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Introduction: 3,3’-Diindolylmethane (DIM) is a major phytochemical product
derived from ingestion of cruciferous vegetables. As an effective cancer
chemopreventive agent, DIM has been used in preclinical and clinical trials.
Recently, our group synthesized and modified a novel DIM derivative, L1, and
demonstrated its significant antileukemic activities.

Methods: MTT assay was used to confirm the inhibition rates and ICsq value of
L1 in erythroleukemia HEL cells. Flow cytometry analysis was used to reveal cell
cycle arrest and apoptosis. RNAseq data with KEGG pathway enrichment analysis
was performed to predict the anticancer mechanism of L1. RT-qPCR and Western
blotting were carried out to verify the mechanism in the ER stress-mediated
apoptosis and FLI1/AKT pathway. FLI1 knockdown in HEL cells was performed to
confirm the mechanism of L1 in the FLI1/AKT pathway. AutoDocking analysis and
PPl analysis via the STRING database were used to discover the potential target of
L1. HSPA1A knockdown and treatment with HSP70 inhibitor were used to further
evaluate the L1 target.

Results: L1 significantly inhibited the growth of erythroleukemia HEL cells, with an
ICso value of 1.15 + 0.03 uM L1 induced G2/M cell cycle arrest and cell apoptosis.
RNA sequencing analysis revealed that differentially expressed genes (DEGs)
mainly enriched in protein processing of endoplasmic reticulum (ER).
L1 increased the protein expression level of GRP78 (BIP) and the RNA
transcription of XBP1 and DDIT3 to induce ER stress-mediated apoptosis.
Meanwhile, PPl analysis suggested that HSP70 (HSPA1A and HSPA1B) is a
pivotal gene that may be involved in the ER stress. AutoDocking analysis also
revealed that L1 may bind to the HSP70 protein (HSPA1A and HSPA1B). The
apoptosis rate was reduced by cotreatment of L1 and the Hsp70 inhibitor
VER155008. Moreover,the inhibition rate was decreased in the HSPALA
knockdown HEL cells, suggesting that L1-induced apoptosis was related to
HSP70 activity. Moreover, FLI1 is a crucial target for mediating cell
differentiation, apoptosis, inflammation and displays abnormal expression in
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HEL cells. Here, we showed that the protein expression levels of FLI1 and AKT/
p-AKT decreased with L1 treatment and that the RNA expressions of their
downstream genes GATALl, TFRC, GYPA, CDKNI1A and CDKN1B were also
regulated by L1.

Conclusion: This study revealed that the DIM-derivative molecule, L1, induced ER
stress-mediated apoptosis and suppressed cell growth by inhibiting the FLI1/AKT
pathway in erythroleukemia HEL cells.

erythroleukemia, 3,3’-diindoylmethane derivatives, endoplasmic reticulum stress-

mediated apoptosis, FLI1, Hsp70

1 Introduction

Acute myeloid leukemia (AML) is a malignant clonal blood
system disease accompanied by abnormal proliferation and
impaired differentiation of hematopoietic progenitor cells (Thol
and Ganser, 2020; Kantarjian et al, 2024). Acute erythroid
leukemia (AEL) is a subtype of acute myeloid leukemia (AML)
that accounts for less than 5% of all AML. AEL, which progresses
faster and has a worse prognosis than other AML, is characterized
mainly by malignant hyperplasia of proto-erythrocytes and
erythrocytes to dominate in the bone marrow (>50%) (Weinberg
and Arber, 2021). While daunorubicin and cytarabine achieved
partial clinical remission according to the standard chemotherapy
regimen, Stem cell transplantation (SCT) is considered a potential
treatment strategy for AEL (Fernandes et al, 2024). However,
despite great advances in the treatment of AEL patients over the
past few decades, there is no significant improvement in the
therapeutic outcomes of patients. Common problems in the
clinic include primary induction failure (PIF), relapse, and
toxicity of chemotherapy drugs (Liao et al, 2021). Many
hemotherapy drugs that cause adverse reactions, such as
gastrointestinal reactions and bone marrow suppression, not only
damage normal tissues and cells but also lead to decreased
immunity. Therefore, there is an urgent need to find safer and
more effective drugs for AEL treatment.

Natural products are important sources for the development of
new anticancer drugs. 3,3 Indole-3-Carbinol (I3C) is released as a
hydrolysis product of glucoerucin, which is derived from Brussels
sprouts and other cruciferous vegetables, such as broccoli and
cauliflower (Williams, 2021). 3,3’-Diindolylmethane (DIM) is the
major acid condensation product, produced by I3C in vivo. As
shown in several studies, DIM has been developed as a potential
chemotherapeutic compound for cancer prevention and therapy. In
terms of mechanism, DIM can bind to aryl hydrocarbon receptor
(AHR), estrogen receptor and androgen receptor (AR) as agonists or
antagonists to inhibit proliferation and induce apoptosis in several
cancer cell lines (Williams, 2021). Nevertheless, the undesirable
solubility and poor bioavailability of DIM in vivo limit its clinical
application. Moreover, although DIM has been reported mainly in
human clinical trials for the treatment of breast and prostate cancer,
its efficacy in acute myeloid leukemia has seldom been explored.

In a previous study, our research group optimized this
compound through structural modification, and a novel 33/
diindolemethane (DIM) derivative (L1) was obtained during drug
screening for anti-AML activities. This study evaluates the anti-

Frontiers in Pharmacology

erythroleukemia activities of the DIM derivative L1 in vitro and
revealed that L1 induced ER stress-mediated apoptosis and
mediated the FLII/AKT pathway in HEL cells. These data
demonstrated that the DIM derivative L1 was a potential
candidate for erythroleukemia therapies.

2 Methods
2.1 Cell lines and cell culture

Verified mycoplasma negative tested human cell lines originated
from ATCC. Erythroleukemia (HEL), chronic myelogenous leukemia
(K562) and T lymphoblastic leukemia cell (CEM-C1) were cultured in
RPMI, and the breast cancer (MDA-MB-231, MCF7), and normal
liver cell (HL-7702) were cultured in DMEM medium (high glucose),
with supplemented with 5%-10% fetal bovine serum (HyClone, GE
Healthcare, Australia). These cells were maintained in a humidified
incubator containing 5% CO, at 37°C. After growing to approximately
70%-90% confluence cells were treated with compounds. During cell
culture, real-time monitoring of cells on the gene expression and
phenotypic changes, regular screening and identification were carried
out at regular period to avoid genetic drift.

2.2 Cytotoxicity assay

Triplicates of cancer cell lines (8 x 10°/well) were plated 96-wells
plates and incubated with various concentrations of compound for
72 h. The dose-dependent effect of compound on cell viability was
assessed by adding diphenyltetrazolium bromide (MTT, 5 mg/mL)
reagents (Solarbio, Beijing, China) to each well for 4 h. The formazan
crystals were dissolved in designated solution (100 g/L SDS, 1 mL/L
HCL, 50 mL/L 2-Methyl-1-propanol). Optical density (OD) was
measured with the Synergy2 Reader (BioTek, United States). The
ICs values was determined accordingly (Dinghuan et al., 2024). The
cellular morphology of the HEL cells was observed in Nikon
microscope (Leica, Germany).

2.3 Cell cycle and apoptosis
Cell cycle and apoptosis analysis performed according to

published methods (Long et al, 2021). In brief, cells were
incubated with L1 or 0.5% DMSO for 24 h and then washed
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TABLE 1 RT-gPCR gene primers sequence.
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Gene Forward Reverse
XBP1 CCCTCCAGAACATCTCCCCAT CCCTCCAGAACATCTCCCCAT
DDIT3 GGAAACAGAGTGGTCATTCCC CTGCTTGAGCCGTTCATTCTC
FLI1 CAGCCCCACAAGATCAACCC CACCGGAGACTCCCTGGAT
miR145 TCCCTAAGGACCCTTTTGACC AGTCTCAGGGTCCGAGGTATTC
U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
GATAI1 CTGTCCCCAATAGTGCTTATGG GAATAGGCTGCTGAATTGAGGG
TFRC ACCATTGTCATATACCCGGTTCA CAATAGCCCAAGTAGCCAATCAT
GYPA ACAACTTGCCCATCATTTCTCTG TCAGTCGGCGAATACCGTAAG
HSPAIA GCCGAGAAGGACGAGTTTGA GAAGCTCCAAAACAAAAACAGCA
HSPAIB GGTGGATTAGGGGCCTTTGT ACAGCAGCAAAGTCCTTGAGT
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG
CDKNIA TGTCCGTCAGAACCCATGC AAAGTCGAAGTTCCATCGCTC
CDKN1B TGCAGGTCGCTTCCTTATTCC TGCAGGTCGCTTCCTTATTCC
BIP CTGGGTACATTTGATCTGACTGG GCATCCTGGTGGCTTTCCAGCCATTC

twice by cold PBS. For apoptosis detection, cells were stained by
Annexin V-FITC and Propidium Iodide (PI) apoptosis detection Kit
(BD Biosciences, United States) following the kit guidelines, and
analyzed by NovoCyte flow cytometer (NovoCyte, Aglient,
United States). For cell cycle analysis, cells were fixed by iced
70% ethanol at 4°C overnight, washed once with cold PBS,
stained in PI (Solarbio, Beijing, China) for 30 min in the dark at
RT (25°C). The cellular DNA content was analyzed by NovoCyte
flow cytometer (NovoCyte, Aglient, United States).

2.4 Western blotting and
inhibitory compound

Western blotting was done using protocol, as previously described
(Dinghuan et al.,, 2024). The antibodies used are as follows: PARP
(#9542), Casepase3 (#9662) were purchased from Cell Signaling
Technology (United States), HSP70 (#382481); CHOP (#381679),
BIP (#200310-4F11), AKT (#342529), p-AKT (#341790) were
purchased from ZEN-BIO (China); the goat anti-mouse (5470 S)
and goat anti-rabbit (5151 S) HRP conjugated antibodies were
purchased from Cell Signaling Technology (United States); the
GAPDH (#AB-P-R001) antibody was obtained from Hangzhou
Goodhere Biotechnology. Antibody dilution conducted according
to the manufacturer’s instructions. The Oddessy system (Li-Cor
Biosciences, Lincoln, United States) used for protein detection.
VER155008(HY-10941) was obtained from MedChemExpress
(New Jersey, United States) and used in some experiments.

2.5 RNA preparation and RT-gPCR

Total RNA was isolated from cells with TRIzol reagent (Life
Technologies, Thermo Fisher Scientific, United States) and then
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cDNA was synthesized using PrimeScript RT Reagent Kit (Cat#
RRO047A, Takara, Beijing, China) according to manufacturer’s
protocol. RT-qPCR performed by FastStart University SYBR
Green Master kit (Cat# 04913914001, Roche, Germany) and the
Step One Plus Real-time PCR system (Applied Biosystems, Thermo
Fisher Scientific, US). The expression of the test genes was calculated
as relative values to the expression of GAPDH using the 2744
method. Three biological replicates were conducted for all RT-qPCR
experiments, each in triplicate (n = 3). Primer sequences were shown
in Table 1 (Some primer sequences were acquired from PrimerBank,
Harvard University).

2.6 RNAseq data analysis

RNAseq was performed using HEL cells treated with L1 (1 uM) or
0.5% DMSO for 24 h and sequencing was performed on Illumina
NovaSeq 6000 with PE150 (read length) by Shanghai Origingene
Institute (China). After obtaining clean reads, HISAT2 (v2.1.0) was
used to align clean reads to the reference genome sequence.
Differentially expressed genes (DEG) were identified from RNAseq
data and used for the KEGG pathway analysis. Heatmaps were used to
display the list of genes associated with protein processing in
endoplasmic reticulum signaling. The interaction of HSPAIA/
HSPA1B with other proteins were analyzed using STRING
database (https://cn.string-db.org) (Szklarczyk et al, 2022). The
setting interaction was graphed using the default medium
confident setting (a minimum required interaction of 0.4).

2.7 Computer docking

The protein crystallographic structure of receptors,HSP70/
HSPA1A (PDB:3JXU) and HSPA1B(PDB:7F4Z), were derived
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shHSPA1A-1 GGTGCTGACCAAGATGAAGGATTCAAGAGATCCTTCATCTTGGTCAGCACCTTTTTT
shHSPA1A-2 ‘ AGCGCAACGTGCTCATCTTTGTTCAAGAGACAAAGATGAGCACGTTGCGCTTTTTTT
shHSPA1A-3 ‘ CCATGACGAAAGACAACAATCTTCAAGAGAGATTGTTGTCTTTCGTCATGGTTTTTT

shRNA Forward

shFLI1-1 GCGTCATGTTCTGGTTTGAGATTTCAAGAGAATCTCAAACCAGAACATGACGTTTTTT
shFLI1-2 GCCCTTCTGACATCTCCTACATTTCAAGAGAATGTAGGAGATGTCAGAAGGGTTTTTT
shFLI1-3 GCCCATGAACTACAACAGCTATTTCAAGAGAATAGCTGTTGTAGTTCATGGGTTTTTT

from www.rcsb.org. Auto Dock tools 1.5.7 (software available at
https://autodocksuite.scripps.edu/adt/, California, United States)
(Morris et al., 2009) was used to compute the molecular docking
simulations according to the standard protocol in the software
documentation. Furthermore, the interacting sites were analyzed
using PyMOL2.1 analysis (software available at https://pymol.org/,
New York, United States) (Schrodinger and DeLano, 2020).

2.8 ShRNA expression

The construction of shRNA lentiviruses was generated, as
previously described (Dinghuan et al., 2024). Briefly, ssHSPAIA
and scrambled control vectors were constructed by inserting the
shHSPA1A and scrambled DNAs into the restriction enzyme
sites within the Plent-GFP expression vector that was obtained
from Vigene Bioscience (Rockville, MD, United States). To
produce life lentivirus particles, the shHSPA1A expression
plasmid (10 ug), packing plasmids psPAX2 (5 pg) and pMD2.
G (10 pg) (Addgene plasmid #12259 and #12260) were co-
transfected into HEK293T cells using Lipofectamine 2000
(Thermo Fisher Scientific, US). Forty-eight hours post
transfection, the supernatants were harvested, the viruses were
centrifuged at 1,000 g for 10 min, filtered through 0.45 pm filters,
and then used for infection freshly or stored at —80°C. For
leukemic cells infections, the HEL cells were cultured in the
presence of fresh virus-containing supernatant. After 24 h
infection, the medium was changed and positive cells were
selected after with medium containing puromycin (5 pg/mL)
(Solarbio, Beijing, China). The sequences of shHSPAIA
lentiviruses are as follow:

ShFLI1 HEL cells were acquired as previous description (Song
et al., 2018).

2.9 Statistical analysis

A statistical analysis was performed using a two tailed Student’s
t-test or a one-way ANOVA with Tukey’s Post Hoc Test with
significance considered at p < 0.05 (*), p < 0.01 (* *), and by
analysis of variance using GraphPad Prism9 software (software
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available  at  https://www.graphpad.com/features, ~ Boston,
United States). The 95% Confidence Intervals (CI) of the sample
mean were constructed. For the independent samples T-test,
Cohen’s d is determined by calculating the mean difference
between two group.

3 Results

3.1 L1 inhibits leukemia cell growth and
proliferation

Our group synthesized and modified a new DIM derivative, L1
(Figure 1A). After treatment for 72 h, L1 significantly and selectively
inhibited the growth of the leukemia cell lines HEL, K562, and CEM-
C1, with ICs values of 1.15 + 0.03 uM, 2.71 + 0.46 uM, and 1.26 +
0.27 uM, respectively. However, the ICs, values were greater than
20 uM in the breast cancer cell lines MBA-MD-231 and MCF7,
while the ICs, values in the normal cell lines HL7702 was 3.36 +
0.46 uM, respectively (Figure 1B). L1 impaired the viability of
erythroleukemia HEL cells in a time- and concentration-
dependent manner (Figure 1C). As the concentration of
L1 increased, HEL cell morphology became more fragmented
(Figure 1D). These data revealed that L1, a DIM derivative, has
antileukemic activity.

3.2 L1 induces G2/M cell cycle arrest and cell
apoptosis in HEL cells

The cell cycle and apoptosis were analyzed via flow cytometry in
the HEL cell line. L1 induces cell cycle arrest at the G2/M phase after
L1 treated for 24 h (Figure 2A). The rates of the G2/M phase were
18.00% + 3.25%, 26.58% + 0.43% and 45.40% + 2.84% at
L1 concentrations of 0.25 puM, 0.5 pM, and 1 pM, respectively.
L1 induced cell apoptosis at concentrations of 0.5 uM and 1 pM for
24 h and 48 h. The apoptosis rates were 17.27% + 4.2% and 22.39% +
4.2% at 0.5 uM, and 23.59% * 2.06% and 32.45% =+ 5.54% at 1 uM for
24 h and 48 h, respectively (Figure 2B). These data suggested that
Ll inhibits leukemia through induction of cell cycle arrest
and apoptosis.
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FIGURE 1

L1 inhibits the cell growth and proliferation in leukemia cell lines. (A) The chemical structure of L1. (B) The IC50 values of L1 on leukemia cell lines

HEL, K562,CEM-C1at 72 h were detected by MTT assay. The cells were treated with various concentrations of L1 (0.3125, 0.625, 1.25, 2.5, 5 uM) at 72 h. (C)
The optical density changes of viable HEL cells after L1 treated were analyzed by MTT assay in concentration-dependent manner. The cells were treated
with various concentrations of L1 (0.5, 1, 2 yM) at 24 h, 48 h and 72 h. (D) The morphology images in the HEL cells were observed by microscopy after

L1 treatment (0.25, 0.5, 1, 2 uM) for 24 h. Scale bar: 40 ym *p < 0.05, **p < 0.01, ***p < 0.001, versus control, n = 3.
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FIGURE 2

L1induces cell cycle arrest and apoptosis. (A) The HEL cells were incubated with different concentrations of L1 (0.25, 0.5, 1 uM) for 24 h, stained with
propidium iodide, and analyzed by flow cytometry. (B) The HEL cells were treated with various concentrations of L1 (0.25, 0.5, 1 uM) for 24 h and 48 h, and
stained with annexin V-FITC and PI. The flow cytometry was used to detect the cell apoptosis. *p < 0.05, **p < 0.01, ***p < 0.001, versus control, n = 3.
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L1induces ER stress-mediated apoptosis. (A) The KEGG pathway enrichment analysis for the DEGs. (B) The DEGs heatmap of protein processing in
endoplasmic reticulum. (C) The PPI interaction network of genes in pivotal pathway. The nodes denoted the core genes and the edges displayed the
interactions between these genes. (D) The expression levels of BIP, PARP, Cleaved-PARP, Casepase3, Cleaved-casepase3, Bcl-2 and BID were detected
by Western blot assay. The HEL cells were treated with vehicle control, L1 (0.25, 0.5, 1 pM) for 24 h. GAPDH expression was used as reference
standard for quantification. The relative expression (RD) was used to quantified the protein expression. (E, F) The expression levels of XBP1 and DDIT3
were detected by RT-qPCR. The HEL cells were treated with vehicle control (0.1%DMSO) or L1 (1 uM) for 24 h *p < 0.05, **p < 0.01, ***p < 0.001, versus

control, n = 3.

3.3 L1 induces endoplasmic reticulum (ER)
stress-mediated apoptosis

To confirm the mechanism of L1 in HEL cells, the KEGG
pathway of differentially expressed genes (DEGs) enriched in
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protein processing in the endoplasmic reticulum was identified
via transcriptome sequencing analysis (Figure 3A). After
L1 treatment, the expression levels of the heat shock protein
genes HSP90B1, HSPAS5, and HSPH1 were upregulated, and the
expression levels of the XBP1 and DDIT3 genes related to the
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L1 modulated miR145/Fli-1/AKT signaling pathway. (A) The expression levels of FLI1, AKT and p-AKT were detected by Western blot assay. The HEL
cells were treated with vehicle control, L1 (0.5, 1, 2 uM) for 24 h. GAPDH expression was used as reference standard for quantification. The relative
expression (RD) was used to quantified the protein expression. (B—H) The expression levels of FLI1, miR145, GATAL, TFRC, GYPA, CDKN1A and CDKN1B
were detected by RT-gqPCR. The HEL cells were treated with vehicle control (0.1%DMSO) or L1 (1 uM) for 24 h. (I) The inhibition rates of L1 in the HEL
cells with shFLI1 knockdown were detected by MTT assay. The HEL cells were treated with vehicle control (0.1%DMSO) or L1 (1, 2, 4 uM) for 72 h. (J) The
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various concentrations of L1 (0.5, 1, 2, 4 uM) at 72 h *p < 0.05, **p < 0.01, ***p < 0.001, versus control, n = 3.

endoplasmic reticulum pathway were also upregulated, as shown
in the heatmap (Figure 3B). Protein-protein interaction analysis
via STRING analysis revealed that the greatest number of edges for
HSPA1A/HSPA1B were connected to other DEGs, which may be
pivotal nodes regulating the endoplasmic reticulum stress-related
apoptosis pathway (Figure 3C). Immunology analysis revealed that
the expression of the endoplasmic reticulum-related protein BIP
(Grp78/HSPAS5) was upregulated. The expression levels of the
apoptosis-related proteins cleaved-PARP, cleaved-caspase three
and Bid were also increased, whereas the expression of the
(Figure 3D).
Moreover, the gene expression levels of XBP1 and DDIT3 were
increased by L1, as detected by RT-qPCR (Figures 3E,F). These
data revealed that L1 induced apoptosis by modulating the
ER stress.

antiapoptotic protein BCL-2 was decreased

3.4 L1 modulated the miR145//FLI1/AKT
signaling pathway to suppress proliferation

FLI1, an ETS transcription factor, is involved in mediating

hematopoietic stem/progenitor cell differentiation, death and
inflammation and is aberrantly expressed in HEL cells (Ben-
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David et al., 1990; Li et al,, 2015). The protein expression level of
Fli-1 was downregulated (Figure 4A), while its transcription
remained unchanged in the LI-treated HEL cells (Figure 4B).
The microRNA, miR145, has
negatively regulate FLII protein expression (Liu et al., 2019). The

been previously shown to

expression of miR145 increased after L1 treatment (Figure 4C). This
data suggests that inhibition of FLII results in upregulation of
miR145, further leading to downregulation of FLII. Moreover,
the GATA1, TFRC and GYPA genes are downstream targets of
FLII to mediate erythroid differentiation, and their gene promotors
are negatively regulated by Fli-1 (Athanasiou et al., 2000).
Accordingly, the gene expression levels of GATAl, TFRC and
GYPA were increased in L1-treated HEL cells (Figures 4D-F). In
FLI1-knockdown cells (shFLI1) (Supplementary Figures 1A,B), the
inhibition rate of the L1-treated group was greater than that of the
scramble group (Figure 41), and the ICs, values were 5.16 + 1.23 for
the shFLI1 group and 1.92 + 0.25 for the scramble group. These data
suggested that L1 mediated erythroid differentiation through the
miR145/FLI1 pathway.

The PI3K/AKT
overexpressed in many cancers, including AML (Darici et al.,
2020; He et al., 2021). As shown in several studies, FLI1 is a
transcription factor involved in the activation of the AKT

signaling pathway is abnormally
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L1 induced cell apoptosis in dependence on Hsp70. (A) The expression level of HSP70 was detected by Western blot assay. The HEL cells were

treated with vehicle control, L1 (0.5, 1, 2 yM) for 24 h. GAPDH expression was used as reference standard for quantification. The relative expression (RD)
was used to quantified the protein expression. (B) The expression levels of HSPALA and HSPA1B were detected by RT-qPCR. The HEL cells were treated
with vehicle control (0.1%DMSO) or L1 (1 uM) for 24 h. (C—E) Docking analysis of the interaction between L1 and HSPA1A by AutoDock software. The

hydrogen bond between L1 and amino acid residues Glu268. (F) The binding affinity and capacity for the active sites of HSPA1A and HSPA1B. (G) The cell
apoptotic rate was detected by the flow cytometry assay after Llcotreated with HSP70 inhibitor VER155008 and L1. The HEL cells were treated with
VER155008 (0.5 uM) and L1 (2 uM) for 72 h, and stained with annexin V-FITC and PI. (H) The protein expression levels of HSP70, BIP, PARP, Cleaved-PARP,
FLI1and AKT were detected by Western blot assay. GAPDH expression was used as reference standard for quantification. The relative expression (RD) was
used to quantified the protein expression. (I-K) The expression levels of HSPA1A, BIP, FLI1 were detected by RT-gPCR. The HEL cells were treated with
shHSPA1A knockdown. (L) The inhibition rates of L1 in the HEL cells with shHSPA1A knockdown were detected by MTT assay. The HEL cells were treated

with vehicle control (0.1%DMSO) or L1 (0.625,1.25 uM) for 72 h *p < 0.05, **p < 0.01, ***p < 0.001, versus control, n = 3. (M) The anti-erythroleukemia
mechanism of L1.

signaling pathway (Lakhanpal et al., 2010; Vecchiarelli-Federico  expression levels of CDKNIA and CDKNI1B, which are
et al, 2017). Western blotting analysis revealed that the downstream of the AKT pathway, were also increased by L1
expression of AKT and p-AKT was downregulated after  (Figures4H,I). These data suggested that L1 mediated cell growth
L1 treatment (Figure 4G). RT—qPCR revealed that the gene  through the FLII/AKT pathway.
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3.5 L1 induced cell apoptosis in dependence
on HSP70

To explore the relationship between L1 and HSP70 (HSPA1A,
HSPAI1B), Western blotting and RT-q—PCR were used to test the
expression of HSP70 after L1 treated. The gene expression level of
HSPAIA was increased and the gene expression level of HSPAIB
was decreased, while protein expression level of HSP70 was almost
unchanged (Figures 5A,B). The AutoDocking data revealed that
L1 could bind to the HSPAIA protein around the ATP-binding
domain (ABD), and the lowest binding energy was —6.62 kcal/mol
(Figures 5C-F). The hydrogen bond was between L1 and the amino
acid residue Glu268 of HSPA1A. L1 could also bind to the HSPA1B
protein, and the lowest binding energy was -7.39 kcal/mol
(Supplementary Figures 2A-D). The hydrogen bond was between
L1 and the amino acid residue GLY339 of HSPAI1B. The ATP-
competitive HSP70 inhibitor VER155008 forms hydrogen bonds in
the ATP binding pocket with the amino acid residues Arg272 and
Arg342 (Schlecht et al, 2013). VER155008 did not induce cell
apoptosis at the indicated concentration (VER155008, 0.5 pM)
and was used to treat cells with L1 (2 uM), and the apoptosis
rate of the cotreated group was decreased to 15.82% compared with
that of the L1-treated group at 32.52% (Figure 5G). Western blotting
analysis also revealed that the expression level of the apoptosis-
related protein cleaved-PARP was decreased in the cotreated group
(Figure 5H). The protein expression of HSP70 in the cotreated group
recovered compared with that in the VERI155008 alone group
(Figure 5H). After HspAlA was knocked down in HEL cells)
(Figure 5I), the cell inhibition rates were lower than those in the
scramble groups when L1 was incubated with these knockdown cells
for 72 h (Figure 5L). These data suggest that HSP70 may be involved
in L1-induced apoptosis.

Interestingly, immunoblotting analysis revealed that the protein
expression levels of AKT and FLI1 were higher in HEL cells co-
incubated with L1 and the HSP70 inhibitor VER155008 than in L1-
treated HEL cells alone (Figure 5H). These data suggested that
L1 also regulated the FLII/AKT pathway dependent of HSP70.
Thus, L1 HSP70-dependent
downregulated the expression of FLI1 to mediate its downstream

induced apoptosis  and
signaling pathway (Figure 5M). We found that the gene expression
levels of BIP and FLI1 were decreased in the HSPA1A-knockdown
cells (Figures 5I-K). The mechanism by which HSP70 is associated
with expression of BIP and FLII is an interesting area of research
that may need to be further explored in future studies.

4 Discussion

Although chemotherapeutic medications are widely used for
cancer treatment, serious side effects are harmful to patients. Natural
chemicals derived from fruits, vegetables and spices are important
sources for the development of novel anticancer medications with
lower toxicity and greater efficiency. Recently, DIM, which has been
derived from cruciferous vegetables such as broccoli, Brussels
sprouts, and cauliflower, has been used as a cancer
chemopreventive supplement to improve outcomes in clinical
therapeutics (Reyes-Herndndez et al.,, 2023). DIM has also shown

great potential for anti-proliferative and anti-inflammatory activities
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in several types of cancers, involving NF-kB, Akt, Wnt, PI3K/Akt/
mTOR, and AhR signaling (Biersack, 2020; Reyes-Hernandez et al.,
2023), and several synthetic derivatives of DIM with increased
bioavailability have been used as active antitumor compounds
(Biersack, 2020). For example, a DIM derivative DIM-C-pPhtBu,
1,1-bis(3'-indolyl)-1-(p-t-butylphenyl) methane, activates ER stress
in many cancer cells, including human oral cancer (Shin et al., 2011),
pancreatic cancer (Abdelrahim et al, 2006), colon cancer
(Chintharlapalli et al., 2004), ovarian cancer (Lei et al., 2006) and
breast cancer (Vanderlaag et al., 2008; Vanderlaag et al.,, 2010).
Mechanistically, DIM-C-pPhtBu was shown to inhibit growth and
induce apoptosis in cancer cells through both PPAR gamma-
dependent and  PPAR  gamma-independent  pathways
(Chintharlapalli et al, 2006; Lei et al, 2006). Recently some
have found DIM-C-pPhtBu
dysfunction, leading excessive mitophagy in head and neck

researchers induced lysosomal
cancer HNC cells (Kang et al., 2021). Few studies have explored
the effects of DIM and its derivatives on leukemia. Only several
researchers have shown that DIM is a potential compound for
therapeutic application in human T-ALL cells (Shorey et al,
2012) and that a ring-substituted diindolylmethane derivative
(DIM  #34), 1,1-bis [3’-(5-methoxyindolyl)]-1-(p-t-butylphenyl)
methane, selectively induced apoptosis in AML cells through
regulation of the extracellular signal-regulated kinase and the
PPAR gamma-dependent signaling pathways (Contractor et al,
2005). In our study, a new DIM derivative L1, methyl (E)-3-(3-
((1H-indol-3-yl)methyl)-1H-indol-2-yl)acrylate, was synthesized in
our group. L1 showed very low ICs, value of 1.15 + 0.03 uM in the
erythroleukemia HEL cells. FLI1 was a specific target in the
erythroleukemia HEL cells (Ben-David et al, 1990), and
FLI1 inhibitors were developed to treat erythroleukemia in our
previous study (Li et al, 2015) Herein, we showed that
L1 selectivity and specificity inhibited the erythroleukemia HEL
cell line rather than in breast cancer cell lines. L1 exhibited
significant antileukemic activities through modulation of the
FLI1/AKT pathway, which displayed a novel and different
mechanism from other DIM derivatives.

The unfolded protein response (UPR) leads to the accumulation
of misfolded/unfolded proteins toward a degradative pathway to
rebuild ER homeostasis, while persistent ER stress triggers pro-
apoptotic conditions (Gong et al., 2017). ER stress modulates tumor
progression and plays an important role in tumor development by
initiating a persistent UPR as an adaptive pathway (Zhang et al.,
2024). Previous reports demonstrated that modulating ER pressure
sensors or UPR-related factors obviously improved the sensitivity of
malignant tumors to cytotoxic agents, targeted drugs and
immunotherapy (Zhang et al.,, 2023). Therefore, focusing on ER
stress-related pathways is highly important for anticancer therapy.
Some studies have shown that DIM inhibits cancer cells through
inducing ER stress (Sun et al., 2004; Savino et al., 2006; Zhang et al.,
2017; Heo et al,, 2018; Munakarmi et al., 2021). DIM inhibited
hepatocellular carcinoma by activating caspase-dependent apoptosis
via ER stress and the UPR (Munakarmi et al., 2021). DIM modulates
cyclin D1 expression by activating ER stress in colorectal cancer cells
(Zhang et al., 2017). DIM-C-pPhtBu increases ER stress by inducing
the protein expression of BIP and CHOP in many cancers
(Abdelrahim et al,, 2006; Shin et al, 2011; Kang et al., 2021).
Targeting ER stress is a potential therapeutic strategy for AML
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treatment. The (epi)genetic modifications and genomic instability,
oncogenic signaling, and metabolic rewiring in leukemia are
involved in the activation of ER stress and each of the three UPR
signaling pathways (IREla, PERK, and ATF6a) (Féral et al., 2021).
High expression levels of XBP1 and BIP have been detected in
certain AML subtypes (Schardt et al., 2011), while DDIT3(CHOP) is
a specific protein involved in ER stress. Transcription factors such as
ATF4, ATF6, and XBP1 are translocated into the nucleus to increase
DDIT3 transcription. This process leads to the initiation of the
apoptotic signaling pathway via the activation of the expression of
the apoptosis-related protein cleaved-PARP and the suppression of
the antiapoptotic protein B-cell lymphoma-2 (Bcl-2) (Zhang et al.,
2023). In our study, we found that the DIM derivative L1 induced ER
stress-mediated apoptosis in erythroleukemic HEL cells, with
upregulated RNA expression of XBP1 and DDIT3 and
upregulated protein expression of BIP. Meanwhile, the expression
of the apoptosis-related protein cleaved-Casepase3 and cleaved-
PARP were activated and Bcl-2 was decreased in the Ll-treated
HEL cells.

GRP78/BIP, a member of the heat shock protein 70 (HSP70)
family, is located at the membrane of the endoplasmic reticulum.
GRP78 acts as an important sensor in the activation of the UPR
and interacts with the UPR proteins IRE1 and PERK, preventing
the binding of GRP78 to its cochaperones (Kopp et al., 2019). The
GRP78 protein shares 60% homology with the proteins of the
HSP70 family, including the ATP-binding domain (ABD) and
substrate-binding domain (SBD) (Ibrahim et al, 2019). In this
study, we showed that L1 induced ER stress and upregulated the
expression of GRP78. HSP70/HSPAL1 is encoded by the stress-
inducible genes (HSPA1A,HSPA1B and HSPA1L) (Ucisik-Akkaya
et al., 2010). The coding regions of HSPA1A and HSPAIB are
closely linked, stress-inducible and intronless genes, only
promoter and 3'UTR sequences are different. According to
their sequences, HSPA1A and HSPAIB have more than 99%
identical sequences except two (E110D, N499 S) of their
641 amino acids (Daugaard et al, 2007; Smith et al., 2007).
HSPA1A (HSP70-1) is expressed at low levels in unstressed
normal cells and overexpressed at the plasma membrane in
several types of tumor cells to promote tumor development
(Vostakolaei et al., 2021). HSPA1B was induced in the in
erythroleukemia cells and knockdown of HSPAI1B accelerated
leukemic cell proliferation (Wang et al, 2024). In this study,
the gene expression level of HSPA1A was increased and the
gene expression level of HSPAIB was decreased after
L1 treated. Interestingly, the HSP70 inhibitor VER155008 at the
designated concentration (0.5 M) inhibited the expression of the
HSP70 protein but did not directly induce apoptosis, reversing the
increase in the percentage of apoptotic cells in the L1 and
VER155008 cotreated group. The HSP70 inhibitor VER155008
targets the binding pocket and forms hydrogen bonds with the
amino acid residues Arg272/Arg342 of HSP70 (Schlecht et al.,
2013). In the AutoDocking analysis, L1 was shown to be inserted
into the ATP binding pocket of HSPA1A and HSPA1B, which
formed the hydrogen bond near the binding domain of
VER155008 and may work as an antagonist of VER155008.
Although the protein expression level of HSP70 was stable after
L1 treatment, the inhibition rates were decreased in HSPAIA-
knockdown HEL cells. Therefore, these data suggest that
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HSP70 may be associated with the ER stress-induced apoptosis
induced by L1. However, the precise mechanism of L1 how to bind
HSP70 (HSPA1A and HSPA1B) and then participate in ER stress-
induced apoptosis needs to be further explored in future studies.

FLI1, a transcription factor (TF), is involved in the
development of the hematopoietic system, and its
overexpression leads to the progression of erythroleukemia.
FLI1
differentiation and inflammation (Athanasiou et al., 2000; Li
et al., 2015). Therefore, FLI1 is considered a specific and

important target for erythroleukemia treatment. In our study,

contributes to the regulation of proliferation,

we found that L1 inhibited the protein expression of FLI1 and
regulated its downstream gene expression of GATAI, TFRC and
GYPA, which are associated with erythroid differentiation. In
previous research, our group showed that downregulation of
FLI1 protein expression by FLIl inhibitors may be involved
of miR145
mechanism (Liu et al, 2019), and miR-145 is a negative

upregulation through a posttranscriptional
regulator that mediates the expression of FLIl. Herein, we
revealed that the downregulated expression of FLI1 was
of miR145 with

overexpressed in the

accompanied by increased expression
FLI1 is

erythroleukemia cell lines, which leads to increased cell

L1 treatment. Moreover,
proliferation partly through the activity of the AKT pathway
(Vecchiarelli-Federico et al.,, 2017). We also revealed that the
protein expression levels of AKT were decreased and that the
RNA expression levels of the downstream genes CDKNIA and
CDKNI1B were increased in the Ll-treated group. Accordingly,
these data demonstrated that L1 inhibited HEL cell growth in part
through the miR145/FLI1/AKT signaling pathway.

5 Conclusion

DIM is a cancer chemopreventive supplement that can
improve outcomes in clinical therapeutics. In this study, we
revealed the anti-erythroleukemia activities of a novel DIM
derivative L1 in vitro. L1 induced ER stress-mediated apoptosis
and mediated the FLI1/AKT pathway in HEL cells. L1 was then a
potential candidate for erythroleukemia therapies. However,
further improve in the bioavailability of L1 and its effectiveness
in vivo may be needed in future studies to demonstrate its
therapeutic benefit.
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SUPPLEMENTARY FIGURE S1

(A) The RNA expression level of FLI1 were detected by RT-qPCR. (B) The
protein expression level of FLI1 was detected by Western blot assay. GAPDH
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expression (RD) was used to quantified the protein expression. *p < 0.05,
**p < 0.01, ***p < 0.001, versus control, n = 3.
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residues Gly339. The binding affinity and capacity for the active sites
of HSPA1B.
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