD8+ T1 and CD8+ T3 cells highly
express TYROBP, and CD8+ T1 also highly express CX3CR1, with
the latter also co-expressed with PTGDS and PTGDR in NK cells
(Figure 6D). These gene expression correlations mentioned above
were also validated in the online CD8+ T cells dataset
(Supplementary Figures S9B–D).

FIGURE 4
Correlation and functional role of Prostaglandin D2 in receiver cells. (A) UMAP plot colored by the expression levels of L-lactate dehydrogenase
genes LDHB and LDHA. (B) Violin plot of L-lactate dehydrogenase score in the SCLO2A1+/−Endo. (C) Correlation between PTGDS and PTGDR expression
in NK cells (Pearson correlation coefficient = 0.0645, p < 2.2e-16). (D) Violin plot of cytotoxicity, inflammatory, Stress score PTGDS+/−, PTGDR+/−NK and
T cells. The scores in B and D represents the AUCell index of signature genes (see Methods). All significance levels, determined using the Wilcoxon
test, is indicated by adjusted p-values: *p < 0.05, **p < 0.01, ***p < 0.001, and NS > 0.05.
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Prognostic value of the PGD2 signaling axis

We introduced three bulk RNA datasets (TCGA-LUAD,
GSE31210, and GSE37745), which include more samples with
clinical records, to explore the potential prognostic value of the
PGD2 signaling axis. Firstly, relative genes involved in
PGD2 signaling axis, HPGDS, PTGDS, PTGDR and SLCO2A1,
were all significantly lower expressed in tumor lung tissue
compared to normal in TCGA-LUAD cohort (Figure 7A). The
expression differences of these genes across different stages,
however, are not as pronounced, as shown in Supplementary
Figure S10A. The StromalScore, ImmuneScore, and
ESTIMATEScore were significantly positively correlated with
these four genes, as determined by Spearman correlation analysis.
In contrast, TumorPurity was significantly negatively correlated
with these genes across all cohorts (Figure 7B). These findings
validate the above results, suggesting that PGD2 cell-cell
communication predominantly occurs between immune and
stromal cells at the single-cell level and is associated with the
degree of immune infiltration in tumors. Furthermore, we

identified the top 20 marker genes for the major populations
defined in this study and compiled them into custom gene sets
(Supplementary Table S6). Based on these gene sets, we calculated
the enrichment scores for each cell type in bulk RNA using ssGSEA
and explore their correlation to relative genes involved in
PGD2 signaling axis. We found that the enrichment of specific
cell types corresponded closely with the expression of related genes.
For example, the enrichment level of DNAJB1+ NK, KLRC2+ NK
and CX3CR1+ NK cells were significantly associated with PTGDR
gene expression (Figure 7C). To explore the clinical value of the
PGD2 signaling axis, we calculated the Hot score for each sample
across all cohorts using ssGSEA (Foy et al., 2022). These four genes
were found to be significantly correlated with both the Hot score and
PD-L1 expression levels, with PTGDS and PTGDR showing
particularly strong associations (Figure 7D). This suggests that
active PGD2 signaling axis activity may be associated with
improved immunotherapy efficacy. The ROC plots further
confirmed the predictive performance of PTGDS and PTGDR for
distinguishing hot and cold tumors, with AUC scores ranging from
0.674 to 0.765 and 0.693 to 0.789, respectively (Figure 7E,F).

FIGURE 5
Enzyme gene PTGDS and receptor gene PTGDR observed in NK cells. (A)UMAP plot of NK cells colored by sub-clusters. Raw grouped clusters were
presented in Supplementary Figure S7A. (B) Dot plot showing the expression pattern of marker genes for sub-clusters. The intensity of the color
represents expression levels (Z-score normalized mean expression level), while the dot size indicates the percentage of cells in the respective sub-
clusters. (C)UMAP plot colored by the expression level of PTGDS, PTGDR, and typicalmarker genes. (D)UMAP plot colored by the expression level of
KLRC2, CX3CR1, DNAJB1, and NR4A3. Additional reference marker expression patterns can be found in Supplementary Figure S7C.
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Risk model based PGD2 signaling axis genes

Based on the TCGA-LUAD dataset, we performed univariate
Cox regression risk scoring and for the genes involved in the
PGD2 signaling axis, including HPGDS, PTGDS, PTGDR and
SLCO2A1 (Figure 8A). PTGDS, PTGDR and HPGDS were found
to be associated with reduced risk, as indicated by their hazard ratios
(HRs) of 0.9001 (95% CI: 0.8341–0.9713, p < 0.05), 0.7905 (95% CI:
0.6025–1.0371, p = 0.0897), and 0.9611 (95% CI: 0.9298–0.9934, p <
0.05), respectively. To evaluate the prognostic value of each gene, we
performed Kaplan-Meier (KM) survival analysis for each of the four
genes individually. Patients were stratified into high-expression and
low-expression groups based on the optimal cut-off point of gene
expression. The KM survival curves demonstrated that patients with
higher expression levels of PTGDS (log-rank p < 0.001), HPGDS
(log-rank p < 0.001), and PTGDR (log-rank p < 0.001) exhibited
significantly better overall survival (OS) compared to those with
lower expression levels of these genes (Figure 8B). This further
supports their potential as prognostic bio-markers. Therefore, we
established a multivariate Cox regression risk model based on these
three genes, as follows: Risk score = PTGDS* (−0.07927835) +
PTGDR * (−0.09647698) + HPGDS * (−0.0307662). PTGDR,
HPGDS, and PTGDS had VIFs of 1.15, 1.05, and 1.20,
respectively. The VIF (Variance Inflation Factor) values for all
variables in the model were well below the threshold of 5,
indicating no significant multicollinearity between them

(Supplementary Table S10). Upon evaluation, the risk score
derived from the model was found to be independent of clinical
factors such as cancer stage, T (tumor size), N (lymph node
involvement), M (metastasis), gender, and age (Figure 8C).
Kaplan-Meier survival analysis stratified patients into high- and
low-risk groups based on the optimal cut-off of risk score. The high-
risk group exhibited significantly worse OS compared to the low-risk
group (log-rank p < 0.001) (Figure 8D). The median survival time
for the high-risk group was 1,194 days, while the low-risk group had
a median survival time of 1,778 days, confirming the predictive
power of the risk score in determining patient prognosis.
Subsequently, the performance of these models was validated in
the GSE31210 and GSE37745 datasets (Supplementary Figure S10D,
E). The time-dependent ROC curves showed that the AUC
remained modest across all time points, indicating that the
model maintained a reasonable level of predictive performance
over time (Figure 8E). Specifically, the AUC at 1 year was 0.650,
at 3 years was 0.592, and at 5 years was 0.564. Although the model
demonstrated some ability to discriminate between high-risk and
low-risk patients, the decrease in AUC over time suggests that its
discriminative power may diminish as the follow-up period extends.

We evaluated the correlation between the risk score, Hot score,
and immune infiltration scores (e.g., ImmuneScore) in all cohorts
(Figure 8F). Spearman correlation analysis revealed significant
negative correlations between the risk score and immune
infiltration scores, suggesting a potential link between higher risk

FIGURE 6
Enzyme gene PTGDS and receptor gene PTGDR observed in T cells. (A) UMAP plot of T cells colored by sub-clusters. (B) Dot plot for the expression
pattern of marker genes of sub-clusters. The intensity of color represents Expression (Z-score normalized mean expression level); the dot size indicates
the percentage of the respective sub-clusters. (C, D) UMAP plot colored by the expression level of PTGDS, PTGDR and typical marker genes.

Frontiers in Pharmacology frontiersin.org12

Liu et al. 10.3389/fphar.2025.1562261

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1562261


FIGURE 7
Enzyme and sensor genes of Prostaglandin D2 observed in bulk RNA data. (A) Violin plot of Enzyme and sensor genes expression of PGD2 in tumor
lung and normal lung samples from the TCGA LUAD dataset. The Significance level, determined using theWilcoxon test, is indicated by adjusted p-values:
*p < 0.05, **p < 0.01, ***p < 0.001, and NS > 0.05. (B) Heatmap of Spearman correlation coefficients between genes and stromal, immune, and tumor
scores in three bulk RNA datasets. (C) Heatmap of Spearman correlation coefficients between genes and cell type marker gene signature scores in
three bulk RNA datasets. (D)Heatmap of Spearman correlation coefficients between genes and PDL1 and Hot scores in three bulk RNA datasets. (E) ROC
plot showing the performance of PTGDS in distinguishing hot and cold tumors in three bulk RNA datasets. The AUC values are labeled separately for each
dataset. (F) ROC plot showing the performance of PTGDR. ROC plot of HPGDS and SLCO2A1 was in Supplementary Figures S10B, C. Details of score
calculations are provided in the Methods. The significance level of Spearman correlation in (B–D) are indicated by p-values: *p < 0.05, **p < 0.01,
***p < 0.001.
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FIGURE 8
Clinical risk score based on Prostaglandin D2 enzyme and sensor genes. (A) Forest plot showing hazard ratios (HR) from the univariate Cox proportional
hazards model, illustrating the association between individual variables and overall survival. HR values with 95% confidence intervals are shown, and
statistically significant results are marked. (B) Kaplan–Meier survival curves for patients according to single gene expression (TCGA LUAD dataset). (C)
Multivariate Cox proportional hazards model. Arrowhead is used to show that the lines extending from the box have reached the limits of the plot area.
(D)Kaplan–Meier survival curves for patients according toCox risk score (TCGA LUADdataset). (E)Time-dependent ROCCurves at 1-year, 3-year, and 5-year
Time Points. (F)Correlation between the risk score and all scores shown in Figures 7B–D. (G) ROC Curve of Risk Score for Classifying Hot and Cold Tumors.
The AUC values are labeled separately for each dataset. (H) Heatmap of differential drug sensitivity across three datasets based on GDSC2 (198 drugs). The
drugs were selected using the Wilcoxon test (p < 0.05) between high and low-risk groups based on Kaplan-Meier survival analysis.
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and lower immune cell infiltration. Additionally, the risk score
showed a significant positive correlation with TumorPurity,
further supporting the association between immune response and
tumor microenvironment. As expected, the ROC curves also
demonstrated the ability of this model to differentiate between
hot and cold tumors (Figure 8G). These findings align with the
above results (Figures 7B–D), suggesting that genes involved in the

PGD2 signaling axis exhibit protective factor properties and are
positive correlated with immune infiltration.

Based on the 198-drugs GDSC2 database, we predicted the drug
sensitivity of samples from TCGA-LUAD, GSE31210 and
GSE37745 datasets. A differential test (Wilcoxon test, p < 0.05)
was performed on the predicted IC50 values, stratified by high and
low-risk groups based on Kaplan-Meier survival analysis. Ten drugs

FIGURE 9
Preliminary experimental validation of PTGDS and PTGDR Characteristics in tumor and normal tissues (n = 5). (A) The mRNA relative expression
levels in LUAD samples. Representative images of multiplex immunofluorescence staining for (B) α-sma + PTGDS + fibroblasts. (C) CD56+ PTGDR + NK
cells. (D) CD8+ PTGDR + T cells. The relative fluorescence intensity for α-SMA and PTGDS in fibroblasts, CD56 and PTGDR in NK cells, and CD8 and
PTGDR in T cells are presented to the right of the respective images. All significance levels, determined using the two-sided t-test, are indicated by
adjusted p-values: *p < 0.05 and NS. > 0.05.
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showed significant differences in sensitivity across the three datasets,
which are as follows: SB216763, KU-55933, NU7441,
Doramapimod, AZD8055, GSK269962A, Ribociclib, AZD6482,
BMS-754807, and JQ1 (Figure 8H; Supplementary Table S11).
Moreover, the predicted IC50 values for these drugs showed a
decreasing trend as the risk score decreased, indicating that
higher risk scores were associated with lower drug sensitivity.
This further underscores that our PGD2 signaling axis risk model
not only predicts prognostic risk but also facilitates the distinction
between hot and cold tumors (which implies prognostic efficacy),
and may provide valuable insights for treatment guidance regarding
the ten drugs listed above.

Validation expression levels of PTGDS and
PTGDR in LUAD samples

To confirm the expression patterns of PTGDS and PTGDR in
tumor and normal tissues, we conducted a series of preliminary
experiments using five pairs of LUAD tumor and distant normal
lung tissues. The RT-qPCR results showed that PTGDS and PTGDR
mRNA levels were lower in tumor tissues than in normal tissues
(Figure 9A). PTGDS mRNA was significantly reduced (*p < 0.05),
while PTGDRmRNAwas reduced but not significantly (NS., p > 0.05).
To further validate these two genes at the protein level, we performed
multiplex immunofluorescence staining on tissue samples (Figures
9B–D). Similarly, we identified both CD56+ NK cells and CD8+
T cells co-expressing PTGDR. The relative fluorescence intensity of
PTGDR in both CD56+ NK cells and CD8+ T cells was lower in tumor
tissues compared to normal tissues (Figures 9C,D; p < 0.05).
Collectively, these findings suggest that both PTGDS and PTGDR
are downregulated in LUAD tumor tissues, with their expression
patterns further substantiated in corresponding cell types.

Discussion

Tumor metabolism and its role in the tumor microenvironment
(TME) have drawn significant attention in cancer research (Mao et al.,
2024; Nong et al., 2023; Park et al., 2020), yet the mechanisms of
metabolite-mediated intercellular communication remain poorly
understood. Advances in single-cell transcriptomic-based metabolism
inference tools, now offer opportunities to explore these interactions.
Building on this progress, our study investigates PGD2 as a key
mediator of intercellular communication in LUAD, highlighting its
signaling axis’s role in tumor immunity and therapeutic potential.
Meanwhile, we also offered insights for future research on the
discovery and validation of metabolite biomarkers.

Prostaglandins (PGs) are widely recognized as key mediators in
cancer progression, with PGE2 often cited as a prototypical tumor-
promoting marker (Santiso et al., 2024). In contrast,
PGD2 distinguishes itself within the prostaglandin family
through its tumor-suppressive properties, with PTGDS/
PGD2 playing important roles in various cancer types and
showing tissue specificity in function (Pan et al., 2021; Zhang
et al., 2024; Shyu et al., 2013; Wu et al., 2012; Murata et al.,
2011). Despite PGD2 being identified as a tumor-suppressive
factor by numerous studies, most research has been based on

in vitro experiments, with the underlying mechanisms remaining
insufficiently explored (Iwanaga et al., 2014; Zhang et al., 2024;
Omori et al., 2018). Additionally, most studies focus on the
functional exploration of the PGD2/PTGDR2 receptor-ligand
interactions (Tian et al., 2024). In lung cancer research, the
tumor-suppressive role of PGD2 was proposed early on
(McLemore et al., 1988). The vitro studies have shown that mast
cell-derived PGD2 regulates the tumor microenvironment by
limiting excessive responses to vascular permeability and TNF-α
production (Murata et al., 2011). Previous studies have shown that
L-PGDS (encoded by PTGDS) decreases proportionally with tumor
progression (Ragolia et al., 2010). Furthermore, it has been
demonstrated that exogenous L-PGDS can inhibit excessive
proliferation and PDGF-stimulated migration of A549 cells.
However, the full understanding of how PGD2 is produced and
interacts with the LUAD immune microenvironment remains
unclear. In this study, we identied and further explored the role
of PGD2 and its intercellular signaling axis within TME of LUAD.
Our findings suggest that PGD2 acts as a key metabolite, primarily
produced by PGD2 synthase (PTGDS) in fibroblasts, mast cells and
pDCs, influencing other cells through its signaling via the
PGD2 receptor PTGDR on NK and T cells and the SLCO2A1
transporter on endothelial cells. Finally, it is confirmed that the
expression of PTGDS in fibroblasts and PTGDR in NK/T cells was
downregulated at both the mRNA and protein levels in
retrospectively collected paired tumor samples. Our study
highlights the significance of PGD2 signaling, revealing its
potential as a novel metabolic signaling axis that influences
immune modulation within the TME of LUAD. These results
reveal an important link between metabolic pathways and
immune modulation in LUAD, offering new insights into the
complexity of tumor-immune interactions.

In our analysis, we observed that the sender cells of PGD2 are
primarily mast cells through HTGDS, which is consistent with
previous studies (Murata et al., 2011). Furthermore, we identified
other cell populations producing PGD2 through expressing PTGDS,
including fibroblasts and pDCs and some populations of NK/T cells.
Additionally, in brain metastasis patients, oligodendrocyte cells also
produce PGD2 through the expression of PTGDS. On the other
hand, studies on the receiver cells and sensors of PGD2 signals
remain limited. We propose that CX3CR1+ NK/T cells may regulate
cytotoxicity via the PGD2~PTGDR autocrine pathway, contributing
to antitumor effects. Meanwhile, KLRC2+ NK cells, DNAJB1+ NK
cells and CD8+ MAIT cells participate in PGD2 paracrine signaling
through PTGDR recepter. Although we hypothesize that PGD2 may
also assist lactate efflux via SLCO2A1 on endothelial cells, this
assumption lacks more direct evidence. Overall, these findings
largely extends the current research on PGD2 signaling
aixs in LUAD.

Previous studies have highlighted that PGD2 plays a crucial role
in modulating immune responses (Joo and Sadikot, 2012). Our
research further elucidates its regulatory signaling axis, at least in
LUAD patients. A key finding is the involvement of CX3CR1+ NK/
T cells in the PGD2-PTGDR autocrine pathway. CX3CR1, the
receptor for CX3CL1 (fractalkine), is expressed by various cell
types such as CD8+ T cells and NK cells (Lysaght, 2020).
Although myeloid cells expression of CX3CL1:CX3CR1 may be
linked to tumor-promoting activities such as enhanced growth and
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migration in lung cancer (Okuma et al., 2017; Schmall et al., 2015),
CX3CL1:CX3CR1 expression in bulk level is a positive prognostic
factor in patients with LUAD (Liu et al., 2019). Our research
highlights that CX3CR1+ NK/T cells, which exhibit strong
cytotoxicity, are specifically involved in the PGD2 ~ PTGDR
autocrine pathway. This pathway maybe crucial for their immune
functions and cytotoxic potential, underlining the complex role of
PGD2 in LUAD tumor immunity.

In addition, we found receptor cells,KLRC2+ NK cells, DNAJB1+
NK cells and CD8+ MAIT cells, involved in PGD2 paracrine signaling
pathway. According to other studiesthese 3 cell types also play anti-
tumor roles within the tumor microenvironment. KLRC2+ NK cells are
considered adaptive NK cells which lose the ability to kill autologous and
activated immune cells (Schlums et al., 2015), while DNAJB1+ NK cells
is a cell type with high stress scores (Tang et al., 2023). CD8+MAIT cells
have dual functions in promoting inflammation and mediating anti-
tumor responses (Yigit et al., 2024). Overall, these receptor cells involved
in paracrine signaling exert weaker tumor-killing effects than CX3CR1+
NK/T cells, and they may exhibit more complex and diverse regulatory.
Our study support these, for example, the cytotoxicity-related gene
expression in CD8+ T1 (CD8+MAIT cells) is far weaker than in CD8+
T1 (CX3CR1+ T cells). Therefore, we infer that the self-secretory ability
of PGD2 is strongly correlated with the cytotoxicity and tumor-killing
capacity of CX3CR1+ NK/T cells. Additionally, some NK/T cells that
lack self-secretory ability still express the PTGDR receptor, suggesting
that other cells or exogenous PGD2 could enhance the anti-tumor
activity of these cells in clinical settings.

Furthermore, the validation of PGD2’s role in LUAD using bulk
RNA-seq datasets strengthens the generalizability of our findings.
The presence of genes expression signatures across independent
datasets suggests that PGD2 signaling axis might serve as a
biomarker for immune-related responses in LUAD, providing a
potential tool for both prognosis and therapeutic monitoring. As
immune checkpoint inhibitors have shown limited success in certain
subtypes of LUAD, strategies aimed at modulating PGD2 signaling
could offer an alternative or complementary approach to
overcoming immune resistance.

Our study has several limitations. Firstly, the estimation of
metabolite abundance in our research is based on single-cell
RNA expression, which is constrained by the limitations of
current metabolomics technologies; further validation using
metabolomics data could strengthen these findings. Secondly, the
hypothesis of PGD2 coupling with lactate efflux need more robust
experimental and data support. Lastly, our model did not exhibit
outstanding performance across all validation datasets, likely due to
batch effects in bulk RNA data.

In this study, we identified PGD2 as a critical metabolite within
the LUAD tumor microenvironment, facilitating intercellular
communication through its signaling axes, PGD2~SLCO2A1 and
PGD2~PTGDR. The analysis revealed that PGD2 mediates its
tumor-suppressive effects by activating immune cells, particularly
NK and T cells, which could be important for modulating anti-
tumor immune responses. Our findings underscore the significance
of PGD2 in regulating metabolic pathways and immune interactions
in LUAD, highlighting its potential as a biomarker for prognosis and
a target for future combination therapies. These findings highlight
that PGD2 and its signaling axis contribute to tumor-suppressive
and anti-inflammatory effects in LUAD tumor immunity, with

potential applications in improving prognosis management and
informing therapy decisions.
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