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Cancer is a leading cause of mortality worldwide, with most conventional
treatments lacking efficacy and having significant challenges like drug
resistance. Finding new molecules is quite challenging in terms of cost, time
and setbacks. Hence, drug repurposing is considered sensible for skipping the
long process of drug development. Dibenzazepine carboxamides, as traditional
anticonvulsants, primarily function by blocking voltage-gated sodium channels,
which not only mitigate seizures but also influence mood disorders through
modulation of serotonin and dopamine. Recent studies have uncovered their
anticancer properties, demonstrated by both in vitro and in vivo experiments.
This review comprehensively examines dibenzazepine’s pharmacodynamics,
pharmacokinetics, and clinical applications, focusing on their emerging role in
oncology. By highlighting the anticancer mechanisms of action—including
apoptosis induction, inhibition of HDAC, Wnt/β-Catenin signaling, and Voltage-
gated sodium channels, we suggest further research to fully elucidate their
therapeutic potential and application in cancer treatment.

KEYWORDS

dibenzazepines, carbamazepine, oxcarbazepine, eslicarbazepine, cancer therapy

1 Introduction

Cancer remains one of the leading causes of mortality worldwide despite advances in
conventional treatments such as surgery, chemotherapy, and radiation therapy. These
standard modalities often have significant limitations, including drug resistance, off-target
effects, and severe side effects, contributing to high mortality rates and poor quality of life for
many patients (Yang et al., 2020; Tuck et al., 2023;Wills et al., 2024; Zolotykh et al., 2024). The
development of drug resistance is one of the most intense challenges facing cancer treatment
(Aroosa et al., 2023). Reasons for developing resistance include mutations in the drug target,
reactivation of upstream or downstream signaling pathways, microenvironment-mediated
resistance, intra-tumoral heterogeneity, and drug sensitivity (Ramos and Bentires-Alj, 2015).
The high mortality rate, alongside increasing numbers of cases in recent years, highlights the
importance of identifying novel therapeutic strategies that can overcome these barriers.
Developing new anticancer drugs is complex, costly, and time-consuming, often requiring
over a decade and billions of dollars before a new compound reaches clinical use (Juárez-
López and Schcolnik-Cabrera, 2021). Drug repurposing—using existing drugs with
established safety profiles for new therapeutic purposes—has emerged as a promising
strategy to accelerate the availability of effective therapies. This approach allows
researchers to bypass many early stages of drug development, reducing both time and
cost (Lyne and Yamini, 2021; Malik et al., 2023). Thalidomide is a successful example of a
repurposed candidate in cancer, initially designed for morning sickness in pregnancy, then got
FDA approval for multiple myeloma (Gao et al., 2020). We have previously reported a few
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drugs with the potential for use in oncology, such as benzimidazoles,
tetracyclines, and amino acetonitriles (Pourgholami et al., 2006;
Pourgholami et al., 2013; Bahrami et al., 2021).

Dibenzazepine carboxamides, including carbamazepine (CBZ),
oxcarbazepine (OXC), and eslicarbazepine (ESL), are well-known
antiepileptic agents traditionally used to block voltage-gated sodium
channels (VGSCs). In addition to their anticonvulsant properties,
they are also effective in treating mood disorders, such as depression
and bipolar disorder, by modulating neurotransmitter systems
(Brodie, 2017; Lawthom et al., 2018; Maan et al., 2024). Recent
studies have intriguingly revealed that dibenzazepine carboxamides
possess potential anticancer properties, supported by both in vitro
and in vivo evidence (Meng et al., 2011; Leslie et al., 2020; Zhao et al.,
2020). Recent studies have shown that CBZ does not increase the
risk of cancer in patients with epilepsy and even reduces it
(Stritzelberger et al., 2021). For instance, our recent study
demonstrated that eslicarbazepine induces apoptosis and cell
cycle arrest in C6 glioma cells and significantly suppresses tumor
growth in an intracranial rat model, underscoring its potential as an
anticancer agent (Afsordeh et al., 2024). Furthermore, OXC and its
metabolites have shown potent cytotoxic and genotoxic effects on
human lymphocytes in culture media (Atlı Şekeroğlu et al., 2017).

This review aims to provide a comprehensive overview of
dibenzazepine carboxamides’ pharmacodynamics, pharmacokinetics,
and clinical applications, focusing on their emerging role in
oncology. We will discuss the main molecular mechanisms
underlying their anticancer activity, including apoptosis induction,
deacetylases (HDACs) inhibition, suppression of Wnt/β-catenin
signaling, and blockade of VGSCs. By highlighting these novel
mechanisms, we advocate for further research to fully elucidate their

therapeutic potential in cancer treatment and encourage their clinical
evaluation as effective, repurposed anticancer agents.

2 History and structure

The primary chemical structure of the dibenzazepines
carboxamides family is composed of a dibenzazepine with a 5-
carboxamide nucleus, as depicted in Figure 1 (Aledo-Serrano and
Gil-Nagel, 2020). The first drug of the family, carbamazepine [CBZ,
(5-carbamoyl-5H-dibenzo (b,f) azepine)], was synthesized by
Walter Schindler a Swiss chemist in 1953 (Benes et al., 1999). Its
structure is quite similar to tricyclic antidepressants such as
imipramine (Al-Waili, 2000). CBZ was initially FDA-approved
for trigeminal neuralgia in 1968 (Blom, 1962). Showing
anticonvulsant properties in the early 1960s led to its approval
for epilepsy in Switzerland and Great Britain in 1963 and later FDA-
approved for partial or tonic-clonic seizures in 1974 (Bonduelle
et al., 1964; Shorvon, 2009). After being in clinical use for several
years, CBZ has shown some adverse effects, including hyponatremia,
responsible for the commonly reported CBZ-induced adverse drug
reactions (nausea, headache, and dizziness), diplopia, and skin
rashes (Fricke-Galindo et al., 2018). Due to these adverse effects
of carbamazepine (Al Khalili et al., 2023), OXC (OXC, 10,11
-dihydro- 10-0x0-carbamazepine) was developed, which is the
10 keto analog of CBZ (Shorvon, 2000). It is a lipophilic
compound with low water solubility and the same mechanism of
action as CBZ but with less severe side effects (Mazza et al., 2007;
Garoufi et al., 2016). The drug received FDA approval for partial
epilepsy treatment in 2000 (Preboth, 2000). However, OXC has a
relatively short half-life and limited formulation options (Galiana
et al., 2017). Following these revelations, esclicarbazepine [ESL [(S)-
(--)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f]azepine-5-
carboxamide] was developed. ESL is the newest drug and third-
generation of dibenzazepines, with FDA approval for the treatment
of epilepsy granted in 2013 (Tambucci et al., 2016). ESL has a
structural distinction fromCBZ and OXC, which lies in the hydroxyl
group in the 10, 11-position of the central dibenzoazepine ring
instead of a keto group. This structural change resulted in distinct
metabolism, pharmacokinetics, and pharmacodynamic advantages
(Galiana et al., 2017). ESL does not metabolize to carbamazepine-10,
11-epoxide, the culprit of CBZ-induced adverse effects (Galiana
et al., 2017). ESL has shown high efficacy and safety when used for
epilepsy management (Almeida and Soares-da-Silva, 2007).

FIGURE 1
Chemical structure of dibenzazepine carboxamides .CBZ, OXC, and ESL all have a dibenzazepine nucleus bearing a 5-carboxamide substitute.

Abbreviations: CBZ, carbamazepine; OXC, oxcarbazepine; ESL,
eslicarbazepine; VGSCs, voltage-gated Na+ channels; CYP3A4,
Cytochrome P450 subtype; UGT2B7, uridine diphosphate
glucuronosyltransferase; MPO, myeloperoxidase; 2OH-CBZ, 2-
hydroxycarbamazepine; 3OH-CBZ, 3-hydroxycarbamazepine; CYP,
cytochrome P450; PTZ, pentylenetetrazol; ADHD, attention-deficit
hyperactivity disorder; BDNF: brain-derived neurotrophic factor; IFNγ,
Interferon-gamma; TNFα, tumur necrosis factor-alpha; VASP, vasodilator-
stimulated-associated phosphoprotein; GPIbβ, glycoprotein 1b-beta; PKA,
protein kinase A; PLK1, Polo-like kinase 1; IDH, isocitrate dehydrogenase;
HDAC, histone deacetylases; PSA, prostate-specific antigen; EGF, epidermal
growth factor; MLC2, myosin light chain 2; MYPT1, myosin phosphatase
1 target subunit 1; FAK, focal adhesion kinase; SPR, surface plasmon
resonance; FZD, Frizzled; HGGs, high-grade gliomas; LGGs, low-
grade gliomas.
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3 Pharmacokinetics and
pharmacodynamics

CBZ is predominantly metabolized in the liver, with less than 5%
remaining unchanged (Kim et al., 2005). Cytochrome P450 subtype
(CYP3A4) converts CBZ into its primary metabolite,
carbamazepine-10,11-epoxide, which causes neurotoxicity (Aledo-
Serrano and Gil-Nagel, 2020) and has anti-seizure effects like CBZ in
animals (Bertilsson, 1978). About 15% of CBZ is metabolized to CBZ
N-glucuronide by uridine diphosphate glucuronosyltransferase 2B7
(UGT2B7) (Fricke-Galindo et al., 2018). Another enzyme,
myeloperoxidase (MPO), produces 2-hydroxycarbamazepine
(2OH-CBZ), 3-hydroxycarbamazepine (3OH-CBZ), and
2,3 dihydroxycarbamazepine (Lu and Uetrecht, 2008).
Approximately 75% of the drug is bound to plasma proteins
(Bertilsson, 1978). After a single oral dose, the average half-life is
35 h, which decreases to 10–20 h after chronic use, leading to
enzyme induction (Bertilsson, 1978). The maximum plasma
concentration (Cmax) is reached or appears in 2–8 h (Spina et al.,
1996), and the remainder of CBZ is excreted through urine
(Bertilsson, 1978). CBZ passes through the placenta, and its
plasma level decreases due to its high metabolism, making a
relatively short plasma half-life in infants during the fetal period
(Bertilsson, 1978). The most common adverse effects of CBZ use are
dizziness, nausea, drowsiness, and weight gain (Koliqi et al., 2015).
The side effects of this drug are usually mild in low doses, with severe
side effects observed in high doses. Most patients treated with CBZ
experience a decrease in the white blood cell count (Pellock, 1987;
Delcker et al., 1997). In addition, the rate of change in the dose of
CBZ can lead to psychomotor symptoms in the central nervous
system (CNS), followed by gastrointestinal, hepatic, endocrine, and
teratogenic side effects (Delcker et al., 1997; Tecoma, 1999). The
second-generation carboxamide, OXC, is also metabolized by
cytochrome P450 (CYP), CYP3A4, and CYP3A5 enzymes to 10,
11-dihydro-10-hydroxy-carbazepine (mono hydroxy derivative,
MHD) in the liver (Schütz et al., 1986; May et al., 2003). After a
single oral dose of OXC, peak concentrations (the highest level of
medication in the blood) reach within approximately 1–3 h (May
et al., 2003). The main route for OXC elimination is through renal
excursion. The half-life of OXC has been reported to be between
1 and 5 h, whereas the half-life of MHD is up to 20 h. The MHD
plasma protein binding rate is almost 40% (May et al., 2003). As the
epoxide derived from CBZ is responsible for some of its toxic effects,
the absence of this metabolite in OXC reduces the side effects
(Shorvon, 2000). Studies have shown that symptoms such as
nausea, digestive disorders, and ataxia may also occur with the
use of OXC; however, the profile of side effects associated with the
use of this drug is better than that of CBZ (Shorvon, 2000). OXC
crosses the placenta in humans (May et al., 2003) and is not
recommended for use during pregnancy (Shorvon, 2000). Owing
to the structural change at positions 10 and 11, the third-generation
drug, ESL, has a different metabolism. In the liver, enzyme
CYP3A4 converts it into (S)-licarbazepine, oxcarbazepine (OXC),
and (R)-licarbazepine, with the first enantiomer responsible for the
most anticonvulsant activity of the drug through blockage of VGSCs
(Almeida and Soares-da-Silva, 2007). The systemic amount of the
ESL metabolite (eslicarbazepine) in the body after oral
administration of ESL is 94% of the original dose (Bialer and T
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Soares-da-Silva, 2012). ESL is more effective and has fewer side
effects than the two earlier drugs, with the most adverse effects being
non-serious (Ben-Menachem, 2010; Peltola et al., 2015; Guedes
et al., 2023). Moreover, it also has additional benefits, including
complete absorption after oral intake. Cytochrome P450 enzyme
induction is much lower by ESL, and drug interactions are less
prevalent (Shorvon, 2000). The drug decomposes with a half-life of
20–24 h (Almeida and Soares-da-Silva, 2007), and its binding rate to
plasma proteins is less than 40% (Tambucci et al., 2016). ESL is also
secreted 90% in urine (Almeida et al., 2009). Pharmacodynamic
studies have shown that CBZ and OXC inactivate fast-voltage
sodium channels, while ESL inactivates slow-voltage sodium
channels (Lawthom et al., 2018). The pharmacokinetic and
pharmacodynamic characteristics of the three drugs are
compared in Table 1.

4 Mechanism of action

The primary actions of dibenzazepines include anticonvulsant
properties via inactivation of VGSCs (Aledo-Serrano and Gil-Nagel,
2020). The effects of dibenzazepines, especially CBZ, on
neurotransmitters such as GABA, glutamate, dopamine, and
serotonin have also led to their use in the treatment of mood
disorders (Wang, 2013; Shah et al., 2015; Ayano, 2016). CBZ also
inhibits calcium and potassium channels (Grunze et al., 1998). The
following sections will discuss the common uses of dibenzazepines
in detail based on their mechanism of action.

5 Clinical evidence

5.1 Epilepsy

Based on Na channel blocking abilities, dibenzazepines have
anticonvulsant properties. Epilepsy is one of the most common
diseases of the CNS that occurs with simultaneous abnormal activity
in the function of brain neurons (Hu et al., 2023). With an
approximate prevalence of 6 per 1,000 people (Brigo et al., 2022),
it is one of the common public health challenges for physicians
worldwide. More than 30 different drugs have been used to manage
epilepsy (Hu et al., 2023). These drugs can improve the acute
conditions of patients by influencing multiple molecular
mechanisms (Rubio et al., 2023); among them, dibenzazepines,
including CBZ, OXC, and ESL, are sodium channel blockers that
treat epilepsy alone or in combination with other drugs (García-
Peñas et al., 2020; Rocamora et al., 2020; Watkins et al., 2020; Nevitt
et al., 2022). Through binding to the inactive state of the sodium
channels in the membrane, CBZ slows down their reactivation. This
delay in sodium channel reactivation reduces the chance of rhythmic
propagation of action potentials and prevents the calcium entrance
into synaptic membranes. Finally, synaptic function decreases with
CBZ treatment, which reduces the excitability of neurons in the
brain by increasing the release of GABA and decreasing glutamate
release (Tolou-Ghamari et al., 2013). Figure 2 illustrates the
anticonvulsant mechanism of dibenzazepines. The antiepileptic
effects of OXC are the same as CBZ (Faught and Kim, 2015).
The anticonvulsant effects of CBA and OXC have been

demonstrated in animal studies of spontaneous seizures induced
by kainite (Grabenstatter et al., 2007), pentylenetetrazol (PTZ)
(Barzroodi Pour et al., 2021), and maximal electroshock
(Tecoma, 1999; Zhen Sun et al., 2002). Double-blind studies have
shown that oxcarbazepine use is associated with fewer side effects
and better tolerance (Reinikainen et al., 1987). With the entry of the
third-generation drug of this family (ESL) into the clinic, better
seizure control and fewer side effects led to improved conditions for
seizure control in epileptic patients (Mestre and Ferreira, 2009;
Verrotti et al., 2014; Soares-da-Silva et al., 2015).

5.2 Mood stabilization

It was later found that dibenzazepine carboxamides have other
clinical uses, including mood stabilization (Maan et al., 2023). CBZ is
used to treat bipolar disorder (Hirschfeld and Kasper, 2004), manic-
depression (Ballenger and Post, 1980), attention-deficit hyperactivity
disorder (ADHD) (Silva et al., 1996), and neuropathic pain (Buescher,
2006; Wiffen et al., 2014). OXC also showed promising effects on
bipolar disorders in clinical studies (Centorrino et al., 2003; Benedetti
et al., 2004). In patients with bipolar disorder, the level of GABA
neurotransmitter decreases, which causes excitotoxicity and cell death
through apoptosis. Chronic administration of CBZ as an agonist of
GABA receptors α1, β2, and γ2 subunits can stabilize mood in these
patients (Ayano, 2016). The mood-modifying effects of CBZ occur
through five of the neurotransmitters in the brain, including A)
Glutamate: CBZ has anti-glutamatergic effects by reducing its
release and inhibiting calcium influx, which reduces the post-
synaptic effects of glutamate (Kawata et al., 2001). B) Dopamine:
dopamine is involved in the pathophysiology of bipolar disorder. CBZ
indirectly affects dopaminergic receptors through the D2 receptor
phosphorylation and density reduction (Kawata et al., 2001). C)
Serotonin: like dopamine, serotonin affects the pathophysiology of
bipolar disorder. CBZ controls this disease by increasing the release of
serotonin and inhibiting its reabsorption (Dailey et al., 1998; Kawata

FIGURE 2
Main antiepileptic actions of dibenzazepines. 1: VGSCs of brain
neurons become impermeable to sodium in the presence of
dibenzazepines; 2: Hence, action potentials are blocked. 3: In
addition, calcium entrance from synaptic space decreases. 4 and
5: Therefore, glutamate release and its effects on NMDA receptors are
declined. 6: All these events reduce brain excitability. Voltage-gated
Na+ channels: VGSCs, N-methyl-D-aspartate: NMDA. By
Biorender.com.
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et al., 2001). D) Norepinephrine: CBZ also reduces the level of
norepinephrine, the most crucial neurotransmitter in bipolar
disorder (Norman et al., 2009). However, the mood-stabilizing
properties of CBZ are a matter of question as it has been shown
that CBZ is a selective adrenaline A1 receptor antagonist and A2A
receptor agonist (Van Calker et al., 1991; Okada et al., 2019).
Activation of A2A receptors is attributed to depression-like
symptoms, while increased A1 receptor signaling is associated with
antidepressant effects (van Calker et al., 2019). Through antagonistic
action on the A2A receptor, chronic administration of CBZ
suppresses the activation of astroglial glutamatergic transmission
induced by proinflammatory cytokines Interferon-gamma (IFNγ)
and tumor necrosis factor-alpha (TNFα), implying the benefits of
CBZ in the prevention of pathomechanisms development in several
neuropsychiatric disorders, such as Niemann–Pick disease,
schizophrenia, and autism (Okada et al., 2019). Other mechanisms
include blocking cyclic adenosine monophosphate and G protein and
increasing brain-derived neurotrophic factor (BDNF) (Ambrósio
et al., 2002; Sadock et al., 2009; Ayano, 2016).

Another member of the family, OXC, has also been suggested as
a potential treatment for ADHD in adults (Davids et al., 2006).
Similar effects from OXC have been observed in controlling
impulsive aggression in adults (Mattes, 2005). In this context,
other studies have also suggested and demonstrated the mood-
stabilizing effects of ESL (Popova et al., 2007; Nath et al., 2012).
Moreover, its efficacy and safety in trigeminal neuralgia have been
established (Sanchez-Larsen et al., 2018; Fortuna, 2022). Altogether,
these data indicate the efficiency of carbamazepine and its
derivatives in controlling mood disorders. Figure 3 shows the
mood stabilization activities of dibenzazepines.

6 Anticancer effects of dibenzazepines

In addition to the aforementioned neurotherapeutic effects,
these agents may also have anticancer properties. Over the past

decades, some studies have provided encouraging results, suggesting
that the pharmacological properties of dibenzazepines may interfere
with cancerous tumor growth.

Dibenzazepines exert their anticancer effects through a variety of
molecular mechanisms. These mechanisms include the induction of
apoptosis and modulation of the cell cycle, autophagy induction,
histone deacetylases (HDACs) inhibition, voltage-gated Na+
channels (VGSCs) inhibition, and interference with Wnt/β-
catenin signaling. Dibenzazepines exhibit a multifaceted approach
to cancer treatment by targeting multiple pathways, setting the stage
for their potential use as anticancer agents. Understanding these
pathways provides crucial insight into how these drugs may be
repurposed for cancer therapy. The following section will explore
the existing evidence for the anticancer effects of dibenzazepines,
highlighting the leading studies demonstrating their efficacy in
various cancer models.

6.1 Apoptosis induction

Preliminary studies have shown the activation of apoptosis
signaling in response to dibenzazepine exposure (Ota et al.,
2021). Activation of apoptosis in platelets induces
thrombocytopenia and bleeding in patients treated with CBZ.
These pathways include decreased phosphorylation of the Bcl-xl/
bcl-2-associated death promoter (BAD), vasodilator-stimulated-
associated phosphoprotein (VASP), and glycoprotein 1b-beta
(GPIbβ) in platelets, indicating an inhibitory effect on protein
kinase A (PKA). In addition, PKA activity is reduced through
PI3K/Akt/PDE3A signaling, resulting in apoptosis in platelets
(Xiao et al., 2021). Through the activation of the Ras/Raf/ERK/
p53 signaling pathway, CBZ induces hepatic DNA damage and
mitochondrial apoptosis in Chinese rare minnows (Yan et al., 2021).
After 60 days of daily oral CBZ intake (25 mg/kg) by Wistar-Albino
rats, Caspase-3, PARP-1, and 8-hydroxy-2-deoxyguanosine
immunoreactivity markedly increased, indicating apoptosis and
oxidative stress as culprits of induced renal toxicity by CBZ
(Erdem Guzel et al., 2023).

Administering CBZ and OXC on days 5–17 of pregnancy in rats
leads to pro-apoptotic effects in the CA1, CA3, and dentate gyrus
(DG) regions in the hippocampus of the offspring (González-Maciel
et al., 2020). OXC-induced apoptosis occurs in the brain cells of
adult and neonatal rats due to the activation of caspase-3 and Bax/
Bcl-2 signaling (Song et al., 2018). Flow cytometric analysis showed
that OXC caused the mitosis-phase cell cycle arrest and increased
histone H3 phosphorylation, indicating cell mitosis. Also, it
inhibited centrosome separation by reducing Polo-like kinase 1
(PLK1) activation and inducing apoptosis in NRK-52E cells via
abnormal spindle formation (Ota et al., 2021). Cancer studies have
demonstrated the induction of apoptosis by dibenzazepines. A
recent in vitro study using MTT assay and AO/EB staining
showed that CBZ induces apoptosis and cytotoxicity in the HT-
29 human colon adenocarcinoma cell line (Sohaib and Ezhilarasan,
2020). In addition, immunofluorescence analysis showed that CBZ
also increased caspase-3 activity, one of the key mediators in
intrinsic apoptosis (Sohaib and Ezhilarasan, 2020). CBZ has
protective and mitigating effects against ionizing irradiation in
Murine Cells (Kim et al., 2012). Clinical observations using a

FIGURE 3
Summary of known actions of dibenzazepines in Mood
stabilization. The effects of CBZ on mood regulation are through six
mechanisms. Antiglutamatergic effects are through reducing
glutamate release and calcium influx inhibition. The decrease in
dopamine efficacy is induced by the decline in both the density and
phosphorylation of D2 receptors. Moreover, these effects are shown
by increasing the release of serotonin, decreasing the release of
norepinephrine, antagonistic effects of adenosine on A2 receptors,
and blocking the effects of cAMP and G proteins.
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wide range of anticonvulsants showed that among anticonvulsant
drugs, CBZ significantly reduces the risk of skin and digestive
cancers (Stritzelberger et al., 2021). OXC has anti-proliferative
activity in HeLa and MCF7 cell lines and, to a lesser extent, in
HepG2 (El Sharkawi et al., 2014). In human glioma cell lines with
isocitrate dehydrogenase (IDH) mutations, OXC induces apoptosis
with increased caspase 3/7 activity. OXC also inhibits cell growth
and proliferation effects in vitro in glioma stem-like cells (Dao Trong
et al., 2023). Recent studies have highlighted the potential anticancer
effects of ESL, particularly in glioma models. ESL has been shown to
induce apoptosis and promote G2/M cell cycle arrest in C6 glioma
cells, suggesting it may be a promising candidate for drug
repurposing in glioma treatment (Afsordeh et al., 2024).

These studies suggest a robust potential for dibenzoazepine
carboxamides to activate apoptosis and exert anticancer effects.
However, more precise studies, including well-designed
preclinical and clinical trials, are needed to fully elucidate their
therapeutic potential and optimize their use in oncology.

6.2 Autophagy

Autophagy is a cellular process in which damaged and abnormal
cellular materials are removed by lysosomes. Autophagy has
protective roles against many diseases (Debnath et al., 2023).
However, the mechanism of autophagy in cancer treatment is
controversial, and interventions to stimulate or inhibit autophagy
in various cancers are proposed according to their underlying cause
(Levy et al., 2017). HDAC inhibitor drugs such as CBZ can induce
apoptosis and autophagy by inhibiting the PI3K-Akt-mTOR
pathway (Aroosa et al., 2023). CBZ induces autophagy in liver
cells by activating calpain, reducing Atg7 and Beclin-1 (Kim
et al., 2013). SMARCA4 is a BRG1 protein-encoding gene
identified as an oncogene in many cancers (Schiebler et al., 2015;
Zhang et al., 2018). Recently, Shaykevich et al. have reported that
CBZ lowers BRG1 protein and mRNA levels in KRAS-mutant
colorectal cancer cells and upregulates it in KRAS-wild type ones.
They also sought the ULK1 mRNA level (an initiator of autophagy)
and found that CBZ decreased the ULK1 mRNA KRAS-mutated
colorectal cancer cells at both 6 and 24 h. These results show that
CBZ can inhibit ULK1 in KRAS-mutated cells, potentially leading to
a reduction in autophagy and a subsequent decrease in
SMARCA4 levels (Shaykevich et al., 2024). Also, at different
concentrations, CBZ protected murine hematopoietic progenitor
32D cl 3 cells against radiation and induction of autophagy (Kim
et al., 2011). Another study reported the protective effects of CBZ on
radiation independent of autophagy (Kim et al., 2012). Although
limited, based on these observations, this drug class seems to be an
inducer of autophagy in some cells and conditions. This autophagy
induction inevitably suggests an intriguing path for further research
in this field and the autophagy-mediated treatment of various types
of cancer.

6.3 HDAC inhibition

Histone deacetylases are enzymes that remove acetyl groups
from lysine residues of both histone and nonhistone proteins,

leading to chromatin condensation and repression of gene
expression (Seto and Yoshida, 2014), by which they affect a
myriad of biological events such as cell cycle, differentiation, and
apoptosis in cancer cells (Marks et al., 2000; Zhang and Zhong,
2014). There are three main groups of histone deacetylases: class I
HDACs (1, 2, 3, and 8) are homologous to the yeast Rpd3 gene,
ubiquitously expressed, and primarily located in the nucleus. Class II
HDACs (4–10, except 8) are gene products that actively shuttle
between the nucleus and the cytosol. Class III HDACs, such as Sir2,
are protein deacetylases that appear to have targets other than
histones (Marks et al., 2003). HDAC dysregulation contributes to
tumor development and progression, and HDAC inhibitors are
considered promising anticancer agents (Liang et al., 2023).
Through epigenetic regulation of gene expression, HDAC
inhibitors are crucial in inducing cancer cell cycle arrest,
promoting differentiation, and triggering cell death. They also
reduce angiogenesis and modulate the immune response
(Eckschlager et al., 2017). Moreover, several laboratory and
clinical studies have demonstrated the effectiveness of CBZ in
inhibiting histone deacetylases in a cancer context. CBZ and its
major metabolite CBZ-10, 11-epoxide inhibit HDAC (3 and 7) in the
HepG2 liver carcinoma cell line (Beutler et al., 2005). CBZ causes
degradation of the Her2 protein through proteosomes, and these
effects are related to inhibiting HDAC in breast cancer (Meng et al.,
2011). CBZ inhibits histone deacetylase type 6 in breast cancer by
increasing alpha-tubulin acetylation (Beutler et al., 2005). Two of the
most-known effects of CBZ, including mood stabilization and
teratogenicity, are caused by histone deacetylase inhibitory
(HDACi) properties (Phiel et al., 2001; Beutler et al., 2005).

Furthermore, it has been shown that CBZ decreases interleukin-
6 and prostate-specific antigen (PSA) secretion in different human
prostate cancer cell lines (Abdul and Hoosein, 2001). Treatment of
the LNCaP cell line (prostate cancer) with CBZ and OXC reduces
PSA levels. Also, chronic exposure to CBZ and OXC slows the
transformation of pre-tumor cells into prostate cancer and reduces
its risk (Stettner et al., 2012). In line with the preventive effects, a
case-control study found that CBZ reduced the risk of advanced
prostate cancer (Salminen et al., 2016). In addition, a new study in
2021 showed that CBZ users had a lower risk of advanced prostate
cancer than other HDAC-inhibiting antiepileptic drugs, such as
valproate and phenobarbital (Salminen et al., 2021). However,
regarding the prognosis of this disease with dibenzazepines,
Salminen et al. have reported no beneficial effect on the mortality
caused by this cancer in the users of HDAC inhibitor antiepileptic
drugs compared to other antiepileptic drugs (Salminen et al., 2022).
These findings indicate that dibenzazepines can modulate cancer
progression through HDAC inhibition.

6.4 VGSC inhibition

Dibenzazepines primarily act through the VGSCs inhibition
(Hebeisen et al., 2015). VGSCs are composed of nine α (Nav1.1-
Nav1.9) and four β subunits (β1-4) (Goldin et al., 2000; Brackenbury
and Djamgoz, 2006). Researchers have shown that these sodium
channel functions are phagocytosis, endocytosis, secretion,
proliferation, and differentiation in non-excitable cells (Xia et al.,
2017). For example, in human colon cancer, the SCN5A gene, which
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encodes Nav1.5 isoform, plays a critical role in cell invasion (House
et al., 2010). VGSCs are aberrantly expressed in multiple human
cancers (Bian et al., 2023). Compared to normal brain tissue,
Nav1.2 and Nav1.6 subunits are highly expressed in glioma tissue
(Griffin et al., 2020). The protein expression of Nav1.3 and
Nav1.6 subunits increases in low-grade astrocytoma (Guan et al.,
2018). In addition, a study has reported the role of the
Nav1.7 subunit in gastric cancer (Xia et al., 2016). In non-small
cell lung cancer, this invasive pathway occurs in the Nav1.7 subunit
through the epidermal growth factor (EGF) - signal-regulated and
kinase 1/2 (ERK1/2) pathway (Campbell et al., 2013). Also, in
human cervical cancer, overexpression of Nav1.5 has been
implicated in cell invasion (Hernandez-Plata et al., 2012). A
recent meta-analysis study confirmed that VGSCs promote
prostate cancer cell metastasis and suggested targeting VGSCs as
a treatment option (Yildirim-Kahriman, 2023). Recently, studies by
Theresa et al., in 2020 showed that ESL inhibited both transient and
persistent sodium currents, demonstrating, for the first time, the
potent inhibitory effects of ESL on the Nav1.5 isoform. Many cancer
cells express Nav1.5 and voltage-dependent sodium channels that
enhance invasion and metastasis, and inhibiting these channels may
be effective in cancer control (Leslie et al., 2020). In addition,
another mechanism that can affect the metastasis and migration
of cancer cells under the influence of these drugs is the process of
inhibiting nuclear factor kappa B (NF-κB) activity CBZ, also
significantly inactivates the motility proteins, including myosin
light chain 2 (MLC2), myosin phosphatase 1 target subunit 1
(MYPT1), and focal adhesion kinase (FAK), which are necessary
for lymph endothelial cell migration and can reduce metastasis in a
three-dimensional model of breast cancer cell culture (Teichmann
et al., 2014).

Considering the role and importance of VGSCs and their
subunits in the pathophysiology of all types of cancer, especially
cell invasion and metastasis, it is necessary to identify the
mechanisms behind these processes. Based on these observations
and reports, dibenzazepines are worthy of further research in this
area of oncology.

6.5 Wnt/β-Catenin signaling inhibition

Wnt (Wingless/Integrated) signaling is crucial in physiological
processes such as embryonic development and adult homeostasis
(Zhong and Virshup, 2020). Wnts are a broad family of
glycoproteins that regulate multiple developmental pathways
(Boyer et al., 2010; Grishanova et al., 2023). Wnt signaling occurs
in two pathways. A) β-catenin dependent (canonical) or B)
nondependent or non-canonical (Zhan et al., 2017).
Dysregulation of this pathway is a hallmark of many cancers,
where overactive Wnt signaling leads to increased β-catenin
accumulation in the cytoplasm and its subsequent translocation
to the nucleus. In the nucleus, β-catenin binds to T-cell factor/
lymphoid enhancer factor (TCF/LEF) transcription factors,
promoting the transcription of genes involved in cancer cell
proliferation, invasion, and metastasis(Yu et al., 2020). Therefore,
inhibiting this pathway can be one of the novel strategies to control
many cancers (Chen et al., 2017; Yang et al., 2018; Rogaczewski et al.,
2022). CBZ has been investigated as a Wnt/β-catenin signaling

inhibitor in several studies (Parveen et al., 2018; Im et al., 2019;
Bai et al., 2021).

In vitro, studies have shown the effectiveness of CBZ in human
colon cancer cell lines (SW480) and suggested that this drug
probably plays a role in reducing the levels of VEGF and β-
catenin in this cell line (Akbarzadeh et al., 2016) and mouse
adipocyte 3T3-L1 cells (Im et al., 2019). In addition, recently,
surface plasmon resonance (SPR) studies showed that CBZ is a
ligand for the FTZ receptor of Wnt/β-catenin signaling (Zhao et al.,
2020), which specifically binds to a novel pocket on the Frizzled-8
(FZD8CRD), and does not overlap with the knownWnt binding sites,
suggesting that CBZ may directly inhibit Wnt signaling by
interfering with receptor-ligand interactions. FZD proteins, as
essential Wnt receptors, are a central point for Wnt signaling
intervention in diseases such as cancer (Zhong and Virshup,
2020). Figure 4. Shows the anticancer mechanisms of
dibenzazepines.

7 Potential for the management of
brain tumors

Seizures are well-known symptoms of early brain tumors and
can occur at any point during the disease, considered a warning sign
for the diagnosis or progression of brain tumors (Pignatti et al.,
2002). The incidence of seizures is about 80% in patients with low-
grade gliomas (LGGs) (Kurzwelly et al., 2010) and 60% in high-
grade gliomas (HGGs) (van Breemen et al., 2007). Seizures in
patients with LGGs are most resistant to drug treatments

FIGURE 4
Summary of known actions of dibenzazepines in cancer. Cancer
cells exposed to dibenzazepines increase the ratio of Bax/Bcl2 ratio
and caspase 3 and 7, induce G2-M cell cycle arrest, enhance histone
H3 phosphorylation, and decrease the activity of PLK1, all leading
to apoptotic signaling. Dibenzazepine’s action through VGSCs with
unknownmechanisms leads to a decrease in theNF-kB activity, MLC2,
MYPT1, and FAK lead to a reduction in metastasis of cancer cells
treated with these drugs. Also, dibenzazepines reduce VEGF levels.
Dibenzazepines also inhibit the deacetylation of chromatin by
inhibiting histone deacetylases (3, 6, and 7) and suppress tumor
growth. They also inhibit the Wnt/β-catenin pathway by binding to the
FZ receptor and finally inhibit gene transcription. NF-kB: Nuclear
factor kappa-light-chain-enhancer of activated B cells, PLK1: Polo-
like kinase 1, MLC2: myosin light chain 2, MYPT1: myosin phosphatase
1 target subunit 1, FAK: focal adhesion kinase, LRP: Lipoprotein
receptor-related proteins, FZ:N-terminal extra-cellular cysteine-rich
domain of a Frizzled, TCF/LEF: T cell factor/lymphoid enhancer factor.
By Biorender.com.
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(Berntsson et al., 2018). The extensive use of antiepileptic drugs in
brain tumors and their potential for cancer control made them
highly desirable for both laboratory and clinical studies.

Patients with brain tumors and seizures who do not receive
antiepileptic drugs have shorter survival rates (Cacho-Diaz et al.,
2018). CBZ has similar effects to valproate in the survival of patients
with GBM owing to its inhibitory effects on histone deacetylation
(Guthrie and Eljamel, 2013). Carbamazepine, oxcarbazepine, and
Eslicarbazepine are all FDA-approved drugs utilized clinically in
epileptic seizures. This is a huge advantage to patients with GBM
suffering from seizures.

In addition, in vitro tests on human glioma cell lines U-87 MG
and T98G revealed the efficacy of OXC to be equal to temozolomide
inMTT and cell cycle tests (Lee et al., 2016). CBZ also suppresses cell
growth of A 172, AM 38, and YH 13 cell lines (Yagi et al., 2022). A
cohort study showed the effectiveness of ESL on tumor-induced
seizures in glioma patients (Zoccarato et al., 2021). The promising
results of ESL in our recent findings of reduced tumor growth and
induced apoptosis in glioma cells suggest that this drug warrants
further investigation in clinical trials to assess its therapeutic
potential in patients with brain tumors (Afsordeh et al., 2024).
Table 2. Summarizes reported studies on dibenzazepines in cancer.
As mentioned, one of the main symptoms associated with brain
tumors is seizures. Due to the prominent role of dibenzazepines in
controlling seizures and the positive results of preliminary studies in
inhibiting the growth of brain cancer cell lines, dibenzazepines may

be suitable candidates for further investigation to inhibit tumor
growth in addition to seizure control. The promising outcomes from
preclinical studies warrant further investigation into their
mechanisms of action and therapeutic benefits in GBM as a priority.

8 Valproic acid

Previous studies have shown that valproic acid, another
antiepileptic drug, also has anti-cancer potential through tumor
growth reduction and metastasis suppression (Blaheta and Cinatl,
2002). This drug, shares signaling pathway crosstalk with
dibenzazepines. It inhibits WNT and histone deacetylases and has
shown effectiveness in some in vitro and in vivo cancer
studies(Duenas-Gonzalez et al., 2008). On the other hand,
laboratory studies have shown that treatment with valproic acid, a
histone deacetylase inhibitor, was beneficial in animals with diabetes-
related colon cancer (Patel and Patel, 2018). This is while valproic
acid, used to treat epilepsy have not shown a protective role against
cancer (Hallas et al., 2009). Also, the use of valproic acid as a histone
deacetylase inhibitor with a cumulative dose of 1,500 g over 5 years is
not associated with a reduced risk of cancer (Blaheta et al., 2002).
Given that valproic acid, like dibenzazepines, is a well-known drug in
the treatment of epilepsy and bipolar disorders, and studies have
shown that it can also be useful for controlling cancer, further studies
in vitro and in systematic reviews are needed to compare these drugs

TABLE 2 Summary of studies evaluating the effect of dibenzazepines in cancer.

Author/Year Drug name Model Cancer type Mechanisms of action/effect(s)

Beutler et al. (2005) CBZ and their major metabolite
CBZ-10,11-epoxide

In vitro HepG2 liver carcinoma cell line HDAC inhibition (3 and 7)

Meng et al. (2011) CBZ In vitro SK-BR-3 and MDA-MB-231 cell
lines

HDAC inhibition (6)

Stettner et al. (2012) CBZ and OXC In vitro LNCaP cell line,prostate cancer Reduced PSA expression in mRNA and protein
levels

Stettner et al. (2012) CBZ and OXC Clinical Prostate cancer Reduced PSA of levels

Guthrie et al. (2013) CBZ Clinical Glioblastoma HDAC inhibition

El Sharkawi et al. (2014) OXC In vitro HeLa, MCF7 and HepG2 cell lines Anti-proliferative

Lee et al. (2016) OXC In vitro U-87 MG and T98G cell lines
Glioma

Inhibiting cell growth and arrest in the cell cycle

Akbarzadeh et al. (2016) CBZ In vitro SW480 cell lines Human colon
cancer

Reducing the level of β-Catenin

Akbarzadeh et al. (2016) CBZ In vitro SW480 cell lines Human colon
cancer

Reducing the level of VEGF

Zhao et al. (2020) CBZ In vitro Surface plasmon resonance suppresses as a specific ligand for FTZ receptor of
Wnt/β-Catenin signaling

Leslie et al. (2020) ESL Electrophysiology MDA-MB-231 cell line metastatic
breast carcinoma

Inhibitory Nav1.5 isoform and Inhibitory
invasion and metastasis

Sohaib and Ezhilarasan
et al. (2020)

CBZ In vitro HT-29 cell line, Human Colon
Adenocarcinoma

Apoptosis

Dao Trong et al. (2023) OXC In vitro Human glioma IDH mutant cell Apoptosis and anti-proliferative

Afsordeh et al. (2024) ESL In vitro C6 cell line Apoptosis and arrest in the cell cycle

Afsordeh et al. (2024) ESL In vivo Animal model Suppresses tumor growth
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to reach a definitive conclusion about their advantages and
disadvantages. However, there is still much work to be done to
understand the effectiveness of these drugs on cancer and reduce
the suffering of patients.

9 Conclusion

Dibenzazepine carboxamides, first known as anticonvulsants
and mood stabilizers, exhibit potential as multifunctional anticancer
agents due to their ability to target multiple signaling pathways in
cancer. This review has highlighted several of their promising
mechanisms of action, including the induction of apoptosis,
modulation of the cell cycle, and inhibition of key oncogenic
pathways such as HDACs and Wnt/β-catenin signaling.
However, the current body of evidence on the anticancer
properties of dibenzazepines is limited, with most studies
conducted at the preclinical level. The lack of clinical studies is a
significant gap that needs to be marked to validate their therapeutic
potential in oncology. Given their established safety profiles and
known pharmacokinetics, repurposing dibenzazepines, particularly
ESL, offers a strategic advantage by potentially bypassing the high
costs and extended timelines associated with the new anticancer
drug development. Future research should focus on further
exploring these compounds in diverse cancer models, elucidating
their precise mechanisms of action, optimizing dosing regimens, and
advancing toward pilot clinical trials. There is a need for future
studies to explore the pharmacokinetics and safety profiles of
dibenzazepines in the context of cancer. Such efforts are essential
a complete assessment of their anticancer capabilities. The transition
from anticonvulsant use to cancer therapy exemplifies the
innovative potential of drug repurposing and opens new horizons
in the search for effective, multi-targeted cancer treatments.
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