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Introduction:Understanding themechanisms of drug-induced bone remodeling
is critical for optimizing therapeutic interventions and minimizing adverse effects
in bone health management. Bone remodeling is a highly dynamic process that
involves the intricate interplay between osteoblasts, osteoclasts, and osteocytes,
regulated by a complex network of signaling pathways and molecular
interactions. Traditional experimental and computational approaches often fail
to capture this dynamic and multi-scale nature, particularly when influenced by
pharmacological agents, which can have both therapeutic and adverse effects.

Methods: In this work, we present a novel deep learning-based framework for
action recognition, specifically designed to analyze drug-induced bone
remodeling mechanisms. Our framework leverages graph neural networks
(GNNs) to model the spatial and temporal dependencies of multi-scale
biological data, combined with a dynamic signal propagation model to identify
key molecular interactions driving bone remodeling. A predictive
pharmacological interaction model is integrated to quantify drug-target
interactions, assess their systemic impacts, and simulate off-target effects.
This approach also evaluates combinatorial drug effects, offering insights into
the synergistic or antagonistic behaviors of multiple agents.

Results: By incorporating these features, our method provides a comprehensive
view of drug-induced changes, enabling accurate prediction of their effects on
bone formation and resorption pathways.

Discussion: Experimental results highlight the model’s potential to advance
precision medicine, enabling the development of more effective and safer
therapeutic strategies for managing bone health.
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1 Introduction

Understanding the mechanisms of drug-induced bone remodeling is a critical area in
medical research, with applications in pharmacology, orthopedics, and regenerative
medicine (Chen Y. et al., 2021). Bone remodeling, a dynamic process involving bone
resorption by osteoclasts and bone formation by osteoblasts, is essential for maintaining
bone health and repairing damage (Duan et al., 2021). Drugs like bisphosphonates,
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denosumab, and anabolic agents influence this process, often in
complex and nuanced ways that require advanced methods for their
analysis (Liu et al., 2020). Traditional approaches for studying bone
remodeling mechanisms, such as histology and biochemical assays,
while valuable, are often limited in capturing dynamic, multi-scale
interactions over time (Cheng et al., 2020b). The advent of action
recognition techniques in deep learning has the potential to
transform this field by analyzing cellular and molecular actions
involved in bone remodeling through imaging data, simulation
outputs, and biological signal analysis (Zhou et al., 2023). Not
only does this approach enable high-resolution tracking of drug
effects on bone, but it also provides deeper insights into temporal
patterns and causal mechanisms. However, applying action
recognition to such a domain poses challenges, including the
need for domain-specific adaptations and the integration of
diverse data types.

Early investigations into drug-induced bone remodeling focused
on simulating biological responses using mathematical frameworks
and structured assumptions derived from empirical observations (Li
et al., 2020). These models aimed to approximate cellular behavior
and tissue-level outcomes under pharmacological influence, often
incorporating biomechanical theories and predefined thresholds for
bone formation or resorption (Morshed et al., 2023). For example,
frameworks such as the Frost model and finite element-based
simulations helped illustrate how mechanical stress and drug
exposure jointly influence bone turnover (Perrett et al., 2021).
While grounded in biological understanding, these simulations
often lacked adaptability to heterogeneous data and struggled to
incorporate variability across patient populations or imaging
modalities (Yang et al., 2020; gun Chi et al., 2022). With the
increasing availability of biomedical imaging and quantitative
data, analytical strategies began to incorporate more flexible
pattern recognition techniques capable of adapting to diverse
inputs (Wang et al., 2020). Methods emerged to classify bone
tissue states and monitor treatment response using statistical
models trained on structural and textural imaging features (Pan
et al., 2022). Algorithms evaluated image characteristics such as
trabecular orientation, porosity, and mineral density distribution to
distinguish between different drug effects (Song et al., 2021; Chen Z.
et al., 2021). Although this approach improved generalizability
compared to earlier models, it often depended on manually
designed features and offered limited insight into evolving
temporal dynamics or spatial correlations within the data (Ye
et al., 2020). More recently, advances in computational analysis
have introduced comprehensive systems capable of learning directly
from imaging sequences and capturing the complexity of biological
interactions over time (Sun et al., 2020). Neural architectures such as
convolutional models have demonstrated strong performance in
extracting relevant features from micro-CT scans and histological
data, while temporal models excel at characterizing sequential
changes in cell behavior (Zhang et al., 2020; Duan et al., 2022).
These techniques have enabled more detailed examination of drug
effects on cellular interactions, such as osteoblast activity during
bone formation or osteoclast behavior in resorption phases (Lin
et al., 2020; Song et al., 2020). Attention-based models further
enhance interpretability by highlighting regions and time points
critical to remodeling processes, allowing for improved
understanding of therapeutic outcomes while navigating

challenges such as data scarcity and variability in imaging
resolution (Munro and Damen, 2020; Wang et al., 2022).

Bone remodeling is a continuous process regulated by the
coordinated actions of osteoblasts, which form bone, and
osteoclasts, which resorb bone (Meng et al., 2020). Drug-induced
modifications to this process are central to understanding the
therapeutic and side effects of various treatments, such as
bisphosphonates, anabolic agents, and anti-inflammatory drugs
(Truong et al., 2022). Deep learning has been instrumental in
analyzing the effects of these drugs on bone remodeling by
quantifying cellular and structural changes in experimental data.
For example, CNNs have been used to analyze histological images,
identifying drug-induced alterations in trabecular and cortical bone
microarchitecture (Bao et al., 2021). Time-series models, such as
RNNs and LSTMs, have been applied to study temporal patterns of
cellular activity during drug exposure. Multi-modal frameworks
combining imaging and omics data enable a holistic understanding
of how drugs influence bone remodeling at both cellular and
molecular levels. These approaches are critical for identifying off-
target effects and optimizing therapeutic interventions (Cheng et al.,
2020a). Despite significant advancements, challenges remain in
integrating heterogeneous datasets and ensuring the robustness of
models across different experimental conditions. Research is ongoing
to incorporate explainable AI techniques to improve the
interpretability of deep learning models in this domain.

Multi-modal data fusion is increasingly recognized as a critical
approach for advancing the analysis of drug-induced bone remodeling
mechanisms (Zhang et al., 2011). By integrating imaging data with
molecular and biomechanical datasets, researchers can gain a
comprehensive understanding of drug effects. Advanced deep
learning methods, including multi-stream networks and attention-
based models, enable the effective fusion of heterogeneous data types
(Lin et al., 2024). For instance, models combining spatial imaging data
with temporal biochemical measurements have demonstrated
improved accuracy in identifying drug-induced anomalies in bone
remodeling. Generative adversarial networks (GANs) and variational
autoencoders (VAEs) have also been employed to enhance data
quality by generating synthetic samples or denoising imaging data
(Ye et al., 2024). Transformer-based models have been used to learn
complex relationships between modalities, such as the interplay
between drug concentrations, gene expression profiles, and bone
structural changes. These approaches address the limitations of
single-modality analysis, such as incomplete or noisy data, and
provide richer insights into the mechanisms of drug action (Lu
et al., 2024). Achieving seamless integration of multi-modal data
remains challenging due to differences in data resolution, scale, and
format. Ongoing research focuses on improving alignment techniques
and developing scalable architectures to handle large, multi-modal
biomedical datasets.

To address the limitations of existing methods, we propose a
novel deep learning-based action recognition framework tailored for
analyzing drug-induced bone remodeling mechanisms. This
framework integrates spatiotemporal analysis, multi-modal
fusion, and interpretability to provide a comprehensive
understanding of cellular and molecular actions. Specifically, the
framework employs a combination of 3D-CNNs and transformers
to analyze time-series imaging data, capturing spatial and temporal
patterns of bone remodeling. Multi-modal data from imaging,
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biochemical assays, and simulation outputs are fused using attention
mechanisms, enabling the integration of diverse data sources.
Explainable AI (XAI) techniques are incorporated to enhance
interpretability, ensuring that researchers and clinicians can
understand the causal relationships underlying the detected actions.

• The proposed framework combines 3D-CNNs and
transformers with attention mechanisms to capture
spatiotemporal and contextual information, enabling high-
resolution analysis of drug-induced bone remodeling
mechanisms.

• Themulti-modal fusion approach ensures robust performance
across diverse experimental setups and drug types, while
transfer learning techniques reduce the reliance on large
labeled datasets.

• Preliminary evaluations on bone remodeling datasets
demonstrate that the proposed framework outperforms
state-of-the-art methods in accuracy, robustness, and
interpretability, particularly in scenarios involving complex,
non-linear drug effects.

2 Methods

2.1 Overview

Drug mechanisms refer to the biochemical and physiological
processes by which pharmaceutical agents interact with biological
systems to produce therapeutic or adverse effects. A thorough
understanding of these mechanisms is foundational to
pharmacology, as it reveals how drugs achieve their intended
outcomes and guides the development of novel therapeutics.
These processes are primarily defined by the interactions between
drugs and their molecular targets—such as receptors, enzymes, ion
channels, or nucleic acids—and the subsequent cascade of cellular
and molecular responses. Central to drug action is the principle of
drug-receptor interaction, which typically adheres to the kinetics of
ligand binding. In this context, a drug functions as a ligand that
binds to a specific biological target, often a receptor protein,
inducing a conformational change that either activates or inhibits
the target’s biological function. This interaction is frequently
modeled using classical kinetic frameworks, including the
Langmuir adsorption isotherm and the Hill equation, which
establish quantitative relationships between drug concentration
and biological response.

Drug mechanisms can be classified into several categories based
on their mode of action. Agonists activate their target receptors to
produce a biological response, while antagonists block the receptors,
preventing their activation by endogenous ligands. Other drugs act
as allosteric modulators, which bind to sites other than the active site
to enhance or diminish the receptor’s activity. Some drugs target
enzymes, inhibiting or promoting their catalytic activity, while
others interfere with DNA or RNA synthesis, particularly in the
case of antibiotics or chemotherapeutic agents. This subsection lays
the foundation for understanding the intricate processes underlying
drug action. In Section 2.2, we will formalize these processes using
mathematical models and establish the theoretical framework for
analyzing drug-target interactions and their downstream effects.

Following this, Section 2.3 introduces a novel computational model
that integrates multi-scale data to predict drug efficacy and safety
profiles with higher accuracy. Section 2.4 details innovative
strategies for optimizing drug development, focusing on
personalized medicine and reducing off-target effects.

2.2 Preliminaries

Understanding drug mechanisms requires a systematic
framework to describe how drugs interact with biological
targets and produce therapeutic or adverse effects. This
subsection formalizes the principles of drug action using
mathematical models and symbolic representations to capture
the dynamics of drug-target interactions, dose-response
relationships, and the resulting downstream effects within
biological systems.

The primary interaction between a drug and its target, often a
receptor or enzyme, is typically described using the ligand-binding
model. Let D denote the concentration of the drug and R the
concentration of the target receptor. The binding process can be
represented as:

where DR is the drug-receptor complex, kon is the association
rate constant, and koff is the dissociation rate constant. The
equilibrium dissociation constant, Kd, is defined as Equation 1:

Kd � koff
kon

. (1)

At equilibrium, the fraction of bound receptors, θ, is given by
Equation 2:

heta � DR[ ]
R[ ]total �

D[ ]
D[ ] +Kd

, (2)

where [R]total is the total receptor concentration. This relationship
follows the Langmuir adsorption isotherm, describing the saturation
of receptors as the drug concentration increases.

The pharmacological effect of a drug is typically modeled by the
Hill equation, which generalizes the binding relationship to account
for cooperative interactions among multiple binding sites
Equation 3:

E � Emax · D[ ]n
D[ ]n + ECn

50

, (3)

where: E is the observed effect, - Emax is the maximal effect, - EC50 is
the drug concentration at which 50 - n is the Hill coefficient,
reflecting the degree of cooperativity.

For drugs with n> 1, positive cooperativity is indicated, meaning
the binding of one drug molecule increases the affinity of the
receptor for subsequent molecules. Conversely, n< 1 represents
negative cooperativity.

Drugs can be classified based on their effect on receptor activity:
Drugs that bind to and activate receptors, mimicking the action of
endogenous ligands. The intrinsic activity α of a full agonist is α � 1,
while for partial agonists, 0< α< 1. The effect of an agonist is
modeled as Equation 4:

E � α · Emax · D[ ]
D[ ] + EC50

. (4)
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Drugs that bind to receptors without activating them, thereby
blocking the action of endogenous ligands or agonists. The
inhibition produced by a competitive antagonist is given by the
Cheng-Prusoff equation Equation 5:

IC50 � Ki 1 + A[ ]
Ka

( ), (5)

where IC50 is the concentration of the antagonist that inhibits 50%
of the agonist’s effect, Ki is the antagonist’s dissociation constant,
[A] is the agonist concentration, and Ka is the agonist
dissociation constant.

Allosteric modulators bind to sites other than the active site,
inducing conformational changes that alter receptor activity. The
effect of an allosteric modulator is described as Equation 6:

E � Emax · β · D[ ]
β · D[ ] +Kd

, (6)

where β represents the modulation factor.
For drugs targeting enzymes, the mechanism is characterized by

the inhibition kinetics: Competitive Inhibition Equation 7:

v � Vmax · S[ ]
Km · 1 + I[ ]

Ki
( ) + S[ ], (7)

where v is the reaction velocity, Vmax is the maximal velocity, Km is
the Michaelis constant, [S] is the substrate concentration, [I] is the
inhibitor concentration, and Ki is the inhibitor constant.

Non-Competitive Inhibition Equation 8:

v � Vmax · S[ ]
Km + S[ ] · 1 + I[ ]

Ki
( ). (8)

These equations describe how inhibitors alter enzyme activity,
providing insights into drug efficacy and selectivity.

The relationship between drug dose, concentration, and
effect is further formalized through PK/PD models:
Pharmacokinetics (PK): Describes how drugs are absorbed,
distributed, metabolized, and excreted. The concentration of
the drug in plasma C(t) follows a first-order elimination
model Equation 9:

C t( ) � C0 · e−ket, (9)
where C0 is the initial concentration and ke is the elimination
rate constant.

Pharmacodynamics (PD): Links drug concentration to its effect
using an effect-compartment model Equation 10:

E t( ) � Emax · C t( )
C t( ) + EC50

. (10)

2.3 Predictive pharmacological interaction
model (PPIM)

To enhance the understanding of drug mechanisms and
improve the prediction of both therapeutic outcomes and adverse
effects, we propose a novel computational framework termed the
Predictive Pharmacological Interaction Model (PPIM). PPIM

integrates molecular interaction data, multi-scale biological
networks, and machine learning techniques to comprehensively
model drug-target interactions, downstream signaling cascades,
and their systemic impacts on complex biological systems. This
framework is specifically designed to address critical challenges in
pharmacological modeling, including off-target interactions,
combinatorial drug effects, and patient-specific variability (as
illustrated in Figure 1).

2.3.1 Drug-target interaction module
The interaction between a drug D and a biological target T is

quantified using a deep learning-based affinity prediction model. Let
D be represented as a molecular graph GD � (VD, ED), where VD

are the atoms and ED are the chemical bonds. T is represented as a
sequence ST � {a1, a2, . . . , aL}, where ai represents the i-th amino
acid in the target protein.

We employ graph neural networks (GNNs) to extract features
from the drug graph and sequence encoders to encode the target
sequence Equation 11:

hD � GNN GD;ΘD( ), hT � Transformer ST;ΘT( ), (11)
where hD ∈ Rd1 and hT ∈ Rd2 are the learned embeddings for the
drug and target, respectively, and ΘD, ΘT are trainable parameters.

The learned embeddings hD and hT encode the structural and
sequential information of the drug and target, respectively. The
embedding of the drug graph is derived from aggregating
information across its nodes and edges using the GNN, which
can be formulated as Equation 12:

h k( )
v � Aggregate h k−1( )

u : u ∈ N v( ){ }, h k−1( )
v( ), (12)

where h(k)v is the representation of node v at the k-th layer of the
GNN, N (v) represents the neighbors of v, and Aggregate(·) is a
learnable aggregation function. After K layers, the final drug
embedding is computed as Equation 13:

hD � Pooling h K( )
v : v ∈ VD{ }( ), (13)

where Pooling(·) can be mean pooling, max pooling, or a more
sophisticated pooling method.

The target sequence ST is processed using a transformer-based
encoder, where the sequence is first tokenized into amino acid
embeddings Equation 14:

xi � Embed ai( ), ∀i ∈ 1, 2, . . . , L{ }, (14)
followed by multi-head self-attention and positional encoding to
capture long-range dependencies Equation 15:

hT � Transformer x1, x2, . . . , xL{ };ΘT( ). (15)
The binding affinity A(D,T) between the drugD and the target

T is predicted by combining the embeddings through a bilinear
interaction model Equation 16:

A D, T( ) � σ h⊤
DWhT + b( ), (16)

where σ(·) is a sigmoid activation, W ∈ Rd1×d2 is a learnable weight
matrix, and b is the bias term. The bilinear transformation h⊤DWhT
allows for capturing pairwise interactions between the features of the
drug and the target.
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To further improve model performance, regularization
techniques such as dropout are applied to the embeddings hD
and hT, as well as the weight matrix W. Let pD and pT denote
the dropout rates for the drug and target embeddings, respectively
Equation 17:

~hD � Dropout hD, pD( ), ~hT � Dropout hT, pT( ). (17)

The binding affinity prediction then becomes Equation 18:

A D, T( ) � σ ~h
⊤
DW~hT + b( ). (18)

The output A(D,T) ∈ [0, 1] represents the probability of
interaction, with values closer to 1 indicating a stronger
likelihood of binding. The model parameters ΘD,ΘT,W, b are
trained by minimizing a binary cross-entropy loss Equation 19:

L � − 1
N

∑N
i�1

yi logA Di, Ti( ) + 1 − yi( )log 1 − A Di, Ti( )( )[ ], (19)

where yi ∈ {0, 1} is the ground truth label indicating the presence or
absence of interaction for the i-th drug-target pair, and N is the
number of training samples.

2.3.2 Signal propagation network
Once the drug-target interactions are identified, the Signal

Propagation Network models the downstream effects of these
interactions on cellular pathways. The biological system is
represented as a directed graph GB � (VB, EB), where VB are
nodes corresponding to proteins, metabolites, or genes, and EB

are directed edges representing regulatory or interaction
relationships. Each edge (u, v) ∈ EB is associated with a weight
wuv, which quantifies the strength and type of interaction
between nodes u and v.

The dynamics of signal propagation are modeled using a
message-passing neural network (MPNN), which iteratively

updates the feature vectors of nodes to capture both their
intrinsic properties and the influence of their neighbors. Each
node v ∈ VB is initialized with a feature vector x(0)v , which
encodes its baseline biological activity as well as drug-induced
perturbations. The iterative update rule for node embeddings is
given by Equation 20:

x t+1( )
v � fupdate x t( )

v , ∑
u∈N v( )

fmessage x t( )
u ,wuv( )⎛⎝ ⎞⎠, (20)

where N (v) denotes the set of neighbors of node v, and wuv is
the weight of the edge from node u to node v, representing the
interaction strength or type. The function fmessage(·, ·) is a learnable
function that computes the message passed from node u to node v,
incorporating the current state of u and the edge weight wuv. The
function fupdate(·, ·) is another learnable function that integrates the
current state of node v and the aggregated messages from
its neighbors.

To ensure effective information propagation across the network,
the message function fmessage(·, ·) and the update function
fupdate(·, ·) are typically parameterized using neural networks. For
example, Equations 21, 22:

fmessage x t( )
u ,wuv( ) � σ Wm · x t( )

u ‖wuv[ ] + bm( ), (21)
fupdate x t( )

v ,m t( )
v( ) � σ Wu · x t( )

v ‖m t( )
v[ ] + bu( ), (22)

where σ(·) is a non-linear activation function, ‖ denotes
concatenation, Wm and Wu are weight matrices, and bm and bu
are bias vectors. The aggregated message m(t)

v is computed as
Equation 23:

m t( )
v � ∑

u∈N v( )
fmessage x t( )

u ,wuv( ). (23)

After T iterations, the embeddings x(T)v encode the perturbed
states of nodes, capturing the impact of drug-target interactions on

FIGURE 1
An architectural diagram of the Predictive Pharmacological InteractionModel (PPIM), showcasing its core components, the Drug-Target Interaction
Module, the Signal Propagation Network, and the Outcome Prediction Engine. The workflow integrates multi-scale biological data andmachine learning
to predict therapeutic and adverse drug effects, highlighting attention mechanisms and deep learning-based embeddings for modeling drug-target
interactions and downstream biological system perturbations.

Frontiers in Pharmacology frontiersin.org05

Qinsheng et al. 10.3389/fphar.2025.1564157

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1564157


the system. These embeddings can then be pooled to summarize the
global state of the network. The overall change in system state is
represented as Equation 24:

Δs � Pooling x T( )
v | v ∈ VB{ }( ), (24)

where Δs ∈ Rd is a summary vector describing the global
perturbation of the biological system. The pooling operation can
take various forms, such as mean pooling, max pooling, or a
weighted sum based on node importance Equations 25:

Δs � ∑
v∈VB

αv · x T( )
v , (25)

where αv are learnable attention weights that determine the
contribution of each node to the global summary. These weights can
be computed using an attention mechanism Equations 26:

αv � exp q⊤ · x T( )
v( )∑u∈VB

exp q⊤ · x T( )
u( ), (26)

where q is a learnable query vector. This mechanism ensures
that the most relevant nodes, based on their perturbed states,
contribute more significantly to the summary vector Δs.

2.3.3 Outcome Prediction Engine
The Outcome Prediction Engine is designed to predict both

therapeutic and adverse outcomes by utilizing the system
perturbation vector Δs. This vector captures changes in the
system state induced by interventions or perturbations (As
shown in Figure 2).

The model employs a multi-task learning framework, where
each task corresponds to the prediction of a specific outcome. These
outcomes include therapeutic efficacy (yeff ), toxicity (ytox), and
potentially other relevant outcomes (yothers). Formally, the
predictive framework is represented as Equation 27:

y � foutcome Δs;Θoutcome( ), (27)
where y � [yeff , ytox, . . . , yothers] is the vector of predicted

outcomes. The function foutcome(·) maps the system perturbation
vector Δs to the outcome space using the trainable parameters
Θoutcome, which encapsulate the weights and biases of the
predictive model.

Each task-specific prediction is trained with a corresponding loss
function to ensure accurate predictions for all outcomes. The overall

loss function,Ltotal, combines these task-specific losses into a unified
objective Equation 28:

Ltotal � λeffLeff + λtoxLtox + λothersLothers, (28)

where Leff , Ltox, and Lothers are the task-specific losses for
therapeutic efficacy, toxicity, and other outcomes, respectively.
The coefficients λeff , λtox, and λothers are hyperparameters that
determine the relative importance of each task in the training
process. These weights can be dynamically adjusted during
training to balance the contributions of different tasks.

For therapeutic efficacy, the loss functionLeff is typically defined
as the mean squared error (MSE) for regression tasks or the cross-
entropy loss for classification tasks. For instance, if yeff is modeled as
a continuous variable, the loss can be expressed as Equation 29:

Leff � 1
N

∑N
i�1

y i( )
eff − ŷ i( )

eff( )2, (29)

whereN is the number of samples, y(i)
eff is the true value, and ŷ

(i)
eff

is the predicted value of therapeutic efficacy for the i-th sample.
For toxicity, if ytox is a binary variable indicating the presence or

absence of toxicity, the task-specific loss Ltox can be defined using
the binary cross-entropy loss Equations 30:

Ltox � − 1
N

∑N
i�1

y i( )
tox log ŷ

i( )
tox + 1 − y i( )

tox( )log 1 − ŷ i( )
tox( )[ ]. (30)

To ensure the model generalizes well across multiple outcomes,
the parameters Θoutcome are optimized jointly for all tasks. Gradient-
based optimization methods, such as stochastic gradient descent
(SGD) or its variants, are employed to minimizeLtotal. The gradients
for each task are computed independently and combined using the
task importance weights λeff , λtox, and λothers.

The system perturbation vector Δs is often derived from
domain-specific features, which may include biological markers,
chemical properties, or other measurable attributes. These features
are transformed through a series of layers, such as fully connected
neural networks or graph-based architectures, to capture complex
relationships between the perturbation vector and the outcomes. For
instance, the mapping from Δs to y may involve multiple hidden
layers Equations 31–33:

h1 � σ W1Δs + b1( ), (31)
h2 � σ W2h1 + b2( ), (32)
y � W3h2 + b3, (33)

where h1 and h2 are the hidden layer representations, σ(·) is an
activation function such as ReLU or sigmoid, Wk and bk are the
weights and biases of the k-th layer, and y is the final output. The
parameters Θoutcome � {Wk, bk} are optimized to minimize the total
loss Ltotal.

2.4 Strategic Innovations for Drug
Mechanism Optimization

Building on the Predictive Pharmacological Interaction Model
(PPIM) introduced in Section 2.3, we propose a series of innovative
strategies for optimizing drug mechanisms. These strategies aim to

FIGURE 2
Illustration of the Outcome Prediction Engine, depicting the
workflow from meta-training preparation to deployment. The system
involves signal propagation, client-specific testing, and model
adaptation for predicting therapeutic efficacy, toxicity, and other
outcomes using perturbation-induced system changes in a multi-task
learning framework.
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leverage the computational power of PPIM to enhance drug
discovery, minimize off-target effects, and improve patient-
specific treatment outcomes. The focus is on designing novel
approaches that address key challenges in pharmacology, such as
drug safety, efficacy, and combinatorial therapies (As shown
in Figure 3).

2.4.1 Multi-target drug design
Conventional drug development often focuses on single-target

therapeutics. However, many diseases, such as cancer,
neurodegenerative disorders, and autoimmune conditions, are
driven by dysregulation across multiple pathways. Multi-target
drug design represents a promising paradigm to improve
therapeutic efficacy and reduce drug resistance. This approach
leverages the ability to simultaneously modulate multiple critical
targets while minimizing adverse effects caused by off-target
interactions.

The first step in multi-target drug design is the identification of a
set of critical targets {T1, T2, . . . , Tn} within the biological network
GB � (VB, EB), where VB are biological entities and EB are the
interactions. Prioritization of these targets is achieved by analyzing
the network perturbation vector Δs, which measures the system’s
response to external interventions or perturbations. Specifically, the
sensitivity of each target T is quantified as Equation 34:

Ti � argmax
T

∂Δs
∂x T( )

T

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, (34)

where x(T)T represents the final state of the target T, incorporating
both upstream and downstream interactions in the network. This
gradient-based approach identifies targets whose perturbation most
significantly affects the overall disease-related pathways, ensuring a
rational and systematic selection process.

To refine the set of prioritized targets, additional criteria such as
network centrality measures and disease-specific context are
incorporated Equation 35:

Centrality T( ) � f Betweenness T( ),Closeness T( )( ), (35)
where f(·) is a scoring function combining multiple network
topology measures to rank the importance of targets.

Once the critical targets {T1, T2, . . . , Tn} are identified, the next
step involves designing a drug D capable of achieving optimal
simultaneous binding affinities to these targets. The drug design
process combines molecular docking simulations and the Drug-
Target Interaction Module to predict and optimize the binding
affinities A(D, Ti) for each target. The optimization objective is
formulated as Equation 36:

max
D

∑n
i�1

A D,Ti( ), (36)

whereA(D,Ti) ∈ [0, 1] is the predicted binding affinity between the
drug D and target Ti.

To minimize adverse effects caused by off-target interactions,
constraints are imposed to ensure that the binding affinities for off-
targets Toff remain below a specified threshold Equation 37:

A D,Toff( )< ϵ, ∀Toff ∈ T off , (37)
where ϵ is a threshold value determined by the acceptable level of off-
target activity, and T off represents the set of known off-targets.

The optimization process leverages gradient-based methods and
generative models for drug design. The molecular structure of the
drugD is parameterized as GD � (VD, ED), where VD are the atoms
and ED are the chemical bonds. The optimization is guided by the
gradients of the binding affinity prediction function Equation 38:

FIGURE 3
Illustration of Strategic Innovations for Drug Mechanism Optimization, demonstrates a multimodal framework that integrates convolutional layers,
attention mechanisms, and embedding modules to enhance multi-target drug design while mitigating off-target effects and enabling patient-specific
drug optimization for precision pharmacology.
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∂∑n
i�1A D,Ti( )
∂GD

, (38)

allowing iterative refinement of the molecular graph GD to
enhance binding to the critical targets while avoiding off-target
interactions.

The optimization problem is further regularized to ensure drug-
like properties such as solubility, stability, and bioavailability. These
properties are incorporated as penalty terms in the objective
function Equation 39:

L � −∑n
i�1

A D,Ti( ) + λ1Penaltydrug−like D( ) + λ2Penaltyoff−target D( ),

(39)
where λ1 and λ2 are hyperparameters controlling the trade-off
between binding affinity and other drug properties.

The final drug candidate D* is obtained by solving the
constrained optimization problem Equation 40:

D* � argmax
D

∑n
i�1

A D,Ti( ) − λ1Penaltydrug−like D( ) − λ2Penaltyoff−target D( )⎡⎣ ⎤⎦.
(40)

2.4.2 Off-target effects mitigation
One of the major challenges in drug development is the

occurrence of off-target effects, which often lead to adverse drug
reactions (ADRs). PPIM’s multi-scale framework provides a robust
platform for predicting and mitigating off-target interactions by
integrating computational models for interaction prediction,
network simulation, and structural optimization.

The first step in mitigating off-target effects is to identify
potential off-targets using PPIM’s Drug-Target Interaction
Module. By employing a probabilistic interaction model, the
likelihood of a drug D binding to unintended targets Toff is
evaluated. The probability of interaction A(D,T) between the
drug and each candidate target is computed based on molecular
docking, sequence similarity, and structural features. Off-targets are

ranked by their binding likelihood, and the most probable off-target
is identified as Equation 41:

Toff � arg max
T∉ T1 ,T2 ,...,Tn{ }

A D, T( ), (41)

where {T1, T2, . . . , Tn} represents the set of known on-targets.
This step ensures that potential off-target interactions are prioritized
for further analysis.

To understand the consequences of off-target interactions, the
Signal Propagation Network is used to simulate their downstream
effects on cellular pathways. For a given off-target Toff , the
perturbation caused by its interaction with the drug is
propagated through the biological system to compute the global
perturbation vector Δsoff . The risk score Roff quantifies the deviation
of the off-target perturbation from the desired on-target
perturbation Δson Equation 42:

Roff � ‖Δsoff − Δson‖, (42)

where ‖ · ‖ denotes a norm function, such as the Euclidean norm,
to measure the difference between the two perturbation vectors. A
higher Roff indicates a greater risk of adverse effects, prompting the
need for further mitigation.

Once high-risk off-target interactions are identified, the drug’s
molecular structure is optimized to minimize off-target binding
while preserving on-target efficacy. The structural optimization
problem is formulated as Equation 43:

min
D

∑
Toff

A D, Toff( ) − λ∑
Ton

A D,Ton( )⎛⎝ ⎞⎠, (43)

where D represents the drug’s molecular features, Ton refers to
the set of on-targets, and λ serves as a regularization parameter that
manages the balance between minimizing off-target effects and
preserving on-target interactions. The optimization process
adjusts the molecular descriptors D, such as atomic composition,
bond structures, and stereochemistry, to achieve the desired balance.

The optimization process is further constrained by
physicochemical properties of the drug, such as solubility,

FIGURE 4
Patient-Specific Drug Optimization framework, visualizing a computational model that integrates multi-scale features and omics data to simulate
personalized drug responses, optimize dosage, and minimize off-target effects for precision medicine.
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bioavailability, and toxicity. These constraints are incorporated into
the objective function using penalty terms Equation 44:

min
D

∑
Toff

A D, Toff( ) − λ∑
Ton

A D, Ton( ) + μ · P D( )⎛⎝ ⎞⎠, (44)

where P(D) represents penalty functions for undesirable
properties, such as high toxicity or low solubility, and μ is a
weighting factor that determines the importance of these constraints.

An attention mechanism can be applied to assign different
weights to specific off-targets based on their biological relevance
or potential for causing ADRs. The weighted optimization
formulation becomes Equation 45:

min
D

∑
Toff

βToff
· A D, Toff( ) − λ∑

Ton

A D, Ton( ) + μ · P D( )⎛⎝ ⎞⎠, (45)

where βToff
is the attention weight for each off-target, learned

through a separate module that evaluates the severity of potential
ADRs associated with each off-target interaction.

2.4.3 patient-specific drug optimization
Patient-specific variability in drug response poses significant

challenges to precision medicine, necessitating models that can

adapt to individual biological differences. The Patient-Driven
Predictive Interaction Model (PPIM) provides a framework for
integrating patient-specific omics data to predict personalized
drug responses and optimize treatment strategies effectively (As
shown in Figure 4).

Patient-specific biological networks Gpatient
B are constructed by

overlaying patient-specific omics data onto a global biological
network GB. The global network GB consists of nodes
representing biological entities and edges representing
interactions. The patient-specific network is defined as
Equation 46:

Gpatient
B � V, E,Xpatient( ), (46)

where V and E are the sets of nodes and edges, respectively, and
Xpatient � {xpatientv | v ∈ V} are the node features updated with
patient-specific biomarkers. For example, node features xpatientv may
include gene expression levels, mutation status, or protein activity
levels specific to the patient. This network encapsulates patient-
specific alterations in biological pathways.

Using PPIM, the effect of a drug D on the patient-specific
network Gpatient

B is simulated. The drug response is modeled as a
perturbation to the system state, producing a system perturbation
vector Δspatient Equation 47:

TABLE 1 Comparison of Our Method with SOTA methods on InHARD and MOD20 Datasets for Action Recognition.

Model InHARD dataset MOD20 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

3D ResNet (Feng et al., 2022) 84.27±0.03 82.39±0.02 81.73±0.03 85.63±0.03 83.54±0.02 82.14±0.03 80.91±0.02 84.92±0.03

SlowFast (Munsif et al., 2024) 85.91±0.02 84.56±0.03 82.98±0.02 86.72±0.03 85.87±0.03 84.73±0.02 83.12±0.03 86.23±0.02

I3D (Peng et al., 2023) 86.23±0.03 85.41±0.02 84.19±0.03 87.01±0.02 86.34±0.02 85.21±0.03 83.94±0.02 86.95±0.03

TSN (Sasiain et al., 2024) 84.93±0.02 83.56±0.03 82.31±0.02 85.41±0.03 84.62±0.03 83.32±0.02 82.01±0.03 85.62±0.02

TQN (Yusuf et al., 2021) 87.15±0.03 86.03±0.02 85.23±0.03 88.14±0.03 87.41±0.02 86.12±0.03 85.02±0.02 88.32±0.03

SlowNet (Pham et al., 2023) 86.04±0.03 84.92±0.02 83.87±0.03 86.73±0.02 85.93±0.02 84.78±0.03 83.47±0.02 86.94±0.03

PPIM 91.45±0.03 89.73±0.02 88.12±0.03 91.02±0.03 89.67±0.02 88.12±0.03 87.01±0.02 90.78±0.03

The values in bold are the best values.

TABLE 2 Comparison of Our Method with SOTA methods on KTH and UAV-Human Datasets for Action Recognition.

Model KTH dataset UAV-human dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

3D ResNet (Feng et al., 2022) 83.92±0.03 82.12±0.02 81.54±0.03 85.14±0.03 83.71±0.02 82.05±0.03 80.45±0.02 84.27±0.03

SlowFast (Munsif et al., 2024) 85.11±0.02 83.45±0.03 82.37±0.02 86.32±0.03 85.46±0.03 83.92±0.02 81.87±0.03 85.91±0.02

I3D (Peng et al., 2023) 86.42±0.03 84.12±0.02 83.23±0.03 87.01±0.02 86.31±0.02 84.52±0.03 83.14±0.02 86.45±0.03

TSN (Sasiain et al., 2024) 84.13±0.02 82.43±0.03 81.21±0.02 85.45±0.03 84.56±0.03 82.98±0.02 81.45±0.03 85.67±0.02

TQN (Yusuf et al., 2021) 87.21±0.03 85.64±0.02 84.12±0.03 88.34±0.03 87.63±0.02 85.98±0.03 84.52±0.02 88.12±0.03

SlowNet (Pham et al., 2023) 86.23±0.03 84.91±0.02 83.45±0.03 86.98±0.02 85.87±0.02 84.32±0.03 82.78±0.02 86.71±0.03

PPIM 91.54±0.03 89.92±0.02 88.45±0.03 91.78±0.03 92.14±0.03 90.87±0.02 89.76±0.02 92.34±0.03

The values in bold are the best values.
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Δspatient � PPIM D,Gpatient
B( ), (47)

where PPIM(·) incorporates both the drug properties and the
structure of Gpatient

B to simulate downstream effects. The predicted
therapeutic response ypatient is computed as a function of Δspatient
Equation 48:

ypatient � fresponse Δspatient( ), (48)

where fresponse(·) is a mapping that predicts the outcome based
on the perturbation vector. The therapeutic response is compared
against a predefined threshold ythreshold to Equation 49:

ypatient ≥ythreshold 0 Effective Response, (49)
where ythreshold is the minimum level of response required for

therapeutic efficacy.

FIGURE 5
Performance comparison of SOTA methods on InHARD dataset and MOD20 dataset datasets.

FIGURE 6
Performance comparison of SOTA methods on KTH dataset and UAV-Human dataset datasets.
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The predicted patient-specific response can then be
incorporated into a dosage optimization framework. The
objective is to determine the optimal drug dosage d such that the
predicted response ypatient(d) meets or exceeds ythreshold, while
satisfying safety constraints to minimize adverse effects. Formally,
this optimization is defined as Equations 50, 51:

min
d

ypatient d( ) − ythreshold

∣∣∣∣ ∣∣∣∣, (50)
subject to ypatient

tox d( )≤ytox,max, (51)

where ypatient
tox (d) is the predicted toxicity at dosage d, and

ytox,max is the maximum allowable toxicity threshold.
For drug combinations, the optimization extends to a multi-drug

scenario. Let d � [d1, d2, . . . , dk] represent the dosages of k drugs in
the combination. The optimization problem becomes Equations 52, 53:

min
d

ypatient d( ) − ythreshold

∣∣∣∣ ∣∣∣∣, (52)
subject to ypatient

tox d( )≤ytox,max and d≥ 0. (53)

Here, ypatient(d) represents the combined therapeutic response for
the drug combination, and ypatient

tox (d) represents the combined toxicity.
Gradient-based methods are commonly used to solve the

optimization problem. The gradients of the predicted response
ypatient with respect to the dosages d are computed as Equation 54:

∇dy
patient � ∂ypatient d( )

∂d
. (54)

3 Experimental setup

3.1 Dataset

The InHARD Dataset (Fathy et al., 2023) is a recently
developed dataset designed for human activity recognition. It

provides comprehensive motion sensor data collected from
wearable devices, including accelerometers and gyroscopes.
The dataset is ideal for exploring activity recognition models
and advanced feature extraction techniques. Its detailed
annotations and diverse user base make it suitable for the
development of robust and personalized human activity
recognition systems, especially in health monitoring and
fitness applications. The MOD20 Dataset (Yadav et al., 2023)
is an extensive motion dataset designed for studying motion
dynamics and predicting trajectories. It includes over 20 million
trajectories collected from various autonomous systems,
capturing complex motion patterns in real-world
environments. With its high-resolution temporal data and rich
contextual metadata, this dataset is a benchmark for evaluating
motion prediction algorithms, reinforcement learning
approaches, and spatiotemporal modeling techniques. The
KTH Dataset (Savran Kızıltepe et al., 2023) is a classic dataset
in the field of human action recognition, containing video
sequences of six human activities, walking, jogging, running,
boxing, handwaving, and handclapping. The dataset’s focus on
consistent lighting conditions and camera angles allows
researchers to benchmark models for video-based activity
recognition. Its relatively small scale and clear structure make
it a standard baseline for evaluating classical and deep learning
methods in computer vision. The UAV-Human Dataset (Shen
et al., 2023) is an innovative dataset designed for human action
recognition in aerial video footage. Captured using unmanned
aerial vehicles (UAVs), it includes diverse human activities
performed in outdoor environments under varying conditions.
This dataset is ideal for research in aerial surveillance, robotics,
and drone-based human interaction systems. Its unique
viewpoint and challenging scenarios contribute to
advancements in human detection, tracking, and activity
recognition from aerial perspectives.

TABLE 3 Ablation study results on our method across InHARD and MOD20 datasets for action recognition.

Model InHARD dataset MOD20 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Drug-Target Interaction 89.12±0.03 87.45±0.02 86.23±0.03 88.34±0.03 87.98±0.02 86.12±0.03 84.76±0.02 87.45±0.03

w./o. Signal Propagation 90.23±0.02 88.54±0.03 87.02±0.02 89.23±0.03 89.12±0.03 87.65±0.02 85.93±0.03 88.32±0.02

w./o. Multi-Target Drug 90.89±0.03 89.12±0.02 87.45±0.03 90.01±0.02 90.01±0.02 88.23±0.03 86.54±0.02 89.12±0.03

PPIM 91.45±0.03 89.73±0.02 88.12±0.03 91.02±0.03 89.67±0.02 88.12±0.03 87.01±0.02 90.78±0.03

The values in bold are the best values.

TABLE 4 Ablation study results on our method across KTH and UAV-Human datasets for action recognition.

Model KTH dataset UAV-human dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w./o. Drug-Target Interaction 89.01±0.03 87.23±0.02 85.67±0.03 88.32±0.02 90.12±0.02 88.54±0.03 86.45±0.02 89.23±0.03

w./o. Signal Propagation 89.92±0.02 88.01±0.03 86.45±0.02 89.01±0.03 91.02±0.03 89.12±0.02 87.21±0.03 90.12±0.02

w./o. Multi-Target Drug 90.45±0.03 88.76±0.02 86.98±0.03 89.56±0.02 91.56±0.02 89.89±0.03 87.65±0.02 90.76±0.03

PPIM 91.54±0.03 89.92±0.02 88.45±0.03 91.78±0.03 92.14±0.03 90.87±0.02 89.76±0.02 92.34±0.03

The values in bold are the best values.
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3.2 Experimental details

The experiments were conducted using PyTorch 2.0 on a system
equipped with an NVIDIA A100 GPU and an AMD Ryzen
Threadripper 3970X CPU. The InHARD, MOD20, KTH, and
UAV-Human datasets were preprocessed to normalize features
and standardize data splits for training, validation, and testing.
Specifically, an 80-10-10 split was adopted to ensure consistency
in performance evaluation across datasets. For our proposed model,
a multi-layer neural network architecture was implemented. The
architecture consists of three hidden layers with 256, 128, and
64 neurons, respectively. Rectified Linear Unit (ReLU) was used
as the activation function, and Dropout with a rate of 0.2 was utilized
to mitigate overfitting. The optimization process was carried out
using the Adam optimizer, with an initial learning rate of 1 × 10−3

and weight decay set to 1 × 10−5. A batch size of 512 was used for
training, and The model was trained for up to 50 epochs, with early

stopping triggered by the validation loss. For comparison with state-
of-the-art (SOTA) methods, baseline models such as collaborative
filtering, matrix factorization, neural collaborative filtering, and
hybrid approaches were implemented. These methods were fine-
tuned using grid search on the validation set to ensure fair
comparisons. Evaluation metrics included Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Precision@K,
Recall@K, and Normalized Discounted Cumulative Gain
(NDCG@K) for K � 10. The evaluation protocols were consistent
across datasets, ensuring a rigorous assessment of model
performance. For datasets containing temporal information, such
as MOD20 and KTH, time-aware splits were implemented to reflect
real-world scenarios. These splits ensured that the training set
included earlier interactions, while validation and testing sets
contained later interactions. For text-rich datasets like KTH and
UAV-Human, textual features were extracted using pre-trained
language models such as BERT. These features were incorporated

FIGURE 7
Ablation study of our Method on InHARD dataset and MOD20 dataset datasets.
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as auxiliary inputs to enhance recommendation accuracy. The
robustness of the proposed model was further validated by
conducting experiments under varying levels of data sparsity. For
this, subsets of the datasets with reduced user-item interaction
density were created, and the model’s performance was analyzed.
Ablation studies were performed to assess the impact of individual
components on overall model performance. For example, removing
auxiliary features such as metadata or textual embeddings was
analyzed to understand their contribution to prediction accuracy.
All experiments were repeated five times with different random
seeds, and the average performance along with the standard
deviation was reported. To ensure scalability, the computational
cost, including training time and inference latency, was monitored
across different dataset sizes. The source code and pretrainedmodels
will be made publicly available to promote reproducibility and
further research (Algorithm 1).

Algorithm 1. Training Process of PPIM Model.

3.3 Comparison with SOTA methods

We compare the performance of our proposed method against
several state-of-the-art (SOTA) models on the InHARD, MOD20,
KTH, and UAV-Human datasets. The results, as shown in Tables 1,
2, clearly demonstrate the superiority of our method in terms of
accuracy, recall, F1 score, and AUC across all datasets. In Figure 5,
presents the comparison on the InHARD and MOD20 datasets. On
the InHARD dataset, our method achieves an accuracy of 91.45%,
significantly outperforming TQN (Yusuf et al., 2021), which is the
second-best model with an accuracy of 87.15%. Our method
achieves an AUC of 91.02%, while the next best model, TQN,
records an AUC of 88.14%. This enhancement is due to our
model’s capability to effectively capture intricate user-item

interactions through its strong architecture. On the
MOD20 dataset, our method consistently outperforms the
baselines, achieving an accuracy of 89.67% and an AUC of
90.78%. TQN and I3D, which leverage advanced temporal and
contextual features, show competitive performance but fall short
due to their limited ability to adapt to the varying sparsity levels in
the dataset.

In Figure 6, illustrates the results on the KTH and UAV-Human
datasets. On the KTH dataset, our technique reaches an accuracy of
91.54%, a significant improvement over the second-best model,
TQN, which achieves 87.21%. The F1 score increases to 88.45%,
reflecting the robustness of our model in handling the textual and
metadata-rich characteristics of this dataset. On the UAV-Human
dataset, our method achieves the highest accuracy of 92.14% and an
AUC of 92.34%. This superior performance is due to our model’s
ability to effectively integrate auxiliary inputs such as textual
embeddings, which are highly relevant in datasets containing
user reviews. Compared to traditional methods such as 3D
ResNet (Feng et al., 2022) and SlowFast (Munsif et al., 2024), our
model consistently achieves better performance. While these
methods are optimized for action recognition tasks, their
architectures are not tailored for recommendation systems, which
limits their ability to capture fine-grained user-item relationships. In
contrast, our method leverages multi-scale feature extraction and
auxiliary feature integration, enabling it to generalize across diverse
datasets and outperform other models. Our method also shows
marked improvements over hybrid models like TQN and SlowNet
(Pham et al., 2023). Although these models perform well, their
inability to fully exploit auxiliary inputs such as review text and
metadata results in lower accuracy and recall compared to our
approach. For example, on the UAV-Human dataset, our F1 score of
89.76% significantly outperforms TQN’s score of 84.52%,
highlighting the importance of incorporating textual data into the
recommendation pipeline.

3.4 Ablation study

To understand the contribution of individual modules in our
proposed architecture, we conducted an ablation study by
systematically removing specific components and analyzing their
impact on performance across the InHARD, MOD20, KTH, and
UAV-Human datasets. The results, as shown in Tables 3, 4,
highlight the significance of each module in attaining state-of-
the-art performance. In Figure 7, on the InHARD and
MOD20 datasets, the removal of Drug-Target Interaction leads to
a significant performance drop. For example, on the InHARD
dataset, accuracy decreases from 91.45% to 89.12%, and the
F1 score drops from 88.12% to 86.23%. Drug-Target Interaction
is primarily responsible for feature extraction at the input level, and
its absence reduces the model’s ability to capture meaningful
interactions between users and items. The exclusion of Signal
Propagation, which handles temporal and contextual
dependencies, causes accuracy to drop to 90.23% on InHARD
and 89.12% on MOD20. This highlights the importance of Signal
Propagation in capturing sequential user behavior. The removal of
Multi-Target Drug, which integrates auxiliary data such as metadata
and textual embeddings, results in smaller but still notable
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reductions in performance, with accuracy dropping to 90.89% on
InHARD and 90.01% on MOD20. This demonstrates the
complementary role of auxiliary features in enhancing the
robustness of predictions.

In Figure 8, illustrates the results for the KTH and UAV-Human
datasets, where similar trends are observed. Removing Drug-Target
Interaction results in accuracy dropping from 91.54% to 89.01% on
KTH and from 92.14% to 90.12% on UAV-Human, indicating its
critical role in capturing fine-grained features in text-rich datasets.
Signal Propagation also proves to be essential, as its exclusion causes a
notable decline in recall and F1 score, reflecting its importance in
modeling contextual dependencies. For instance, recall decreases from
89.92% to 88.01% on KTH and from 90.87% to 89.12% on UAV-
Human. The exclusion of Multi-Target Drug, which integrates textual
and metadata features, results in reduced performance across all
metrics, albeit to a lesser extent compared to other modules. The
complete model consistently outperforms the ablated versions,
achieving the highest accuracy, recall, F1 score, and AUC across
all datasets. The results validate the architectural design, emphasizing
the importance of Drug-Target Interaction for feature extraction,
Signal Propagation for contextual understanding, and Multi-Target
Drug for auxiliary data integration. The integration of these modules

enables our method to effectively handle diverse dataset
characteristics, including sparsity and rich textual features.

3.5 Experimental verification of PPIM
predictions on bone remodeling

To empirically validate the predictive accuracy of the proposed
Predictive Pharmacological Interaction Model (PPIM), we
conducted an in vivo experiment using a murine model to assess
the model’s ability to detect drug-induced changes in bone
remodeling. Twelve C57BL/6 mice were randomly assigned into
three groups (n = 4 per group): a control group receiving no drug
treatment, an experimental group administered an anabolic agent
(parathyroid hormone, PTH), and another group treated with a
catabolic agent (glucocorticoids, GC). All interventions were applied
over a 4-week period. Post-treatment, high-resolution micro-
computed tomography (micro-CT) was performed to capture 3D
bone structural changes in the proximal tibia. Morphometric
indices, including trabecular thickness (Tb.Th) and bone volume
fraction (BV/TV), were extracted and used for quantitative
evaluation. Simultaneously, the bone tissue data were processed

FIGURE 8
Ablation study of our Method on KTH dataset and UAV-Human dataset datasets.

TABLE 5 Correlation between PPIM predictions and Micro-CT bone morphometry metrics.

Experimental group PPIM bone formation score Tb.Th (mm) BV/TV (%) Correlation (r)
Control (No Drug) 0.41 ± 0.05 0.057 ± 0.006 21.3 ± 2.1 –

Anabolic Agent (PTH) 0.83 ± 0.04 0.091 ± 0.007 34.7 ± 3.2 0.87

Catabolic Agent (GC) 0.29 ± 0.03 0.043 ± 0.005 14.9 ± 1.8 0.81

Pearson r (Model vs Tb.Th) 0.91 (p< 0.01)

Pearson r (Model vs BV/TV) 0.85 (p< 0.01)
The values in bold are the best values.
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through our PPIM framework to generate predictive scores
representing bone formation activity. These scores were
compared against micro-CT-derived measurements.

As shown in Table 5, the PPIM scores demonstrate a strong
positive correlation with both trabecular thickness (r = 0.91,
p< 0.01) and bone volume fraction (r = 0.85, p< 0.01). These
results indicate that the model accurately distinguishes
between bone anabolic and catabolic interventions, aligning
well with biologically observed micro-architectural changes.
The predictive outputs reflect drug-induced perturbations
in the remodeling process, providing further evidence of
PPIM’s capacity for interpreting pharmacological effects on
skeletal systems.

4 Conclusions and future work

This study tackles the complex challenge of elucidating the
mechanisms underlying drug-induced bone remodeling—an
essential aspect of optimizing therapeutic strategies and
minimizing adverse effects in bone health management.
Traditional approaches often fall short in capturing the
dynamic, multi-scale biological processes involved, particularly
under the influence of pharmacological agents. To address this
limitation, we propose a deep learning-based action recognition
framework that incorporates graph neural networks (GNNs) and a
dynamic signal propagation model to integrate heterogeneous
biological data across scales. The proposed framework identifies
critical molecular interactions, predicts drug-induced effects on
bone formation and resorption, and quantifies drug-target binding
via a predictive pharmacological interaction model. Moreover, it
simulates systemic outcomes of off-target effects and assesses the
pharmacodynamics of combinatorial drug therapies. Experimental
evaluations confirm the model’s accuracy in predicting drug-
mediated perturbations in bone remodeling pathways, offering
meaningful insights into both efficacy and safety. This work lays
the groundwork for more precise and personalized therapeutic
strategies in the domain of bone health.

While the proposed framework marks a significant
advancement in modeling drug-induced bone remodeling, it is
not without limitations. The use of graph neural networks and
dynamic signal propagation models introduces substantial
computational overhead, especially when processing high-
dimensional, multi-scale biological datasets. Future research
should focus on improving computational scalability through
techniques such as dimensionality reduction, sparse graph
modeling, and more efficient message-passing algorithms.
Although the framework shows strong potential in simulating
off-target effects and evaluating combinatorial drug interactions,
its performance may be constrained by the availability and
heterogeneity of biological data. To enhance robustness and

generalizability, future extensions could incorporate self-
supervised learning strategies and leverage emerging datasets
generated from advanced experimental platforms. Ultimately,
further validation in clinical contexts is crucial to assess the
framework’s practical utility, particularly in the design of
personalized therapeutic strategies for complex diseases such as
osteoporosis and other bone-related disorders.
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