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A decade ago, independent mechanistic and descriptive epigenomics data
demonstrated for the first time that vascular DNA hypermethylation is a
landmark of and causal factor in human and murine atherosclerosis. Since
then, a flurry of converging evidence has assigned a prominent role to
vascular DNA hypermethylation across the natural history of cardiovascular
disease (CVD), from the exposure to risk factors, to the onset and progression
of the atheroma. DNA hypermethylation is induced by and mediates the
metabolic outcomes of high-fat diets and CVD risk-enhancing lipids in several
models. Early-stage atheroma DNA is hypermethylated compared to normal
adjacent tissue, and that trend is amplified as the atheroma progresses. That
evidence has resulted in a strong interest for epigenetic drugs in CVD. Crucially,
the DNA methylation inhibitor azacytidine has been singled out as a potent
guardian of the contractile, anti-atherogenic phenotype of smooth muscle cells
(SMC). Those findings are gaining relevance, as the antiatherogenic effects of the
anticancer drugs azacytidine and decitabine fit into the recently revived
hypothesis that the atheroma is a SMC-driven cancer-like mass. Finally, this
10-year anniversary has beenmarked by the first report that nanoparticles loaded
with a DNA methyltransferase inhibitor drug are anti-inflammatory and inhibit
murine atherosclerosis. Exciting work lies ahead to assess whether DNA
hypermethylation is a practical and effective target to prevent or cure human
atherosclerosis.

KEYWORDS

atherosclerosis, epigenetic drug, DNA hypermethylation, epigenetics, therapy

Introduction

This narrative review marks a decade of research that has established DNA
hypermethylation as one of the central concepts in the epigenetics of the atheroma. The use
of the general term “DNA hypermethylation” is justified by the fact that the data presented here
have been obtained with biochemical inhibition or manipulation of the expression of DNA
methyltransferases, rather than by targeting specific loci. A similar non-gene-specific strategy has
been adopted in the CVD field by targeting transcription-permissive chromatin with inhibitors
of the bromodomain and extraterminal-containing protein family (Borck et al., 2020). This “bull
in a china shop” approach is not oblivious of the between-tissue and between-cell mosaicism of
the DNA methylome within multicellular organisms, a phenomenon observed 5 decades ago
(Waalwijk and Flavell, 1978). In the atheroma, epigenetic profiles are being discovered, that are
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specific for inflammatory, smooth muscle (SMC) and endothelial cells,
and contribute to the transcriptional patterns that support the respective
cell type’s function in atherosclerosis [see (Aziz et al., 2024) for a recent
thorough review of the topic]. That rich cellular tapestry is being
described in high detail by single cell transcriptomics and chromatin
accessibility mapping. The number of identified cell types in the human
atheroma is currently up to 25 (Örd et al., 2021; Turner et al., 2022;
Zhang et al., 2022; Bashore et al., 2024). In particular, those studies have
identified a plethora of SMC phenotypes including osteoblast-like, foam
cell-like, fibromyoblast, proliferating and migrating. The topic has been
extensively reviewed (Lambert and Jørgensen, 2024). Importantly, that
new information enriches the traditional binary view of SMC
phenotypes as either “synthetic” or “contractile” - proatherogenic or
protective, respectively (Stavenow, 1984). At any rate, I will refer to the
traditional SMC classification to reflect the content of the cited
literature.

DNA hypermethylation first emerged as an alternative to the
opposite view of the atheroma’s epigenetic landscape, i.e., genome-
wide loss of DNA methylation. As time progressed, a flurry of
experimental and observational data have indicated that
hypermethylation of a set of still incompletely identified loci
plays a pivotal role in atherosclerosis. Marking a perspective-
looking end of this decade, the first description of a nanoparticle-
based strategy to bring the atheroma DNA methylation down to
physiological levels has been published in 2024 (Márquez-Sánchez
et al., 2024).

I will concentrate on atheroma DNA, therefore studies
focused on the whole blood DNA methylome, which represent
~95% of publications in cardiovascular epigenetics, will not be
included in this review (Krolevets et al., 2023). Although I will
focus on the last decade, reference to earlier work will provide the
necessary historical context. A succinct timeline of the advances
in the field is shown in Figure 1. I apologize for not including
several important studies in that figure due to space limitations.
Another necessary omission will by citing excellent work focused
on gene-specific methylation.

Is it DNA hypomethylation or
hypermethylation?

Seminal studies in the 80 s initiated an intense effort to
understand the DNA methylome of cancer, undoubtedly the best
epigenetically understood disease (Greger et al., 1989). The more
recent birth of cardiovascular epigenetics was marked by the
observation that DNA hypomethylation was a feature of
atherosclerosis: HPLC-based direct determination of 5-
methylcytosine (5mdC) - the main product of DNA methylation
in mammals - revealed a decrease in genome-wide DNA
methylation in rabbit, mouse and human atherosclerotic arteries
compared to non-atherosclerotic controls (Laukkanen et al., 1999;
Hiltunen et al., 2002). Furthermore, those studies determined that
the DNA of synthetic SMC was hypomethylated relative to the
contractile counterparts. Those findings were independently
confirmed using a range of techniques including nascent
epigenomics approaches. A study based on sequencing of DNA
fragments generated by methylation-sensitive amplification
polymorphism analysis validated by biochemical assays,
determined that the DNA of atherosclerotic murine aortas was
hypomethylated compared to control mice (Lund et al., 2004).
Genes and repeated elements were found to be hypomethylated,
and the methylomes of the aortas of atherosclerotic and control mice
diverged before any atheroma was histologically detectable. Later, a
microarray-based interrogation of human CpG islands (CGI),
reached comparable conclusions. CGI are relatively short
genomic regions that are usually spared from the high levels of
methylation found throughout the genome, and map to functional
elements including housekeeping genes promoters (Bird et al.,
1985). The study demonstrated that a significant subset of the
few normally hypermethylated CGI in the vascular tissue were
demethylated in coronary atherosclerosis in humans (Castillo-
Díaz et al., 2010). Furthermore, DNA hypomethylation was
detected of atherosclerotic femoral arteries relative to control
mammary counterparts, and in atherosclerotic compared to

FIGURE 1
Timetable of relevant findings. Studies showing specific advances for the first time are shown. Positions of years on the time axis are not in scale.
CVD, cardiovascular disease; DNMT, DNA methyltransferase. HFD, high-fat diet.

Frontiers in Pharmacology frontiersin.org02

Zaina 10.3389/fphar.2025.1562674

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1562674


healthy carotid arteries obtained from different human donors
(Aavik et al., 2015; Greißel et al., 2015).

Almost concomitantly, data reaching opposite conclusions
began to emerge. A study of the human lactate transporter
monocarboxylate transporter 3 (MCT3) gene demonstrated that
the DNAmethyltransferase inhibitor azacytidine could lowerMCT3
promoter methylation and restore lactate intake to normal levels in
human synthetic SMC (Zhu et al., 2005). This was a landmark study
as it hinted that an unspecific inhibitor of the DNA methylation
machinery could be anti-atherogenic, implying that
hypermethylation of several loci in addition to the MCT3
promoter was a causal factor in atherogenesis. In other words,
the study for the first time defined both a potential epigenetic
target and a simple way to hit that target to treat atherosclerosis.
In 2014, the balance was decisively tilted towards DNA
hypermethylation by independent experimental and descriptive
studies. Disturbed blood flow induced the expression of DNA
methyltransferase 1 (DNMT1) in the endothelium, and
azacytidine reduced endothelial inflammation and atheroma size
in mice (Dunn et al., 2014). Those data were replicated in human
and swine counterparts (Jiang et al., 2014). The anti-inflammatory
and anti-atherogenic effects of azacytidine were confirmed in a
second mouse model, where the impact of that drug on macrophage
migration and adhesion were detailed (Cao et al., 2014). Those
studies also identified potential target genes. In addition, the advent
of affordable DNA methylation microarrays and whole-genome
sequencing allowed high-coverage epigenomics of atherosclerosis.
The comparison of same-donor (paired) human vascular samples
revealed that the DNA of the portion of the aorta occupied by the
atheroma was hypermethylated across the whole genome relative to
the adjacent histologically normal aortic tissue, independent of
lesion stage (Zaina et al., 2014). The aorta data were validated in
human carotid artery lesions. Genes targeted for hypermethylation
were involved in SMC biology. Several of those loci replicated the
findings of an independent DNA methylation microarray-based
comparison of human atherosclerotic arteries with disease-free
counterparts and veins (Nazarenko et al., 2011).

A flurry of confirming evidence across cardiovascular
pathologies and models was published in the following years.
DNA hypermethylation increased with lesion progression and
targeted loci mostly involved in macrophage biology in humans
(Valencia-Morales et al., 2015). Low expression of selected
enzymes that drive DNA demethylation was detected in
human peripheral artery disease and transplant vasculopathy
compared to the respective controls (Zhao et al., 2018;
Ostriker et al., 2021). DNA hypermethylation accompanied
the development of the murine arterial wall neointima, a
partial but useful surrogate of atherosclerosis (Li et al., 2020;
Wang et al., 2020). Experimental studies consistently showed that
the biochemical inhibition of DNA methylation or
overexpression of enzymes involved in DNA demethylation
mitigate atherosclerosis in animal models (Peng et al., 2016;
Zhuang et al., 2017; Qu et al., 2022; Zhu et al., 2022).
Furthermore, knocking out adenosine kinase in SMC mitigates
aortic inflammation and induces a decrease in the availability of
methyl group donors in mice (Xu et al., 2024). Additionally,
azacytidine converts CD4+ T cells into regulatory T cells that
inhibit atherosclerosis in a mouse model (Zhu et al., 2024). One

of the most consequent pieces of evidence for cardiovascular
epigenetics is the outcome of a large-scale (>3,000 compounds)
molecular screen aiming at identifying novel antiatherogenic
drugs in primary rat aortic SMC. Notably, the study singled
out azacytidine as a promoter of the “contractile” phenotype of
SMC. The mechanistic analysis of the response to azacytidine in
SMC revealed that the maintenance of sustained expression of the
phosphatase and tensin homolog - known as PTEN - was the
underlying molecular phenomenon (Strand et al., 2020).
Additionally, the study independently replicated several of the
previously reported anti-inflammatory and anti-atherogenic
responses elicited by azacytidine.

The controversy whether the DNA of the atheroma is
hypomethylated or hypermethylated may have been settled,
but its very existence begs for explanations. An important
feature of the early studies of the DNA methylome of
atherosclerosis is that diseased and control samples were
obtained from different individuals or different vascular beds.
It is therefore conceivable that the initial effects of the exposure to
risk factors results in DNA hypomethylation - detectable in the
normal portions of the arterial wall - and that DNA
hypermethylation is imposed on the diseased portions of the
same artery, but not to a sufficient extent to return to the
physiological levels of DNA methylation of the arterial wall
unexposed to risk factors. That model would reconcile inter-
individual DNA hypomethylation and intra-vascular bed DNA
hypermethylation; nonetheless, it is not compatible with the
documented effects of cardiovascular risk factors on DNA
methylation (see below). Rather, I submit that genetics and
tissue-specificity are likely explanations. DNA methylation is
under significant genetic control (Kerkel et al., 2008;
Gunasekara et al., 2023). Also, it has been known for decades
that the susceptibility to atherosclerosis differs across vascular
tissue types and is associated with tissue-specific transcriptional
and epigenetic profiles (Nazarenko et al., 2011; Brown, 2024).
Interestingly, the human oestrogen receptor beta gene (ESR2)
seems to be an exception in the described “unpaired versus
paired” DNA methylation divergence. The methylation of
ESR2 promoter changed in the same direction in across-
vasculature type (unpaired) or intra-individual same-vascular
bed (paired) comparisons, suggesting a strictly atherosclerosis-
specific epigenetic profile, irrespective of intra-individual or
inter-individual epigenetic or genetic variation (Kim et al.,
2007). It remains to be determined how many genes share
that profile.

Before the atheroma: cardiovascular
risk factors and DNA hypermethylation

The literature mentioned in the previous section has uncovered
epigenetic changes that were present in low histological grade lesions
and therefore potentially represented early events that could
predispose to atherosclerosis in humans (Zaina et al., 2014).
Indeed, accumulating evidence has showed that DNA
hypermethylation is imposed by cardiovascular risk factors before
the onset of the atheroma. High-fat diets - prominent drivers of
cardiovascular risk - induced DNA hypermethylation in a range of
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tissues - the liver, placenta, uterus, skeletal muscle, oocyte - in
humans and rodents (Jacobsen et al., 2012; Yoo et al., 2012; Amaral
et al., 2014; Yu et al., 2015; Seki et al., 2017; Ramaiyan and Talahalli,
2018; Bozdemir et al., 2024; Tang et al., 2024). Importantly, high-fat
diet during the pre-pubertal period induces hepatic global DNA
hypermethylation that resists subsequent feeding with control diet
in a rat model, suggesting persistent epigenetic effects (Aguilar-
Lozano et al., 2025). Lipids and fatty acids can affect either side of the
same coin by increasing de novo DNA methylation and inhibiting
the DNA demethylation pathway: excess dietary fat increased the
expression of DNAmethyltransferase in the murine ovary, testis and
liver, while decreasing 5-hydroxy-methylcytosine (5hmdC) in mice
(Pant et al., 2023; Sukur et al., 2023; Vasishta et al., 2024; Yang et al.,
2024; Zhao et al., 2024). 5hmdC is the product of 5mdC oxidation by
the ten-eleven translocation (TET) dioxygenases, and is an
intermediate in the DNA demethylation pathway. Therefore, a
decrease of 5hmdC is interpreted as stabilization of DNA’s
methylated state. These effects have been observed also in a rat
model of paternal transmission of high-fat diet-induced phenotypes
(Haberman et al., 2024). Consistently, mutations of the member two
of the TET family gene (TET2) observed in clonal haematopoiesis of
indeterminate potential (CHIP) are associated with human
atherosclerosis and respond to antiinflammatory therapy, whereas
the outcome of DNAmethyltransferase CHIP is less clear (Svensson
et al., 2022). From a functional viewpoint, liver-specific loss of DNA
methyltransferase activity counteracted the high-fat diet-induced
glucose intolerance in mice (Yao et al., 2024). Also, the DNA
methyltransferase inhibitor decitabine, an analogue of
azacytidine, counteracted the metabolic effects of a high-fat diet
in the skeletal muscle and liver in mice (Flores-Sierra et al., 2024).
Those data were echoed by the reduction of liver fat content induced
by azacytidine in a mouse model of exposure to high-fat diet and
maternal overnutrition (Cheng et al., 2024). Comparable responses
were obtained in experimental studies in human adipose tissue or
cultured cells exposed to atherogenic lipoproteins or specific fatty
acids (Rangel-Salazar et al., 2011; Silva-Martínez et al., 2016;
Perfilyev et al., 2017). As caveat, recent evidence that loss of
DNA methyltransferase activity in hematopoietic cells
exacerbated the effects of a high-fat diet in mice, suggests that
cell-specificity adds a layer of complexity in the interaction between
the diet and the DNAmethylome (Reyes et al., 2024). As for obesity,
adipose tissue mesenchymal cells had net lower 5hmdC in human
subjects with high BMI (Eirin et al., 2024). Furthermore, a ceramide
cocktail reflecting the counterpart observed in humans with obesity
induced DNA hypermethylation in cultured human THP-1
monocytes (Castro et al., 2019). Related to diabetes as
cardiovascular risk, a high-glucose culture medium increases
DNA methyltransferase expression in human umbilical vein
endothelial cells (Vasishta et al., 2024). A study conducted in
human aortic endothelial cells revealed robust responses to the
challenge with increasing doses of glucose. Although CpG
hypomethylation and hypermethylation were observed in
comparable proportions, hypermethylation of the promoter of
the vascular endothelial growth factor gene, a regulator of
endothelial function, was observed (Pepin et al., 2021).
Epidemiologically, CVD risk was associated with DNA
hypermethylation in humans (Carla Silva Soares et al., 2020;
Tsuboi et al., 2021; Schiano et al., 2022).

How similar are the atheroma and cancer?

A striking aspect of the aforementioned evidence is that azacytidine
and decitabine - two successful anti-tumour drugs - are anti-
atherogenic. That notion is relevant in the light of the long history
and recent revival of the hypothesis that the atherosclerotic lesion is a
benign tumour-like mass. The idea is rooted in evidence published in
the 70s that the human atheroma originates from clonal proliferation of
SMC (Benditt and Benditt, 1973). The case for the epidemiological and
functional overlap between the two diseases has been insightfully
presented, and a common DNA methylation signature of CVD and
cancer has been recently reported (Bell and Leeper, 2022; Domingo-
Relloso et al., 2024). Accordingly, very recent work based on extensive
multidisciplinary evidence has claimed that the atheroma is a tumour-
like mass of proliferating SMC in humans and mice (Pan et al., 2024).
The study also demonstrated the anti-atherogenic properties of yet
another anti-cancer drug, niraparib. Incidentally, the anti-atherogenic
activity of azacytidine or decitabine is generally overlooked in the
literature. Although fascinating, the view of the atheroma as a
tumour-like mass is challenged by inconsistent evidence. Pioneering
epidemiological data showed that malignant tumours protect against
atherosclerosis, and cardiovascular and cancer risk were inversely
correlated at least in selected patient strata, contradicting some
human studies (Wanscher et al., 1951; Bell and Leeper, 2022; Howe
et al., 2022). Finally, inflammation is an often-cited link between cancer
and atherosclerosis, yet it is involved in a plethora of different diseases
and physiological responses (Furman et al., 2019; Cau and Saba, 2024).

Those inconsistencies notwithstanding, some valuable
conclusions can be drawn from the clear anti-atherogenic effects
of anti-cancer DNA methyltransferase inhibitor drugs. In general,
human cancer DNA undergoes global hypomethylation and local
hypermethylation notably in promoters of tumour suppressor genes
(Kulis and Esteller, 2010). By contrast, genome-wide
hypermethylation predominates in the human atheroma (Zaina
et al., 2014). The available evidence suggests that
hypermethylation of selected loci is not only mechanistically
relevant in both diseases, but also a soft target for DNA
methyltransferase inhibitor drugs, in contrast with the
“passenger” nature of the surrounding DNA methylome
(Figure 2). That interpretation is consistent with the non-random
effects of azacytidine and decitabine, and the unintuitive strategy of
curing cancer by inducing further hypomethylation of an already
hypomethylated genome (Hagemann et al., 2011).

Perspectives: therapeutic opportunities

Is DNA hypermethylation a worth pursuing therapeutic
target to prevent or cure atherosclerosis? Cancer is again an
important conceptual reference. The dream of cancer researchers
is to achieve the erasure of the tumour mass by extensive cell
death, but their cardiovascular colleagues have different
concerns. Efficient cell death would likely lead to atheroma
instability and acceleration of the very clinical complications
that any cardiovascular therapy aims to avoid. The
administration of azacytidine or decitabine - both nucleotide
analogues - would therefore be counterproductive, as those drugs
induce genomic instability and apoptosis as consequence of their
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incorporation into DNA (Hossain et al., 1997). Additionally, the
significant side-effects of chemotherapy are a reasonable trade-
off for cancer patients, but not for the bulk of cardiovascular
counterparts. As further caveat, decitabine improves skeletal
muscle mitochondrial function and hepatic steatosis, but
induces adipose insulin resistance in high-fat diet-fed mice
(Flores-Sierra et al., 2024). Yet, a carefully designed epigenetic
intervention may offer a unique advantage, as it can reset the
transcriptional program to force the reversion to a physiological
phenotype, without any cell death. It is therefore imperative to
implement drug delivery systems that leave the epigenome of
non-target tissues unscathed. Excitingly, the last few years have
witnessed promising advances in drug delivery to the vascular
wall. Nanotechnology is the obvious reference, with a plethora of
highly sophisticated carriers now available (Mao et al., 2023). In
2024, the effort to combine DNA methyltransferase inhibition
and nanotechnology has walked a first step. Nanoparticles that
were functionalized to bind to macrophage scavenger receptors,
and loaded with the DNA methyltransferase inhibitor SGI-1027
lowered inflammation in cell culture and decreased
atherosclerosis in a mouse model (Márquez-Sánchez et al.,
2024). SGI-1027 is a non-nucleotide analogue; therefore it
does not integrate into DNA and is less likely to promote the
negative side effects of azacytidine or decitabine. Remarkably,
RG108, another non-nucleotide DNA methylation inhibitor,
lowers inflammation in a murine acute kidney injury model
(Kong et al., 2024). A separate study showed that berberine-
loaded nanoparticles slowed atherosclerosis in mice (Wu et al.,
2024). The plant alkaloid berberine has anti-cancer activity and

can inhibit DNA methyltransferase expression in human
cultured cancer cells (Qing et al., 2014). Further research will
show whether this budding area of experimental cardiovascular
medicine will grow into a success for patients.
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FIGURE 2
Schematic view of the genomic effects of DNA methyltransferase inhibitor drugs (DNAmi) in cancer and atherosclerosis. The horizontal black line
represents the genome. Black and white lollipops indicate methylated and unmethylated sites, respectively. Boxes indicate the respective target gene
type and their promoter methylation status. In cancer, the DNAmi azacytidine or decitabine target the hypermethylated promoters of tumour suppressor
genes. The hypomethylation of the rest of the genome is functionally less relevant than local hypermethylation, hence the “passenger” term. In
atherosclerosis, DNAmi improve SMC phenotype and inflammation by targeting anti-atherogenic gene promoters. The degree of selectivity and the
effects of DNAmi on the background hypermethylated genome are poorly understood. Examples of likely anti-atherogenic targets are listed in Dunn
et al., 2014; Cao et al., 2014. Mϕ and SMC, macrophage and smooth muscle cells, respectively.
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