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Drug combination therapies have shown promising therapeutic efficacy in
complex diseases and demonstrated the potential to reduce drug resistance.
However, the vast number of possible drug combinations makes it difficult to
screen them all in traditional experiments. Although computational models have
been developed to address this challenge, existingmethods often struggle to fully
capture the complex biological interactions underlying drug synergy, limiting
their predictive accuracy and generalization. In this study, we proposed MD-Syn,
a computational framework based on a multidimensional feature fusion method
and multi-head attention mechanisms. Given drug pair–cell line triplets, MD-Syn
considers both one- and two-dimensional feature spaces simultaneously. It
consists of a one-dimensional feature embedding module (1D-FEM), a two-
dimensional feature embedding module (2D-FEM), and a deep neural network-
based classifier for synergistic drug combination prediction. MD-Syn achieved an
area under the receiver operating characteristic curve (AUROC) of 0.919 in five-
fold cross-validation, outperforming the state-of-the-art methods. Furthermore,
MD-Syn showed comparable results across four independent datasets. In
addition, the multi-head attention mechanisms not only learn embeddings
from different feature aspects but also focus on essential interactive feature
elements, improving the interpretability of MD-Syn. In summary, MD-Syn is an
interpretable framework to prioritize synergistic drug combination pairs using
chemical and cancer cell line gene expression profiles. To facilitate broader
community access to this model, we have developed a web portal (https://
labyeh104-2.life.nthu.edu.tw/) that enables customized predictions of drug
combination synergy effects based on user-specified compounds.
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Highlights

• We proposed MD-Syn, a novel computational framework for synergistic drug
combination prediction based on multidimensional feature fusion methods and
multi-head attention mechanisms, which achieved an area under the receiver
operating characteristic curve (AUROC) of 0.919 in five-fold cross-validation.
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• For the one-dimensional feature embedding module (1D-
FEM) in MD-Syn, we applied a large-scale chemical
language pre-trained model and a multi-layer perceptron
classifier to obtain representations for small molecules and
cancer cell lines, respectively.

• For the two-dimensional feature embedding module (2D-
FEM) in MD-Syn, we used a graph convolutional network
(GCN) to obtain the graph representation for each drug and
leveraged the node2vec algorithm to learn the node
embedding for each protein in the protein–protein
interaction (PPI) network.

• We designed a trans-pooling block in the 2D-FEMwith multi-
head attention mechanisms that could not only capture
representations from different feature aspects but also
improve the interpretability of MD-Syn.

• By integrating two modalities of each input feature type, MD-
Syn achieved a 2.6% improvement in AUROC for synergistic
drug combination prediction, demonstrating the effectiveness
of multidimensional feature integration.

Introduction

Most human diseases are caused by complex biological processes
that cannot be cured entirely by a single drug treatment strategy.
Compared to single-agent therapies, drug combinations have the
potential to improve efficacy, reduce host toxicity and side effects,
and overcome drug resistance (Chou, 2006). The drug combination
will present synergistic effects and may have antagonistic or additive
effects (Foucquier and Guedj, 2015). In the clinical setting,
synergistic effects may enable patients to be treated with a lower
dose of each drug, resulting in fewer adverse side effects while still
gaining the desired outcome, whereas antagonistic effects may cause
patients to experience unexpected adverse side effects. Combination
therapies have been explored to combat drug resistance, which
cancer patients often encounter with single-agent treatments (Jin
et al., 2023). Accurately predicting synergy and antagonism for
drug–drug interactions (DDIs) is crucial for safer and improved
patient prescriptions. However, the vast number of potential drug
pairs makes it challenging to screen them all experimentally. In
addition, the discovery of drug combination screening using
traditional experimental methods would be very challenging in
terms of time, cost, and efficiency. Therefore, developing
computational methods to facilitate the discovery of synergistic
drug combination therapies is needed.

Chemical fingerprints can describe specific properties of drugs,
including substructure, related targets, and side effects, using a series
of binary digits. Of note, natural language processing methods have
been utilized on the Simplified Molecular Input Line Entry System
(SMILES, chemical language), e.g., word2vec (Mikolov et al., 2013)
and seq2seq (Xu et al., 2017). However, one-dimensional (1D)
sequence data could not capture the spatial structure of
molecules. In other words, the constructed models cannot learn
structural information directly from the input data. To address the
lack of spatial information, researchers have applied graph neural
networks (GNNs) to obtain molecular graph representations with
message passing (Gilmer et al., 2017). Our input graph-like data
would consist of node (atom) features and an adjacency matrix. The

idea is to update each node feature vector by aggregating themessage
vectors passed from its neighbor nodes along the edge of the graph.
In this way, we can effectively obtain two-dimensional (2D)
information of the drug.

The advent of high-throughput sequencing enables scientists to
study cancer phenotypes from cancer omics, such as genomics or
transcriptomics data. The omics data are also commonly used to
construct cell line features for synergistic drug combination
predictions. The cell line features play an indispensable role since a
drug combination validated on one cell line may not be effective on
another (Meng et al., 2010). Jeon et al. (2018) used mutations, copy
number variations, and expression of genes in cancer-related pathways
to depict cell line features, combined with pharmacological information
to predict whether synergism or antagonism exists between two drugs.
Celebi et al. (2019) leveraged multi-omics data and compound
properties to build a machine learning model to predict anti-cancer
drug combinations. Preuer et al. (2018) proposed a deep learning-based
model, DeepSynergy, integrating chemical descriptors and cell line gene
expression profiles to predict drug synergies. AuDNNsynergy applied
three autoencoders to obtain gene expression, copy number variation,
and mutation embeddings for individual cancer cell lines, combined
with physicochemical features as input to a deep neural network that
predicts the synergy score for pairwise drug combinations (Zhang T.
et al., 2021). In addition, Yang et al. (2024) used drug characteristics
such as 1D Morgan fingerprints and 3D atomic point cloud feature
embeddings, along with cancer cell line attributes including gene
expression and mutation data, to develop a multimodal deep
learning model using bidirectional long short-term memory (Bi-
LSTM) and gated multilayer perceptron (gMLP) networks for
predicting synergistic anti-cancer drug combinations. These above-
mentioned methods only consider extracting chemical property–cell
line associations from one perspective but neglect a holistic view of
interactions among features. Meanwhile, in the practical use of the
model, it is sometimes difficult to obtain comprehensive information
about the cell line, except for gene expression profiles. The
protein–protein interaction (PPI) network is essential in
physiological and pathological processes, including cell proliferation,
differentiation, and apoptosis (Nero et al., 2014). The potential
predictability of drug combinations by considering drug–drug and
drug–disease relationships in the PPI has been demonstrated using
the network-based approach (Cheng et al., 2019). Yang et al. (2021)
proposed GraphSynergy, an adapted graph convolutional network
(GCN) component, to encode the higher-order topological
relationship in the PPI network of protein modules targeted by a
pair of drugs and the protein modules associated with a specific cancer
cell line (Yang et al., 2021). Based on GCN, PRODeepSyn integrates the
PPI network with omics data to construct low-dimensional dense
embedding for cell lines to predict anti-cancer synergistic drug
combinations (Wang X. et al., 2022). However, there are still few
studies considering the topological features of the drug and PPI network
together in drug synergy prediction.

Attention mechanisms can improve prediction performance and
enhance the interpretability of neural network structures (Wiegreffe and
Pinter, 2019). For the graph-structured data, the graph attention
network (GAT) introduces masked self-attention layers into the
node feature propagation step and multi-head attention mechanisms
to stabilize the learning process (Veličković et al., 2017). Moreover, the
transformer, based solely on attention mechanisms, is beneficial to
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parallel computing, outperforming recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) (Vaswani et al., 2017).
Instead of chemical information-based approaches, Liu and Xie (2021)
used the target-based representation of drug molecules inferred from
drug–target associations in the PPI network to implement TranSynergy
based on attention mechanisms for synergistic prediction. Using the
encoder of the transformer to learn drug features, DeepTraSynergy is a
multitask prediction model that simultaneously considers synergy loss,
toxic loss, and drug–target interaction loss during the training of a
synergistic drug combination prediction model (Rafiei et al., 2023).
Based onmulti-head attentionmechanisms, DTSyn, a dual-transformer
encoder model, could capture different associations using a fine-
granularity transformer encoder and a coarse-granularity
transformer encoder for identifying novel drug combinations (Hu
et al., 2022). It is noted that these proposed models have leveraged
drug–target information as input, which may pose limitations when
dealing with novel drugs whosemolecular targets are unknown, thereby
reducing their applicability in real-world experiments. Wang et al.
(2023) implemented AttenSyn, which exploited the attention-based
pooling module to learn interactive information between drug pairs to
strengthen their representations in synergistic drug combination
prediction without considering the biological network information.
Assisted by multi-layer perceptron (MLP) and GAT, DeepDDS can
capture gene expression patterns and chemical substructures for
identifying synergistic drug combinations toward specific cancer cell
lines (Wang J. et al., 2022). Instead of applying the transformer attention
module, the attention mechanisms of GAT learn molecular graph
representations, resulting in the loss of interactive information
between drug pairs. AttentionDDI has been proposed to predict
DDI based on a Siamese self-attention multi-model neural network
that integrates multiple drug similarity measures (Schwarz et al., 2021).
Combining drug feature representations into four different drug fusion
networks, MDF-SA-DDI predicted DDI based on the auto-encoders
with transformer self-attention mechanism (Lin et al., 2021). By fine-
tuning a pre-trained language model, DFFNDDS applied a multi-head
attentionmechanism and a highway network to predict synergistic drug
combinations (Xu et al., 2023). Monem et al. (2023) integrated multi-
view graph data to build amulti-task learningmodel for simultaneously
predicting a synergy score and a synergy class label. It should be noted
that they applied multi-view learning to obtain the graph embedding,
which involves taking the direct sum of the vector spaces corresponding
to the views based on graph properties by considering different nodes
and their possible paths. However, the computational time would
increase with the complexity of graph data and also lead to the loss
of edge features ofmolecular graphs. The above-mentioned studies have
shown that attention mechanisms could improve not only the
performance of models but also the interpretability ability in
synergistic drug combination predictions. Meanwhile, those studies
have demonstrated that using only 1D and 2D drug features leads to
satisfactory prediction performance, but the integration of both
dimension features together has been discussed less frequently.

In this study, we propose MD-Syn, a novel framework that
incorporates a multidimensional feature fusion method and multi-
head attention mechanisms to predict synergistic drug combinations.
As illustrated in Figure 1, MD-Syn merges the 1D and 2D
representations of both drugs and proteins and feeds them into a
fully connected neural network classifier tomake a binary prediction (1:
synergy; 0: antagonism). Comprehensive experiments have been

designed and conducted on MD-Syn, showing its feasibility for
synergy drug discovery and precision medicine practically.

Materials and methods

Dataset

The drug–drug interaction dataset was collected from the study by
O’Neil et al. (2016). The dataset presented by O’Neil represents a
comprehensive, unbiased, high-throughput screening of drug
combinations, including 23,052 drug pairs, where each pair contains
two chemicals and a cancer cell line. Among the dataset, there are
39 cancer cell lines across 7 different cancer types. The number of
unique drugs was 38, which consists of 24 FDA-approved drugs and
14 experimental drugs (Preuer et al., 2018). The data preprocessing
procedure followed the method described by Hu et al. (2022).The
synergy score for each drug pair was calculated using the Combenefit
tool (Di Veroli et al., 2016), which implements the well-established
Loewe additivity model to assess whether a combination exhibits
synergy or antagonism. The duplicated drug pairs were averaged as
a unique drug pair. Considering class balancing, 10 is a threshold to
classify drug pair–cell line triplets. Triplets with synergy scores higher
than 10 were positive (synergistic) pairs, indicating stronger-than-
additive effects, and those less than 0 were negative (antagonistic)
pairs, representing less-than-additive combined effects. Hence, we
obtained 13,243 unique triplets, including 6,188 positive pairs and
7,055 negative pairs that covered 38 unique drugs and 31 cancer cell
lines. Moreover, the gene expression profiles of cancer cell lines are
obtained from the Cancer Cell Line Encyclopedia (CCLE) (Ghandi
et al., 2019). As our cancer cell line features, we took the landmark
genes, which can cover 82% of the whole transcriptome information in
the library of integrated network-based cellular signatures (LINCS)
L1000 platform (Subramanian et al., 2017). Additionally, we considered
four independent datasets—Oncology Screen (O’Neil et al., 2016),
DrugCombDB (Liu et al., 2020), DrugComb (Zagidullin et al.,
2019), and Merck (O’Neil et al., 2016)—to further validate the
generalization ability of MD-Syn. All four independent datasets
underwent the same data preprocessing workflow as the O’Neil
dataset. A total of 1,919 drug synergy records were acquired for the
Oncology Screen dataset, involving 21 unique drugs and 12 cell lines. In
the DrugCombDB dataset, there are 36,626 drug combination records
covering 358 drugs and 68 cell lines. The DrugComb dataset contains
74,924 drug combinations, including 10,643 synergistic and 64,281
antagonistic cases, spanning 1,221 unique experimental drugs and 53
cancer cell lines. The Merck dataset includes 12,411 drug combinations
involving 36 unique drugs and 31 unique cell lines.

Computational framework of MD-Syn

In this study, we take advantage of the multidimensional feature
fusionmethod to build a synergistic drug combination predictionmodel,
MD-Syn. The overall architecture of MD-Syn is shown in Figure 1. The
network architecture mainly contains (1) a 1D-FEM, (2) a 2D-FEM, and
(3) a fully connected neural network classifier for DDI prediction. We
consider drug pairs and cell line features in two different dimensional
views. After concatenating the representations generated by the 1D-FEM
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and 2D-FEM, we fed them into a fully connected neural network to
predict synergistic drug combinations under a certain cell line. The details
for each module are discussed in the following section.

One-dimensional feature embedding
module for drug pairs and cell lines

The 1D-FEM is presented in Figure 2. We first consider our input
features, drug pair–cell line, in 1D view. Given the chemical SMILES
for each drug, we leveraged MOLFORMER (Ross et al., 2022), which
has been trained on over 1.1 billion molecules based on the
transformer-based language model, to obtain chemical
representations by fine-tuning the pre-trained model. The learned
chemical representation from MOLFORMER would be a vector with
768 dimensions. For the cell line information in the drug pair–cell line
triplet, based on the 978 landmark genes for each cancer cell line, we
utilized three layers of MLP to gain the compressed embedding,
resulting in 256 dimensions. After that, we merged the chemical
representations of the drug pair, learned from MOLFORMER, with
the compressed embedding of the corresponding cancer cell line as
our 1D feature.

Two-dimensional feature embedding
module for drug pairs and cell lines

To obtain the representation of the drug pair–cell line triplet in
2D view, we designed a 2D-FEM, including a GCN module, a

node2vec module, and a graph-trans pooling module, as shown
in Figure 3.

Graph convolutional network in the 2D-FEM
for molecular graph representation learning

Based on the RDkit (Landrum, 2013), we could convert the
SMILE format of each drug to a molecular graph. A molecular
graph could be represented as G � (V, E), where V �
v1, v2,/, vv{ } and E � V × V denote the node and edge sets,
respectively. Let X ∈ RV×c be the feature matrix of all nodes,
where V is the number of nodes and c is the dimension of the
node feature in a molecular graph, and A ∈ RV×V be the adjacency
matrix. We aim to learn the molecular graph representation.
Given a molecular graph G, it consists of nodes (atoms) and
bonds (edges). The inputs of the GCN include the node feature
matrix X ∈ RV×c and the adjacency matrix A∈ RV×V. The layer-
wise propagation process is shown in Equation 1:

h l+1( ) � σ D−1
2AD−1

2h l( )W l( )( ), (1)

where A is the adjacency matrix of the molecular graph, Dii � ∑
j
Aij

is a degree matrix, and Wl is a layer-specific trainable weight matrix.
hl ∈ RV×d is the matrix of activation, where d is the compressed
dimension in the lth layer, and h0 � X. σ(·) denotes the rectified
linear unit (ReLU) activation function. In this study, we applied a two-
layer GCN, followed by ReLU after each layer to capture the spatial
information of the molecular graph in the GCN module.

FIGURE 1
Architecture of MD-Syn. The computational framework of MD-Syn consists of a one-dimensional feature embedding module (1D-FEM), a two-
dimensional feature embedding module (2D-FEM), and a fully connected neural network classifier for DDI prediction. For the 1D-FEM, molecular
representations were obtained by fine-tuning MOLFORMER based on the chemical SMILES; the cell line representations were compressed using an MLP
model. For the 2D-FEM, the molecular graph representations were learned using the GCN module, and the PPI representations were computed
using the node2vec module. After combining both drug pair and PPI network 2D representations, they are further processed through a graph-trans
poolingmodule with attentionmechanisms to generate the final 2D features. Consequently, by concatenating the output from the 1D-FEM and 2D-FEM,
we could utilize multidimensional features to train a neural network for synergistic drug combination prediction.
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Node2vec in the 2D-FEM for
protein–protein network
representation learning

In this study, we constructed the PPI network (Oughtred
et al., 2019), consisting of 978 landmark genes in LINCS L1000
(Subramanian et al., 2017). The nodes represent proteins, and the
edges indicate biological associations between proteins. To

obtain the representation of each node (protein), we applied
the node2vec algorithmic framework (Grover and Leskovec,
2016), which could return feature representations that
maximize the likelihood of preserving network neighborhoods
of nodes in a low-dimensional feature space. Given our PPI
network graph, the node2vec module in the 2D-FEM could
assist us in obtaining a 128-dimensional feature representation
for each node (protein).

FIGURE 3
2D-FEM ofMD-Syn. The training dataset ofMD-Syn is based on drug pair–cell line triplets. We use aGCN to capture spatial information based on the
molecular graph for each drug. Considering the PPI network, which comprises 978 landmark genes, we utilize the node2vec algorithm to obtain the
embedding of each node. Given a drug pair–cell line triplet, we concatenate the 2D feature of drug pairs with PPI network embedding as the input of the
graph-trans pooling module with a multi-head attention mechanism, which can generate more informative representations based on different
feature aspects. We regard the output of the graph-trans pooling module as our used 2D features of the drug pair–cell line triplet.

FIGURE 2
1D-FEM ofMD-Syn. We leverage drug pair–cell line triplets to train MD-Syn. For one-dimensional drug features, we utilize a chemical language pre-
trained model, MOLFORMER, to obtain each drug representation based on the SMILES strings. The cell line information is depicted using the
978 landmark genes in the LINCS L1000 platform. They are compressed using MLP. After concatenating both representations, we can obtain drug
pair–cell line 1D features.
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Graph-trans pooling with attention
mechanisms in the 2D-FEM for drug
pair–cell line representations

For the graph-trans pooling module in the 2D-FEM, we applied
two transformer encoder layers with multi-head attention
mechanisms, followed by a node mean pooling strategy and a
fully connected layer to generate 2D representations, as shown in
Figure 3. The input of the graph-trans pooling module is a matrix
concatenated by molecular graph representation and PPI network
embeddings. An attention function maps a query and a set of
key–value pairs to an output, where the query, key, and value are
all derived from the input matrix. In this study, instead of using a
single attention function, we applied multi-head attention
mechanisms, which project the queries, keys, and values h times
using differently learned query, key, and value parameter matrices.
For each of the projected processes, we project our input matrix X
into a higher dimensional space to produce a query matrix, a key
matrix, and a value matrix, as presented in Equations 2–4:

Qi � XWQ
i , (2)

Ki � XWK
i , (3)

Vi � XWV
i , (4)

where X denotes the input matrix. WQ
i , W

K
i , and WV

i are the
trainable parameter matrices of the ith head. Qi, Ki, and Vi

stand for the query, key, and value matrices computed by the
linear transformation of X for the ith head, respectively.

The output of the attention mechanisms for the ith head is
described in Equation 5:

Attention Qi, Ki, Vi( ) � softmax
QiKT

i��
dk

√( )Vi, (5)

where dk is the hidden dimensionality of the query and key.
Meanwhile, the attention score matrix is the output of the
softmax activation function. In this study, we used the multi-
head attention function. There are four parallel attention layers
(heads) to extract associations from different aspects. Therefore, we
concatenate all heads and project them once again to obtain the final
values, as shown in Equation 6:

Multihead Q,K,V( ) � Concat Head1, Head2, Head3, Head4( )WO,

(6)
where Headi � Attention(Qi, Ki, Vi) and WO is a trainable
parameter matrix. It is noted that the output of the multi-head
attention layer includes a residual connection, which may help
mitigate the gradient vanishing problem, and is followed by layer
normalization. In addition to attention sub-layers, each transformer
encoder contains a two-layer feed-forward neural network. Hence,
the transformer encoder output can be depicted as shown in
Equation 7:

TransEncout � XW1 + b1( )W2 + b2, (7)
where W2, b1, W2, and b2 are trainable parameters. After going
through two transformer encoder layers, we conducted node mean
pooling, followed by a feed-forward neural network with the ReLU
activation function to generate the 2D representation, which

captures the spatial information of the molecular graph and the
PPI network.

Drug–drug interaction prediction for the
synergistic effect of drug combination under
specified cell lines

For predicting DDI with a synergistic effect, we built an MLP
classifier, as shown in Figure 1. We regard the concatenation of the
outputs from the 1D-FEM and 2D-FEM representations as a0,
which serves as the input to the MLP classifier. The output of
the last hidden layer of the MLP classifier is y′, which is shown in
Equation 8:

y′ � Wout · al + bout, (8)
where Wout and bout are the weight matrix and bias vector,
respectively, whose values are updated using the backpropagation
algorithm during the training process. al is the output of the
previous hidden layer, which is depicted in Equation 9:

al � σ Wlal−1 + bl( ), (9)

whereWl and bl are the weight matrix and bias vector of the lth hidden
layer, respectively. σ(·) is the ReLU activation function. Given the ith
drug pair–cell line triplet, to compute the probabilities of the synergistic
or antagonistic effect, there is a softmax function that follows the output
of the last hidden layer, as shown in Equation 10:

yout
i � ey

′
i

∑K
j�1e

y′j
, (10)

where K denotes the number of predicted classes (synergistic or
antagonistic). Furthermore, for the training process of the MLP
classifier, our goal is to minimize the cross-entropy loss. It is defined
in Equation 11:

L � −∑N
i�1
yi log yout

i( ), (11)

where yi is the true label of the ith drug pair–cell line triplet andN is
the total number of training samples.

Result

Experimental hyperparameter setup

MD-Syn is a computational framework that owns a significant
amount of adjustable hyperparameters. It would be challenging to
exhaustively explore all hyperparameter combinations. Thus, we
decided to focus on several key hyperparameters and investigated
their impacts on the MD-Syn performance of AUC in five-fold
cross-validation. During the hyperparameter tuning process, we
found that the learning rate had the largest impact on the MD-
Syn performance (Supplementary Figure S1). It should be noted that
all transformer encoder layers shared the same hyperparameters,
including the number of attention heads and the feed-forward
hidden layer size. The search space and the optimal
hyperparameter settings are shown in Table 1.
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Performance comparisons betweenMD-Syn
and baseline methods

To address the performance of MD-Syn, we compared MD-Syn
with state-of-the-art methods and traditional machine learning
models. Among the state-of-the-art methods, the deep learning-
based models include DeepDDS (Wang J. et al., 2022) and
DeepSynergy (Preuer et al., 2018), while the transformer-based
model includes DTSyn (Hu et al., 2022). Moreover, traditional
machine learning models include random forest (RF) (Breiman,
2001), XGBoost (Chen and Guestrin, 2016), and AdaBoost (Freund
and Schapire, 1997). The experimental results of both state-of-the-
art methods and traditional machine learning models were obtained
using the same input datasets as MD-Syn. We followed the original
parameter settings by referring to corresponding studies for state-of-
the-art methods and used the default setting for the traditional
machine learning models. Furthermore, for comparing the
robustness of models, all the evaluation metrics for each method
were computed based on five-fold cross-validation, as shown in
Table 2. For MD-Syn, the average of the area under the receiver
operating characteristic curve (AUROC), area under the
precision–recall curve (AUPR), accuracy (ACC), true positive
rate (TPR), and F1-score (F1) are 0.919, 0.910, 0.843, 0.840, and
0.833, respectively. The bar plot for performance comparisons
between baseline methods and traditional machine learning-based
models is shown in Supplementary Figure S2. MD-Syn
outperformed other methods with the best evaluation metrics.
Specifically, compared to the transformer-based model DTSyn, it
achieves a 3.9% increase in AUROC, a 4.4% increase in AUPR, and a
4.9% increase in F1, which showed that MD-Syn had superior
performance in predicting synergistic drug combinations.

Performance evaluation based on the leave-
one-out cross-validation

In this study, we define “leave-one-out” as a group-level cross-
validation strategy, in which an entire group of biologically relevant

units (such as drug combinations, drugs, cell lines, or tissue types) is
excluded one at a time from training and used for testing in a cross-
validation setup. This differs from conventional leave-one-out cross-
validation but allows us to systematically evaluate the generalization
ability of MD-Syn across different biological inputs.

To assess the generalization ability of MD-Syn on unseen drug
combinations, we performed a leave-drug-combination-out five-
fold cross-validation. Specifically, we first counted the frequency
of all unique drug combinations in our dataset and selected the top
15 most frequent combinations. These 15 drug combinations were
grouped into five subsets, each containing three drug combinations.
In each fold, one subset was left out for testing, while the other drug
combinations were used for training. Moreover, other baseline
methods were under the same data-splitting rule. As shown in
Table 3, MD-Syn achieved the highest average AUROC, AUPR,
and ACC scores of 0.865, 0.855, and 0.806, respectively, followed by
DTSyn. Meanwhile, it can be observed that the deep learning-based
and transformer-based models significantly outperformed
traditional machine learning models.

In addition, the exclusion of drug combinations during training
does ensure that MD-Syn has not encountered particular
pharmaceuticals. Therefore, we conducted a leave-drug-out five-fold
cross-validation experiment to evaluate themodel’s predictive ability on
unseen drugs based on the multidimensional feature representations
learned from previously seen drugs. Here, we selected the top five most
frequently appearing drugs, namely, BEZ-235, dasatinib, MK-8669,
bortezomib, and erlotinib, in our dataset. For each fold of the training
process, we only removed one out of the top five drugs. Drug pair–cell
line triplets containing the specified drug would be put into the testing
set, and the remaining drug pair–cell line triplets would be in the
training set. In Table 3, for MD-Syn, the average values of AUROC,
AUPR, and ACC are 0.754, 0.780, and 0.666, respectively. Meanwhile,
we find that RF, XGBoost, and AdaBoost perform slightly better on
average in terms of AUPR and ACC in the leave-drug-out experiment.
However, MD-Syn still shows acceptable prediction performance.
Specifically, considering the top five most frequent drugs in our
dataset, MD-Syn achieved the best predictive performance on
erlotinib with an AUROC value of 0.813 (Supplementary Table S2),
indicating the model’s ability to maintain strong performance on
specific drugs when sufficient data are available.

To access the generalization capability on unseen cell lines, we
also performed leave-cell-line-out five-fold cross-validation
experiments. Similarly, based on the cell line counts in our
dataset, we selected the top five cell lines, namely, CAOV-3,
LNCaP, MSTO, T47D, and XR751, which appeared most
frequently to form five separate testing sets. In each training fold,
we selected the drug pair–cell line triplets that do not belong to the
designated cell line as the training set, while the remaining triplets
are used as the testing set. The average values of AUROC, AUPR,
and ACC are 0.804, 0.761, and 0.737, respectively (Table 3). These
values indicate that MD-Syn exhibits a generalization capability to
previously unseen cell lines. In particular, analyzing the five most
prevalent cell lines in our dataset, MD-Syn demonstrated superior
predictive performance on CAOV-3 with an AUROC value of 0.878
(Supplementary Table S3), implying the model’s capacity to sustain
robust performance on specific cell lines when adequate data
are present.

TABLE 1 Hyperparameters of MD-Syn.

Hyperparameter Value

GCN hidden unit [78,128,128]; [78,256,128]; and
[78,512,128]

Pooling method Mean and max

Learning rate 1e-2; 1e-3; 1e-4; 5e-4; 1e-5; and 1e-6

Dropout rate No dropout; 0.1; 0.2; 0.3; 0.4; 0.5

Number of attention heads 1; 2; and 4

Type of activation function ReLU and GELU

Number of transformer encoder layers 1; 2; 3; and 4

Hidden size in the transformer encoder 32; 64; and 128

Drug 1D feature embedding method MOLFORMER and ChemBERTa

The bold values represent the optimal parameters.
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Furthermore, we evaluated MD-Syn under more rigorous
scenarios by performing leave-tissue-out five-fold cross-
validation experiments. In particular, we selected the top five
tissue types that appeared most frequently and sequentially
eliminated all the cell lines associated with one of them. The
top five tissue types are the lung, skin, intestine, ovary, and breast.
During the training process, we sequentially consider each of the
top five tissues as the testing set. Compared to baseline methods,
MD-Syn has the highest average AUROC and AUPR scores of
0.869 and 0.852, respectively (Table 3). Moreover, MD-Syn and
other baseline methods hold a better prediction performance in
intestine-correlated drug combinations within these five tissue
types (Supplementary Figure S3).

Performance evaluation on
independent datasets

To further evaluate the generalization ability, we used the dataset
proposed by O’Neil et al. (2016) to train MD-Syn and baseline

methods and then leveraged the Oncology Screen (O’Neil et al.,
2016), DrugCombDB (Liu et al., 2020), DrugComb (Zagidullin et al.,
2019), and Merck (O’Neil et al., 2016) as the independent datasets
for model validation. In Table 4, MD-Syn has the highest AUROC
scores of 0.967 and 0.625 for the Oncology Screen and
DrugCombDB datasets, respectively. Compared to other deep
learning-based and transformer-based methods, MD-Syn
demonstrated its better generalization abilities on external datasets.

We also conducted an overlap analysis between the training
dataset (O’Neil) and the four independent datasets. The Oncology
Screen dataset shares 71.3% of its entries with the training set.
DrugCombDB has an overlap of approximately 0.3%, while
DrugComb and Merck datasets show a 0% overlap. These
findings help explain the relatively higher performance observed
on the Oncology Screen and underscore the importance of
evaluating non-overlapping datasets to assess true generalization.
Although DeepDDS performed better in the Merck and DrugComb
datasets, this may be attributed to a higher similarity between its
training data and these two datasets, potentially leading to an
advantage during evaluation.

TABLE 2 Performance comparisons of MD-Syn and baseline methods.

Method AUROC AUPR ACC BACC PREC TPR KAPPA F1

MD-Syn 0.919 ± 0.005 0.910 ± 0.006 0.843 ± 0.007 0.843 ± 0.007 0.827 ± 0.009 0.840 ± 0.014 0.684 ± 0.014 0.833 ± 0.008

DeepDDS 0.879 ± 0.021 0.86 ± 0.018 0.799 ± 0.023 0.797 ± 0.023 0.803 ± 0.019 0.757 ± 0.027 0.595 ± 0.046 0.779 ± 0.022

DTSyn 0.880 ± 0.004 0.866 ± 0.005 0.799 ± 0.008 0.798 ± 0.007 0.789 ± 0.011 0.779 ± 0.017 0.596 ± 0.015 0.784 ± 0.007

DeepSynergy 0.852 ± 0.007 0.841 ± 0.009 0.771 ± 0.008 0.771 ± 0.008 0.748 ± 0.014 0.779 ± 0.022 0.541 ± 0.016 0.763 ± 0.009

Random Forest 0.782 ± 0.006 0.822 ± 0.009 0.783 ± 0.006 0.782 ± 0.006 0.772 ± 0.010 0.760 ± 0.010 0.564 ± 0.013 0.766 ± 0.010

XGBoost 0.780 ± 0.008 0.822 ± 0.011 0.782 ± 0.007 0.780 ± 0.008 0.776 ± 0.022 0.752 ± 0.027 0.562 ± 0.015 0.763 ± 0.013

AdaBoost 0.761 ± 0.008 0.807 ± 0.007 0.764 ± 0.008 0.761 ± 0.008 0.763 ± 0.013 0.718 ± 0.021 0.524 ± 0.015 0.740 ± 0.009

The bold values represent the optimal parameters.

TABLE 3 Performance evaluation based on leave-drug combination-out, leave-drug-out, leave-cell line-out, and leave-tissue-out experiments.

Method Leave-drug
combination-out

Leave-drug-out Leave-cell line-out Leave-tissue-out

AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR ACC

MD-Syn 0.865 ±
0.105

0.855 ±
0.098

0.806 ±
0.128

0.754 ±
0.068

0.780 ±
0.269

0.666 ±
0.158

0.804 ±
0.054

0.761 ±
0.056

0.737 ±
0.050

0.869 ±
0.016

0.852 ±
0.020

0.779 ±
0.018

DeepDDS 0.801 ±
0.099

0.798 ±
0.188

0.592 ±
0.274

0.735 ±
0.058

0.767 ±
0.239

0.461 ±
0.174

0.802 ±
0.067

0.744 ±
0.074

0.724 ±
0.044

0.850 ±
0.013

0.830 ±
0.023

0.767 ±
0.014

DTSyn 0.809 ±
0.066

0.839 ±
0.173

0.727 ±
0.069

0.733 ±
0.055

0.775 ±
0.216

0.671 ±
0.117

0.792 ±
0.070

0.749 ±
0.062

0.704 ±
0.031

0.849 ±
0.014

0.832 ±
0.019

0.750 ±
0.028

DeepSynergy 0.748 ±
0.099

0.792 ±
0.231

0.708 ±
0.095

0.662 ±
0.045

0.732 ±
0.056

0.462 ±
0.028

0.774 ±
0.075

0.733 ±
0.072

0.712 ±
0.043

0.842 ±
0.009

0.826 ±
0.017

0.758 ±
0.011

Random
Forest

0.596 ±
0.108

0.835 ±
0.101

0.738 ±
0.06

0.644 ±
0.052

0.786 ±
0.199

0.621 ±
0.149

0.714 ±
0.056

0.742 ±
0.052

0.720 ±
0.054

0.780 ±
0.015

0.822 ±
0.022

0.780 ±
0.015

XGBoost 0.627 ±
0.136

0.827 ±
0.137

0.771 ±
0.048

0.654 ±
0.058

0.790 ±
0.191

0.644 ±
0.122

0.711 ±
0.054

0.739 ±
0.049

0.717 ±
0.053

0.768 ±
0.014

0.810 ±
0.020

0.767 ±
0.014

AdaBoost 0.612 ±
0.120

0.788 ±
0.195

0.740 ±
0.059

0.630 ±
0.045

0.775 ±
0.204

0.685 ±
0.110

0.672 ±
0.041

0.706 ±
0.043

0.677 ±
0.041

0.708 ±
0.014

0.762 ±
0.024

0.708 ±
0.015

The bold values represent the optimal parameters.

Frontiers in Pharmacology frontiersin.org08

Ge et al. 10.3389/fphar.2025.1564339

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1564339


Model ablation study

MD-Syn takes multidimensional feature representations into
account. The architecture of MD-Syn comprises the 1D-FEM and
2D-FEM. The 2D-FEM contains a graph-trans pooling module that
introduces transformer encoder layers with multi-head self-
attention mechanisms. To comprehensively investigate the
contribution of each module, we conducted the ablation study
for the following different combinations of modules: (1) MD-Syn
with the 1D-FEM only, (2) MD-Syn with the 2D-FEM only, and (3)
MD-Syn with the 2D-FEMwithout the graph-trans pooling module.
The corresponding results of evaluation metrics for synergistic drug
combination prediction are shown in Table 5.

In MD-Syn with the 1D-FEM only (MD-Syn-1D-FEM), we utilized
the large-scale chimerical pre-trained model MOLFORMER (Ross et al.,
2022) to obtain 1D representation for each drug based on its SMILES.
The cell line information was depicted through 978 landmark genes,
compressed using an MLP. After concatenating these 1D
representations, the later MLP classifier module would predict
synergistic drug combinations. The overall evaluation metrics are
shown in Table 5. The average AUROC, AUPR, ACC, and F1 values
are 0.893, 0.878, 0.809, and 0.800, respectively. MD-Syn with the 2D-
FEM only (MD-Syn-2D-FEM) focused on using 2D representations
generated using the GCN and node2vec algorithms based on molecular
graphs and the PPI network comprising 978 landmark genes,
respectively. MD-Syn-2D-FEM achieved average AUROC, AUPR,
ACC, and F1 scores of 0.846, 0.827, 0.764, and 0.754, respectively.
Furthermore, the last variant combination is the 2D-FEM without the
graph-trans pooling module (2D-FEM without graph-trans). The
performance of the 2D-FEM without graph-trans is inferior to the
MD-Syn-2D-FEM, indicating that multi-head self-attention
mechanisms facilitate MD-Syn to capture different feature aspects,
resulting in better model performance. Moreover, by incorporating
2D information from the input feature type, the performance of

MD-Syn improves by 2.6% in AUROC. The multidimensional
feature representation consideration leads us to achieve higher
evaluation metrics in synergistic drug combination prediction. In
summary, the ablation study of these three variants in five-fold cross-
validation demonstrates the importance of each component in MD-Syn
and the effectiveness of graph-trans pooling in the 2D-FEM.

Interpretation of MD-Syn based on hidden
embeddings and attention scores

The DDI prediction module in MD-Syn is a fully connected
neural network responsible for performing binary classification of
the drug pair–cell line triplets as either synergistic or antagonistic.
To understand whether our DDI prediction module truly learns
some patterns based on the integrated multidimensional feature
representations, we extracted outputs generated from 512 and
32 hidden layers. After that, we utilized a dimension reduction
algorithm, UMAP (McInnes et al., 2018), to project our embedding
into 2D space for each drug pair–cell line triplet (Figure 4). After the
training process, we found that synergistic and antagonistic drug
pairs were distinctly separated into two clusters. In other words,
MD-Syn could identify the differences between synergistic and
antagonistic effects of drug pair–cell line triplets. This
phenomenon offers evidence showing that MD-Syn is capable of
making synergistic drug combination predictions.

The 2D-FEM contains a graph-trans pooling module built by
two transformer encoder layers using multi-head self-attention
mechanisms. We analyzed the attention scores for each atom in
the molecular graph and each gene in the PPI network. In this study,
we used a synergy drug combination of MK-2206 with MK-8669 in
the cell line MDA-MB-436 and an antagonism drug combination of
5-fluorouracil (5-FU) and sorafenib in the cell line HT29 as
examples. MK-2206 is a potent allosteric inhibitor of AKT, a

TABLE 4 Performance evaluation metrics for independent datasets.

Method Oncology screen DrugCombDB Merck DrugComb

AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR ACC AUROC AUPR ACC

MD-Syn 0.967 0.968 0.891 0.625 0.638 0.582 0.604 0.6 0.56 0.586 0.146 0.776

DeepDDS 0.900 0.907 0.804 0.578 0.582 0.541 0.996 0.994 0.985 0.702 0.238 0.434

DTSyn 0.921 0.92 0.841 0.609 0.635 0.575 0.5 0.746 0.507 0.5 0.545 0.91

The bold values represent the optimal parameters.

TABLE 5 Results of evaluation metrics in the ablation study.

Method AUROC AUPR ACC BACC PREC TPR KAPPA F1

MD-Syn 0.919 ± 0.005 0.910 ± 0.006 0.843 ± 0.007 0.843 ± 0.007 0.827 ± 0.009 0.840 ± 0.014 0.684 ± 0.014 0.833 ±
0.008

MD-Syn-1D-FEM 0.893 ± 0.005 0.878 ± 0.006 0.809 ± 0.006 0.810 ± 0.005 0.783 ± 0.015 0.819 ± 0.021 0.671 ± 0.010 0.800 ± 0.007

MD-Syn-2D-FEM 0.846 ± 0.010 0.827 ± 0.017 0.764 ± 0.015 0.765 ± 0.021 0.734 ± 0.019 0.776 ± 0.073 0.528 ± 0.038 0.754 ± 0.042

MD-Syn-2D-FEM-without graph-
trans

0.824 ± 0.005 0.808 ± 0.014 0.748 ± 0.010 0.743 ± 0.010 0.779 ± 0.037 0.649 ± 0.054 0.489 ± 0.020 0.706 ± 0.020

The bold values represent the optimal parameters.
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serine/threonine kinase that plays a central role in the PI3K/AKT/
mTOR pathway. Aberrant activation of AKT signaling is frequently
observed in various human cancers, including breast, lung, and
prostate cancers, contributing to enhanced tumor growth, survival,
and therapeutic resistance. MK-2206 inhibits the phosphorylation of
AKT isoforms (AKT1/2/3), effectively shutting down pro-survival
signals (Xu et al., 2013). MK-8669 is a selective inhibitor of mTOR,
which is a critical downstream effector of PI3K/AKT signaling.
mTOR drives protein synthesis, metabolic adaptation, and
angiogenesis, processes that are often hyperactivated in cancers.
MK-8669 directly inhibits mTORC1, suppressing the
phosphorylation of S6 and 4EBP1, thereby reducing cellular
proliferation and tumor growth (Xu et al., 2013). The
combination of MK-2206 and MK-8669 addresses the limitations
of monotherapy by providing a dual blockade of the PI3K/AKT/
mTOR pathway. MK-2206 prevents the feedback reactivation of
AKT induced by MK-8669, leading to a more comprehensive
suppression of tumor-promoting pathways. In WU-BC4 and
WU-BC5 xenograft models, this combination significantly
reduced tumor proliferation and angiogenesis, with a pronounced
effect observed in PTEN-deficient tumors, which are particularly
reliant on PI3K/AKT signaling (Xu et al., 2013). Furthermore, 5-FU
is a cornerstone chemotherapeutic agent used for decades in the
treatment of various solid tumors, including colorectal, gastric,
breast, and head and neck cancers. It primarily acts as an
antimetabolite by inhibiting thymidylate synthase (TS), thereby
blocking DNA synthesis and leading to tumor cell death. 5-FU
also incorporates into RNA and DNA, further impairing cellular
functions (Longley et al., 2003). Sorafenib is a multi-kinase inhibitor
approved for the treatment of advanced renal cell carcinoma,
hepatocellular carcinoma, and differentiated thyroid cancer. It
targets multiple tyrosine kinases involved in tumor angiogenesis
(VEGFR and PDGFR) and cell proliferation (RAF kinases). In Caco-
2 cell line in vitro experiment, 5-FU and sorafenib showed
antagonism, which exhibited pathway divergence and potential
physical interference (Wehler et al., 2013).

After obtaining the attention score matrix based on multi-head
self-attention mechanisms, we performed min–max normalization
along columns. According to the learned attention score, we further

aim to investigate how the essential genes in the PPI network affect
synergistic and antagonistic drug combinations. For the synergistic
combination of MK-2206 and MK-8669, MK-2206 exhibited higher
attention weight toward PAK6, ERO1A, and HACD3, while MK-
8669 exhibited high attention on BLMH, PAK6, and HACD3.
Furthermore, PAK6, ERO1A, HACD3, and BLMH are functionally
associated with protein PI3K/AKT signaling (Huang et al., 2022; Yang
et al., 2020), ER stress (Liu et al., 2023), lipid metabolism (Wang et al.,
2024), and protein degradation (Okamura et al., 2011), respectively.
Notably, PAK6 received intense attention from both MK-2206 and
MK-8669, suggesting that it may act as a convergent effector
downstream of the PI3K/AKT/mTOR signaling pathway
(Figure 5A). In contrast, the antagonistic combination of 5-FU and
sorafenib demonstrated distinct attention patterns. 5-FU showed strong
attention to ERO1A and BLMH, implicating its involvement in
oxidative stress and protein degradation pathways. These may reflect
ER stress and proteostasis disruption triggered by nucleoside analog
toxicity. Meanwhile, sorafenib highlighted genes such as PAK6,
ADGRG1, and ERO1A. PAK6, a serine/threonine kinase involved in
cytoskeletal regulation and MAPK signaling, showed sharply elevated
attention from specific sorafenib atoms, suggesting direct pathway
convergence. ADGRG1, a G-protein-coupled receptor associated
with cell migration (Zhang S. et al., 2021), also received considerable
localized attention. As ERO1A is involved in ER oxidative folding and
redox homeostasis, its relevancemay reflect a stress-relatedmechanism;
therefore, the overlap in attention on ERO1A may not reflect
complementarity but rather independent activation of ER stress
under distinct regulatory contexts. Specifically, 5-FU-induced
activation of ER stress is primarily driven by nucleoside
misincorporation into RNA and DNA, leading to proteostasis
disruption and unfolded protein response (UPR). In contrast,
sorafenib likely induces ER stress indirectly through the inhibition of
kinase pathways and modulation of cell survival signals. Such
conflicting downstream signaling, particularly across MAPK, ER
stress, and GPCR-mediated migration axes, may underlie the
observed antagonism between these two agents (Figure 5B).

Functional group interactions have been recognized as
influential factors in drug synergy and antagonism (Yin et al.,
2014; Lee et al., 2013). To interpret how molecule structure

FIGURE 4
Visualization of hidden embeddings using UMAP. (A) 512-dimensional hidden layer embeddings visualized using UMAP for synergistic and
antagonistic drug pair–cell line triplets. (B) 32-dimensional hidden layer embeddings visualized using UMAP for synergistic and antagonistic drug
pair–cell line triplets.
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influences predicted synergism or antagonism, we traced back atom-
level attention weights to the corresponding chemical substructures.
We specifically focused on regions of high attention intensity in the
atom–atom interaction heatmaps, identifying key functional groups
likely responsible for pharmacodynamic interactions. Molecular
structures with atom index annotation are included in
Supplementary Figure S4. In the synergy pair MK-2206 and MK-
8669, a highly focused region was identified between atoms C:
20–30 of MK-2206 and C:10–20 of MK-8669 (Figure 5C). The
corresponding atoms on MK-2206 form a substituted phenyl ring
adjacent to the triazolopyrimidine core, while those on MK-8669
largely constitute an ester moiety. The elevated attention in this
region suggests a non-covalent interaction hot spot. In contrast, this
ester region is not associated with a specific high-affinity target; its
chemical flexibility and polarity may allow MK-8669 to engage MK-
2206’s aromatic system adaptively, enhancing the binding
orientation. In contrast, for the antagonistic pair 5-FU and
sorafenib, intense cross-attention was detected between 5-FU’s C:
2–N:3 segment and sorafenib’s trifluoromethyl group (C:22–F:23, F:
24, and F:25) (Figure 5D). These regions correspond to the electron-
rich pyrimidinone nitrogen in 5-FU and the strongly electron-
withdrawing CF3 moiety in sorafenib. Both structures possess
high polarity and electronic activity, which may lead to
electrostatic repulsion or steric hindrance, potentially
contributing to the observed antagonistic effect between 5-FU
and sorafenib. This atomic-level attention mapping chemically
interprets drug synergy and antagonism, linking structural motifs
to functional outcomes. Together, these multiscale analyses

demonstrate how MD-Syn’s attention mechanisms can reveal
mechanistically relevant patterns in synergistic and antagonistic
interactions, offering insights beyond performance metrics.

MD-Syn: a web portal to predict the
synergistic effect of drug combinations
based on chemical structures and cancer
cell line gene expression profiles

To make it available to the public, we have developed a web
portal based on Shiny for Python, enabling users to predict the
synergistic effects of drug combinations through a web interface.
The platform processes the input drugs against the model’s training
data using MD-Syn, generating results for 1,178 drug synergy
combinations: 38 (the number of O’Neil dataset unique drugs) ×
31 (the number of cancer cell lines) = 1,178. Upon completion of
MD-Syn computation, the web interface returns combination results
specific to the user-selected cell lines, providing predictions of
synergistic or antagonistic effects for each drug combination. To
utilize the platform, users must first obtain SMILES notation for
their selected drugs from chemical databases such as PubChem or
ChEMBL. Users then input this information and other required data
(drug name and job title) into the web portal’s information fields and
select their target cell line from among 31 cancer cell lines for
prediction using the MD-Syn model. The prediction results are
displayed in a comprehensive table showing drug combinations, cell
lines, and whether their interactions are synergistic or antagonistic.

FIGURE 5
Heatmaps based on the attention scores. (A) Heatmap for the drug combination of MK-2206 and MK-8669 versus essential genes based on the
attention scores. (B)Heatmap for the drug combination of 5-FU and sorafenib versus essential genes based on the attention scores. (C)Heatmap for MK-
2206 versus MK-8669 within the drug combination pair based on the attention scores. (D) Heatmap for 5-FU versus sorafenib within the drug
combination pair based on the attention scores.
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For more detailed analysis, users can examine the drug synergy
probability distribution interactive plot, which offers features such
as adjustable displays of drug combinations through a slider bar and
visualization download options. Detailed instructions for using the
interactive plot can be found in the Interactive Plot Features section
of the website. Users can receive comprehensive results containing
all 1,178 predictions through email if a valid email address is
provided. For those requiring assistance with the procedure,
detailed step-by-step instructions for using MD-Syn are available
on the website. We believe that this user-friendly MD-Syn web
portal will effectively accelerate wet laboratory drug screening
processes and significantly contribute to advances in drug discovery.

Discussion

Drug combinations offer a more efficient therapeutic strategy.
Dealing with numerous drug combinations, computational methods
would be a faster and cheaper alternative in assisting the development of
combination therapies. Although numerous computational methods
have been developed to predict synergistic drug combinations, there are
still limitations in fully capturing the complex biological interactions
underlying drug synergy. For example, DeepDDS utilizes graph
structures and gene expression profiles to predict drug–drug
interactions through concatenated embeddings and fully connected
networks. However, it does not explicitly capture fine-grained biological
interactions between molecular substructures, genes, and cell lines.
DTSyn improves upon this problem by introducing dual-
transformer encoders to model both fine-granularity features
(substructure-gene) and coarse-granularity features (drug–cell line).
However, it focuses solely on coarse- or fine-level representations
and may not comprehensively integrate multiple biological
modalities. To address these limitations, we introduce a novel
computational framework, MD-Syn, which leverages
multidimensional feature representations for drug combination
prediction. MD-Syn incorporates a 1D-FEM and a 2D-FEM to
integrate learned drug and cell line features across different
modalities. Using a large-scale pre-trained model, the 1D-FEM
learned the drug representations from their chemical language and
obtained the embeddings for cancer cell lines from CCLE genomic
profiling using an MLP. Moreover, in the 2D-FEM, we learned graph
representation for each drug using a GCN and obtained node
embeddings from the PPI network using the node2vec algorithm.
Our findings from the ablation study (Table 5) showed that
integrating two modalities—sequence and structural data—improved
overall performance in drug combination prediction compared to using
a single feature modality alone. Meanwhile, multi-head self-attention
mechanisms in the graph-trans pooling module facilitate the
interpretability ability of MD-Syn. By the multi-head self-attention
mechanisms, MD-Syn could capture representations from different
aspects of relationships among drug pair–cell line triplets.

In addition to the primary evaluations, we conduct further
experiments to strengthen the analysis of the MD-Syn design. First,
we investigated whether graph isomorphism networks (GINs) could
provide a better representation of the PPI network compared to the
random walk-based embeddings originally used in MD-Syn. Despite
GIN’s expressive capacity, the experimental results revealed that our
original random walk-based approach consistently outperformed the

GIN-based method across all evaluation metrics (Supplementary Table
S1). It demonstrated that random walk-based embeddings can better
capture the relevant biological signals within the PPI network under the
MD-Syn framework. Furthermore, we explored the impact of
expanding the training data scale using a larger DrugComb dataset.
After retraining MD-Syn on the DrugComb data, the framework
achieved an average AUROC value of 0.845, an accuracy of 0.768,
and an F1 score of 0.523 (Supplementary Figure S5). The substantial
class imbalance inherent in the DrugComb dataset may have limited
improvement in AUC, resulting in slightly lower predictive
performance than models trained on the O’Neil dataset.
Additionally, we compared different sources of cell line gene
expression features by substituting CCLE gene expression profiles
with gene perturbation profiles from the LINCS L1000 dataset.
When using LINCS-derived profiles, MD-Syn achieved an average
AUROC value of 0.906, an accuracy of 0.837, and an F1 score of
0.847 under five-fold cross-validation (Supplementary Figure S6).
However, our observations showed that models trained on CCLE-
derived expression profiles consistently achieved slightly better
predictive performance than those trained on LINCS perturbation
profiles. These results suggest that using CCLE gene expression
profiles provides a biologically robust and reliable foundation for
accurate synergy prediction within the MD-Syn framework.

Although MD-Syn has demonstrated outstanding
performance compared to state-of-the-art methods, our
proposed model has some limitations. First, the training
dataset that MD-Syn learned was trained on is based on the
Loewe score. However, there are several distinguished methods to
compute expected drug combination effects from experimental
data, such as the combination index (CI)–isobologram equation
(Huang et al., 2019), Bliss (Demidenko and Miller, 2019), ZIP
score (Yadav et al., 2015), and Loewe score (Lederer et al., 2018).
The calculated drug synergy scores would not be the same or
consistent based on different quantification methods. To further
improve the data quality, it is necessary to develop a new data
correction method to incorporate different datasets. Second, the
attention-based method surely provides us with a way to
interpret MD-Syn. However, the atom-level coding method
toward small molecules may limit the chemical interpretation.
To address this limitation, merging the function-level coding
method for compounds may enhance our understanding of the
underlying factors that influence synergistic or antagonistic
effects. Furthermore, we found that incorporating
multidimensional or multi-modal input feature types leads to
improved performance in synergistic drug combination
prediction. Hence, integrating 3D conformation information
of compounds and proteins into the graph-based model will
be part of our future work.

Conclusion

In summary, MD-Syn is an innovative framework for synergistic
drug combination prediction that integrates multidimensional
feature representation through the 1D-FEM and 2D-FEM. It is
noted that MD-Syn demonstrated significant improvements in
model performance compared to state-of-the-art methods,
achieving an AUROC value of 0.919 in five-fold cross-validation
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experiments. Additionally, the framework offers model
interpretability via multi-head attention mechanisms, which
identify key molecular and cellular factors contributing to
synergy prediction. MD-Syn not only advances our current
understanding of drug synergy prediction but also lays a solid
foundation for future developments in computational drug
combination discovery and precision medicine. Beyond cancer
treatment, MD-Syn’s architecture exhibits potential adaptability
to other complex diseases, such as neurodegenerative disorders,
where drug synergy plays an essential role in therapeutic
advancement. Furthermore, the model’s flexible design shows
promise for broader applications, including drug–target binding
affinity prediction, hence extending its impact on drug discovery.
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