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Background: Endometrial carcinoma (EC) is one of the most common
gynecologic malignancies, with increasing global morbidity and mortality
rates. Curcumol, a sesquiterpenoid hemicrystalline compound, exhibits
notable pharmacological effects, including anticancer, anti-inflammatory, and
antiviral properties. This study aims to explore the molecular mechanisms
through which curcumol exerts its effects in the treatment of EC.

Methods: Network pharmacology, data mining and machine learning were used
to integrate curcumol and EC targets. R and online databases were applied to
screen core targets. The core targets were verified by molecular docking,
molecular dynamics simulation, ceRNA network regulation, clinical sample
staining, and immunoinfiltration analysis.

Results: Progesterone Receptor (PGR) and Ribosomal protein S6 kinase
(RPS6KA1) were identified as two core targets in the cancer risk prognostic
model. Survival analysis indicated that high expression of PGR and RPS6KA1 is
associated with prolonged survival in patients with EC. The HPA validation
confirmed the low expression of PGR and high expression of RPS6KA1 in EC
tissues. Molecular docking and simulation confirmed strong binding affinities
between curcumol and the PGR and RPS6KA1 targets. Myc-associated zinc finger
protein (MAZ) was a regulator of both PGR and RPS6KA1. Additionally,
KCNQ1OT1 and chr22-38_28785274–29006793.1 were found to jointly
regulate PGR and RPS6KA1 through various miRNAs, contributing to the
pathogenesis of EC.

Conclusion: Throughmulti-omics analysis, we conclude that curcumol exerts its
anticancer effects primarily through the core targets PGR and RPS6KA1 in the
treatment of EC.
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1 Introduction

Endometrial carcinoma (EC) is one of the most common gynecological malignancies
and the sixth most common cancer among women (Sung et al., 2021). The age-standardized
mortality rate (ASMR) was 2.1 per 100,000 women. In 2022, there were 420,242 new cases,
representing 2.1% of all cancers, and 97,704 deaths, or about 1% (Bray et al., 2024). The
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lifetime risk of EC for women is approximately 3%, with a median
age at diagnosis of 61 years (Crosbie et al., 2022).

EC can be divided into three histological subtypes: endometrioid
carcinoma, serous carcinoma, and clear cell carcinoma (Urick and
Bell, 2019; Vermij et al., 2020). Based on pathogenesis and biological
behavior, EC is classified into estrogen-dependent (Type I) and non-
estrogen-dependent (Type II) types. Type I accounts for
approximately 80%–90% of cases, predominantly comprising
endometrioid carcinoma, with the remaining cases being
mucinous adenocarcinoma. Type II accounts for about 10%–20%
of cases and includes non-endometrioid subtypes such as serous
carcinoma, clear cell carcinoma, undifferentiated carcinoma, and
carcinosarcoma (Makker et al., 2021; Murali et al., 2014).

The most common early clinical manifestation of EC is
postmenopausal bleeding, although only 5%–10% of women with
postmenopausal bleeding will develop cancer (Crosbie et al., 2022).
Risk factors for EC are primarily linked to prolonged, unopposed
estrogen exposure, including estrogen replacement therapy, early
menarche, late menopause, tamoxifen use, nulliparity, infertility or
ovulatory disorders, polycystic ovary syndrome, and elevated
postmenopausal estrogen levels (Braun et al., 2016; Colombo
et al., 2016). Additional risk factors include increasing age,
obesity, hypertension, diabetes, and hereditary non-polyposis
colorectal cancer (Mahdy et al., 2025).

The primary treatment for EC is hysterectomy with bilateral
salpingo-oophorectomy. Radiotherapy and chemotherapy also play
roles in adjuvant therapy, including pelvic external beam radiation,
vaginal brachytherapy, and combination chemoradiotherapy (van
den Heerik et al., 2021). Low-risk to moderate endometrial
hyperplasia can be managed with non-surgical options. Survival
is generally determined by disease stage and histology, with most
patients in stage I and II having a favorable prognosis (Braun et al.,
2016; Colombo et al., 2016; Mahdy et al., 2025). Although early-stage
EC is often diagnosed with a good prognosis, it remains one of the
few cancers with an increasing mortality rate, with recurrence rates
ranging from 2% to 15% in early-stage patients and possibly as high
as 50% in high-risk individuals (Brooks et al., 2019; Riedinger
et al., 2022).

Therefore, there is an urgent need to develop more effective
therapeutic agents for EC to improve patient survival, quality of life,
and reduce treatment costs and the economic burden on patients
(Feng et al., 2024; Li et al., 2025). One objective of this study is to
identify small chemical molecules with potential therapeutic effects
on EC from natural products and explore their therapeutic value.

Curcumol, a natural guaiacoid sesquiterpenoid semi-crystalline
compound with biological activity, can be isolated from Curcuma
longa L., Curcumae rhizoma, and other plants. Studies have shown
that natural guaiacoid sesquiterpenoids exhibit potent antibacterial,
anti-inflammatory, anticancer, and neuroprotective effects (Guo
et al., 2023; Wang et al., 2020). In recent years, curcumol has
demonstrated pharmacological properties such as anti-
inflammatory, antiviral, anticonvulsant effects, as well as the
ability to protect the liver and positively impact the treatment of
various solid tumors, liver diseases, inflammatory disorders, and
infectious diseases (Hashem et al., 2021; Wei et al., 2019; Wu and
Wang, 2024; Zhai et al., 2024).

In clinical practice, endometriosis is recognized as a precursor
lesion for several malignancies, including endometriosis-related

cancers (Kajiyama et al., 2019; Terzic et al., 2021). Curcumol
effectively reduces inflammatory cytokine levels released by
ectopic endometrial stromal cells by inhibiting the JAK2/
STAT3 signaling pathway, thereby suppressing cell proliferation,
migration, and reducing the volume of ectopic lesions (Wang et al.,
2022). However, the precise target and mechanism of curcumol’s
anti-EC effect remain unclear.

Therefore, this study aims to explore the potential
pharmacological effects of curcumol in the treatment of EC
through network pharmacology, multi-omics technologies, and
molecular docking validation. The aim is to elucidate the
molecular mechanisms underlying curcumol’s effects on EC and
provide valuable insights for the development of small-molecule
compounds as therapeutic agents for EC.

2 Materials and methods

2.1 Target collection of curcumol

In the BATMAN-TCM2.0 database (http://bionet.ncpsb.org.cn/
batman-tcm/#/home) (Kong et al., 2024) and the HIT2.0 database
(http://www.badd-cao.net:2345/) (Yan et al., 2022), the relevant
targets for curcumol were identified using keyword searches. The
Isomeric SMILES of curcumol were retrieved from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) (Kim et al., 2023) and
used in the SwissTargetPrediction database (http://
swisstargetprediction.ch/) (Daina et al., 2019), TargetNet database
(http://targetnet.scbdd.com/) (Yao et al., 2016), and the SuperPred
database (https://prediction.charite.de/) (Gallo et al., 2022) to collect
potential targets for curcumol.

In the SwissTargetPrediction database, Homo sapiens was
selected as the species, and targets with a “Probability >0.01″were
screened. In the TargetNet database, targets with an “AUC ≥0.7″and
“Probability >0.01” were selected. For the SuperPred database,
targets with a “Probability >60%” were filtered. The UniProt
database (https://www.uniprot.org/) (The UniProt Consortium,
2023) was used to convert UniProt IDs to gene names. The
target sets from these five databases were compiled to obtain a
comprehensive list of curcumol targets, which were then visualized
using the bioinformatics platform (https://www.bioinformatics.
com.cn/) (Tang et al., 2023). Targets collection date was up to
2 December 2024.

The curcumol targets extracted from the five databases were
summarized and integrated. Specifically, deduplication was
performed on the target data to avoid double-counting. For data
with discrepancies or conflicts, a comprehensive assessment was
conducted, considering factors such as the credibility of the database
predictions, update frequency, and consistency with other databases
(Xie et al., 2022).

2.2 EC target collection

TCGA RNA-Seq HTSeq-FPKM data for Uterine Corpus
Endometrial Carcinoma (UCEC) were downloaded using the
Sangerbox platform (http://sangerbox.com/home.html) (Shen
et al., 2022). The dataset included 579 samples, consisting of
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35 control and 544 tumor samples. ID conversion was performed,
and the dataset was standardized. Differential expression analysis
was conducted using the “limma” package (version 3.40.6) in R
software. Differentially expressed genes (DEGs) were identified
using a p-value <0.05 and |log2 fold change| > 1 as the cutoff
criteria. Heatmaps and volcano plots were generated to visualize the
results. Data collection date was up to 3 December 2024.

2.3 GO and KEGG enrichment analysis of
EC-curcumol targets

Curcumol targets and UCEC-associated targets were intersected
to identify common targets via the bioinformatics platform. The
DAVID database (https://david.ncifcrf.gov/) (Sherman et al., 2022)
was used for Gene Ontology (GO) functional analysis and KEGG
pathway enrichment analysis, with the species limited to “H. sapiens.
” For GO analysis, the top 20 terms based on p-value <0.05 for
Biological Process (BP), Cellular Component (CC), and Molecular
Function (MF) were selected. A Sankey diagram was generated using
the CNSknowall platform (https://www.cnsknowall.com/
#/HomePage). Additionally, the KEGG pathway terms with
p-value <0.05 were imported into the CNSknowall platform to
generate a KEGG pathway string diagram.

2.4 Construction and evaluation of cancer
risk prognostic model

To further assess the impact of EC-curcumol targets on cancer
prognosis, the “survival” package in R was used to integrate survival
time, survival status, and gene expression data. The prognostic
significance of the intersection targets was evaluated using the
Cox proportional hazards method. Univariate Cox proportional
hazards regression analysis was performed, and forest plots were
generated (Tay et al., 2023). Genes with p-value <0.05 in the
univariate analysis were considered prognostic genes for
subsequent analysis.

To prevent overfitting, the “glmnet” package in R was used to
integrate survival time, survival status, and gene expression data,
followed by regression analysis using the LASSO -Cox method
(Wang et al., 2019). Multivariate survival analysis was conducted
using the “survival” package in R. The data, including survival time,
survival status, and five features, were integrated. The prognostic
significance of these features in 539 samples was assessed using the
Cox method. Patients were stratified into two groups based on the
50% percentile of the risk score. The “survfit” function from the
“survival” package was then used to analyze the prognostic
differences between the two groups. The significance of
prognostic differences between groups was evaluated using the
log-rank test, and Kaplan-Meier survival analysis was performed
(May, 2009).

Subsequently, combining survival time and survival status data,
ROC analysis was carried out using the “pROC” package in R
(version 1.17.0.1) (Lorent et al., 2014). ROC curves for 1, 3, and
5 years were plotted to calculate the area under the curve (AUC) and
evaluate the accuracy of the prognostic model (Nahm, 2022).
Additionally, the risk score changes from low to high were

visualized, and the relationship between follow-up time, survival
status, gene expression, and risk score changes was analyzed (Xie
et al., 2025).

2.5 Core gene survival analysis

The core genes used to construct the prognostic models were
uploaded to the Sangerbox website for survival curve analysis. This
analysis examines the impact of these core genes on patient
outcomes over time.

2.6 Core protein expression profile

Core protein expression profile between normal and EC tissues
were analyzed using the Human Protein Atlas (HPA) database
(https://www.proteinatlas.org/) (Uhlén et al., 2015). The stained
area was quantified using ImageJ Pro Plus 6 software and
statistically analyzed with GraphPad Prism 8.0 software.

2.7 Gene set enrichment analysis (GSEA)

The “org.Hs.e.g.,.db” package in R (Version 4.3.3) was used to
determine the biological significance and function of core genes
through the “c2. cp.kegg.Hs.symbols” file. After 100 permutations,
genes were considered significantly enriched if they met the
thresholds of p-value <0.05 and FDR <0.25. The top five
pathways most enriched in the high-expression and low-
expression groups were selected and visualized using the
“enrichplot” package. A positive Enrichment Score (ES) indicates
activation of the gene set, while a negative ES suggests suppression of
the gene set.

2.8 Molecular docking and molecular
dynamics simulation

The core targets were retrieved from the UniProt database and
filtered by “Reviewed” and “Human” entries. The corresponding
target entries were then copied and searched in the RCSB PDB
database (https://www.rcsb.org/) (Berman et al., 2000). Based on H.
sapiens, full-length sequences, unique ligands, and high-resolution
methods, the corresponding target protein crystal structures
were selected.

The 2D structure of curcumol was obtained from the PubChem
database. Initially, Chem3D software was used to convert the
structure into mol2 format. For the target proteins, water
molecules and extraneous residues were removed using PyMOL
(version 2.2) (http://www.pymol.org/2/) (Xie et al., 2022), missing
atoms were supplemented with PyMOL, and the structures were
converted to pdb format. Both the target proteins and the curcumol
molecule were processed with AutoDockTools 1.5.7 and converted
to pdbqt format.

Molecular docking between the curcumol molecule and the core
targets was performed using AutoDock Vina (https://vina.scripps.
edu/) (version 1.5.7) (Morris et al., 2009; Trott and Olson, 2010).
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Complexes with low binding energy and favorable conformations
were selected for visualization in PyMOL to assess hydrogen bonds.

Additionally, 2D molecular docking interactions were analyzed
using the PROTEINS PLUS web tool (https://proteinsplus/)
(Schöning-Stierand et al., 2020). Strong interactions between the
core targets and curcumol were identified when the affinity score
was ≤ −5.0 kcal/mol (Shamsol Azman et al., 2023).

Molecular dynamics (MD) simulations were conducted using
GROMACS (Version 2020.6) (Arshia et al., 2021). The Amber
GAFF2 force field was used to model the behavior of curcumol
molecule, while the FF14SB protein force field was applied for the
molecular dynamic simulation (He et al., 2020; Maier et al., 2015).
The binding complex was immersed in a 10 × 10 × 10Å cubic box
filled with TIP3P water molecules and neutralized with Na+

and Cl− ions.
The energy of the binding complex was minimized using the

steepest descent method followed by the conjugate gradient method.
The thermodynamic temperature of the binding complex was then
gradually increased from 0 K to 310 K under constant volume and
uniform heating. A 200 ps NVT (constant Number of particles,
Volume, and Temperature) simulation was performed after the
binding complex stabilized at 310 K (Xie et al., 2025).

After pre-equilibration, an extended molecular dynamics
simulation of 100 ns was conducted using the Nosé-Hoover
algorithm-based Parrinello-Rahman constant-pressure barostat
and V-rescale thermal bath method. Following the simulation,
the binding complex underwent periodic corrections, and the
Root Mean Square Fluctuation (RMSF), Root Mean Square
Deviation (RMSD), and Radius of Gyration (Rg) of the
curcumol-target complex were calculated (Xie et al., 2025).
Visualization was generated using DuIvyTools (https://duivytools.
readthedocs.io/en/latest/DIT.html).

2.9 Construction of regulatory network for
core targets

Transcription factors associated with the core target were
predicted using the ChEA3 database (https://maayanlab.cloud/
chea3/) (Keenan et al., 2019), with the following filter conditions:
ENCODE database selection and FET p-value <0.05. miRNAs
related to the core targets were predicted using the TargetScan
database (https://www.targetscan.org/vert_80/) (McGeary et al.,
2019), with the selection criteria: PCT >0.5. Long non-coding
RNAs (lncRNAs) were predicted using the DIANA-LncBase
V2 database (http://carolina.imis.athena-innovation.gr/diana_
tools/web/index.php) (Paraskevopoulou et al., 2016), with the
threshold set to ≥0.999. Finally, the “TF-core target” network and
the “lncRNA-miRNA-mRNA” network were constructed using
Cytoscape 3.9.0 software (Shannon et al., 2003).

2.10 Immunoinfiltration analysis

Immune cell infiltration was estimated using the “CIBERSORT”
algorithm (https://cibersortx.stanford.edu) with 1,000 permutations
through R (Version 4.3.3). Samples with a “CIBERSORT”
p-value <0.05 were filtered. The correlation between core genes

and 22 types of infiltrating immune cells was then analyzed. Finally,
the results were visualized using the R packages “reshape2”
and “ggpubr”.

3 Results

3.1 Curcumol targets

The flowchart of this study is shown in Figure 1.
Curcumol is primarily extracted from Turmeric and Curcuma

species, and its molecular structure is shown in Figure 2A. A total
of 148 curcumol targets were identified from the following
databases: 13 targets from the BATMAN-TCM2.0, 9 targets
from the HIT2.0, 25 targets from the SwissTargetPrediction,
50 targets from the TargetNet, and 74 targets from the
SuperPred. These targets were combined to yield 148 unique
curcumol targets (Figure 2B).

3.2 DEGs of EC

Differential expression analysis was performed using the
“limma” package in R software, resulting in 2,516 DEGs,
including 1107 upregulated genes and 1409 downregulated genes
(Figures 2C,D).

3.3 GO and KEGG enrichment analysis

The intersection of the 148 curcumol targets and the 2516 EC
targets revealed 29 common targets (Figure 2E). GO enrichment
analysis, including biological process (GO-BP), cellular component
(GO-CC), and molecular function (GO-MF) categories, identified
70, 17, and 29 significant terms, respectively. The top 20 most
significant pathways or terms (p-value <0.05) were used to construct
Sankey plots (Figures 3A–C).

The results indicated that the BP associated with these targets
were primarily related to the nuclear receptor-mediated steroid
hormone signaling pathway, protein phosphorylation, and
negative regulation of transcription by RNA polymerase II. In
terms of CC, the targets were predominantly localized in the
nucleoplasm, nucleus, and cytosol. MF analysis revealed that
the target functions were significantly concentrated in nuclear
receptor activity, estrogen response element binding, and
steroid binding.

KEGG pathway enrichment analysis identified 20 significant
signaling pathways, and the pathways with a p-value <0.05 were
selected for visualization (Figure 3D). The key signaling pathways
involved in curcumol’s anti-cancer effect on EC included
microRNAs in cancer, sphingolipid signaling, oocyte meiosis, and
the HIF-1 signaling pathway, among others.

3.4 Cancer risk prognostic model

Aunivariate regression analysis was performed on the 29 target genes
of Curcumol-EC using the survival package in R software. Six genes were
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found to be significantly correlated with the overall survival (OS) of EC
(P < 0.05), namely, PGR, RPS6KA1, NR3C1, CCNE1, EZH2, and
TOP2A (Figure 4A). To prevent overfitting, LASSO-Cox regression
analysis was applied to these six genes, with 10-fold cross-validation

and a lambda value of 0.0204. As a result, five genes—PGR, RPS6KA1,
NR3C1, EZH2, and TOP2A—were retained (Figures 4B,C).

Subsequently, a multivariate Cox regression analysis was
performed on the five genes selected by LASSO-Cox

FIGURE 1
Flowchart of this study.
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regression. Three genes—PGR, RPS6KA1, and NR3C1—were
identified, with PGR and RPS6KA1 confirmed as independent
prognostic factors. A prognostic model for EC was constructed

based on these two genes (Figure 4D). Patients were stratified into
high- and low-risk groups using the median risk score as the
cutoff. Survival analysis revealed that patients in the low-risk

FIGURE 2
Identification of curcumol targets and DEGs in endometrial carcinoma. (A) Chinese medicinal herbs (Carcuma longa, Curcuma zedoary) containing
curcumol and the molecular structure of curcumol. (B) The targets of curcumel were retrieved from five databases: BATMAN-TCM 2.0, HIT 2.0,
SwissTargetPrediction, TargetNet, and SuperPred. (C) Volcano plot of DEGs. (D) Heatmap of DEGs. (E) Venn diagram of overlapping targets of curcumol
and EC.
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group had significantly better survival compared to those in the
high-risk group, with a substantial prognostic difference (P =
6.8e-6) (Figure 4E).

The AUC of the ROC curve for OS prediction at the first, third,
and fifth years was 0.72, 0.70, and 0.69, respectively (Figure 4F).
Patients were ranked based on their risk scores, from low to high,
and a risk score graph was generated. A plot of risk scores and
survival time was also created, showing that as the risk score
increased, the expression levels of PGR and RPS6KA1 decreased,
patient survival time shortened, and the mortality rate significantly
increased (Figure 4G).

3.5 Survival curve

On the SangerBox website, EC was defined as the disease of
interest, and a survival curve was generated. The results
indicated that the hazard ratios for PGR and RPS6KA1 were
both less than 1, suggesting that promoting the expression of
these genes may prolong survival in patients with EC
(Figures 5A,B).

3.6 HPA validation

The immunohistochemical staining data for normal
endometrial and EC tissues were obtained from the HPA
database. The antibody used for PGR detection was HPA008428.
The immunohistochemical results and statistical analysis revealed
that, compared to normal tissues, EC tissues exhibited weaker
staining, suggesting a reduced expression of PGR protein in EC
tissues, with the difference being statistically significant. The
antibody used for RPS6KA1 detection was CAB003852. The
immunohistochemical results and statistical analysis showed that,
in contrast to normal tissues, EC tissues displayed stronger staining,
indicating an elevated expression of RPS6KA1 protein in EC tissues,
with the difference being statistically significant (Figures 5C,D).

3.7 GSEA results

GSEA enrichment analysis revealed that PGR was primarily
upregulated in pathways related to butanoate metabolism, drug
metabolism (cytochrome P450), fatty acid metabolism,

FIGURE 3
GO and KEGG enrichment analysis of 29 curcumol-EC targets. (A–C) BP, CC, and MF of curcumol-EC targets shown in a Sankey diagram. (D)Chord
diagram of KEGG enrichment analysis for curcumol-EC targets.
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peroxisome function, and protein export, whereas it was
downregulated in pathways involving cardiac muscle contraction,
the cell cycle, DNA replication, the proteasome, and the
spliceosome (Figure 6A).

RPS6KA1 was primarily upregulated in amino sugar and
nucleotide sugar metabolism, butanoate metabolism, glycolysis
and gluconeogenesis, Leishmania infection, and peroxisome
function, while it was downregulated in pathways related to axon

FIGURE 4
Construction and validation of risk prognostic model of EC. (A) Six prognostic genes were initially identified using univariate Cox regression analysis
(P < 0.05). (B) The optimal parameter (λ) was selected based on the -log2(λ) sequence generation coefficient profile in the LASSO model. (C) LASSO
regression analysis identified five prognostic genes. (D) Multivariate Cox analysis revealed three prognostic genes. (E) Kaplan-Meier survival curves for
high- and low-risk groups. (F) ROC curves for overall survival at 1, 3, and 5 years of the prognostic model. (G) The relationship between the survival
status of EC patients and the risk score from the prognostic model, along with changes in gene expression levels as the risk score increased.
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guidance, the cell cycle, pathways in cancer, the spliceosome, and
Wnt signaling (Figure 6B).

3.8 Molecular docking and molecular
dynamics simulation validation

Molecular docking validation was performed for the curcumol-
PGR and curcumol-RPS6KA1 complexes. The interactions between
curcumol and the core targets, including the formation of hydrogen
bonds and the involved amino acids, were visualized in both 2D and
3D structures. Curcumol binds to the PGR protein at the SER-898
residue, forming a hydrogen bond with a bond length of 2.5 Å
(Figure 7A). Additionally, curcumol interacts with the
RPS6KA1 protein at the GLU-191 residue, forming a hydrogen
bond with a bond length of 2.8 Å (Figure 7B). The binding energies

for the complexes were as follows: curcumol-PGR, −6.6 kcal/mol;
curcumol-RPS6KA1, -6.4 kcal/mol, indicating strong associations
between curcumol and the core targets.

To confirm the molecular docking results of curcumol with
PGR and RPS6KA1, we performed molecular dynamics
simulations. The RMSD curve can reflect the volatility of
molecular binding, in which PGR and RPS6KA1 proteins and
curcumol have small fluctuations in the molecular simulation, but
are generally stable. RMSF curve results show that when PGR and
RPS6KA1 proteins bind to curcumol, their structural and
functional domains have good stability, and some regions have
small fluctuations, indicating that these regions have certain
dynamic and flexible properties. The Rg curves of the two
complexes showed consistent compactness throughout the
simulation, further illustrating the effective binding of PGR and
RPS6KA1 proteins to curcumol (Figures 7C,D).

FIGURE 5
Survival curve and HPA validation. (A,B) Survival curve of PGR and RPS6KA1. (C,D) Immunohistochemical staining and statistical analysis of PGR and
RPS6KA1 in normal endometrial and EC tissues.
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3.9 Regulatory network of core targets

To further investigate the potential mechanisms of PGR and
RPS6KA1 in EC treatment, transcription factors (TFs), miRNAs,
and lncRNAs were predicted using an online database, and a
regulatory network was constructed. The transcription factor
MAZ was identified as a regulator of both PGR and RPS6KA1
(Figure 8A). Additionally, a common ceRNA network involving
19 miRNAs and 79 lncRNAs was established for PGR and
RPS6KA1. The hsa-miR-26 family predominantly regulates PGR,
while the hsa-miR-125 family regulates RPS6KA1. Notably,
KCNQ1OT1 and chr22-38_28785274–29006793.1 jointly regulate
PGR and RPS6KA1 through various miRNAs, contributing to the
pathogenesis of EC (Figure 8B).

3.10 Immunoinfiltration result

Heatmap and violin plot analyses revealed significant differences
in the expression levels of macrophage M0, mast cells resting, T cells
regulatory (Tregs), and T cells γδ between the EC and control
groups, with P-values <0.001. Specifically, the expression levels of

macrophage M0 and Tregs were higher in the EC group, while mast
cells resting and T cells γδ were expressed at lower levels in the EC
group (Figures 9A,C). The immune cell correlation heatmap
indicated that most immune cells showed low correlations with
each other. The highest positive correlation was observed between
activated memory CD4+ and CD8+ T cells (0.57), while the highest
negative correlation occurred between CD8+ T cells andmacrophage
M0 (−0.49) (Figure 9B). The lollipop plot demonstrated that PGR
had the strongest positive correlation with Tregs and the highest
negative correlation with resting NK cells (Figure 9D).
RPS6KA1 was most positively associated with neutrophils and
most negatively associated with macrophage M1 (Figure 9E).

4 Discussion

In recent years, the global burden of cancer has steadily
increased, particularly in low- and middle-income countries. Both
the incidence and mortality rates of cancer continue to rise
worldwide, and this trend is expected to intensify as the global
population ages (Bray et al., 2024; Global Nutrition Target
Collaborators, 2025). Furthermore, the global prevalence of

FIGURE 6
GSEA enrichment analysis. (A) Five pathways with significantly upregulated PGR and five pathways with significantly downregulated PGR. (B) Five
significantly upregulated pathways and five significantly downregulated pathways in RPS6KA1.
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unhealthy lifestyles, including obesity, poor diet, physical inactivity,
smoking, and alcohol consumption—especially in developing
countries—has contributed to the increasing cancer burden
(Blüher, 2019; Cecchini et al., 2010). Concurrently,

environmental issues such as air and water pollution have
become more severe, particularly in rapidly industrializing
regions, further exacerbating cancer incidence and mortality
(Fuller et al., 2022; Manisalidis et al., 2020).

FIGURE 7
Molecular docking and dynamics simulation. (A) Molecular docking visualization results of curcumol-PGR. The left panel shows the 2D model, the
middle panel displays the global 3D model, and the right panel presents the local 3D model, highlighting the hydrogen bonding sites between PGR and
curcumol, as well as the distances between the binding sites. (B) Molecular docking visualization results of curcumol-RPS6KA1. (C,D) RMSD, RMSF, and
the radius of gyration (RG) with values along the three axes (Rgx, Rgy, Rgz) for curcumol-PGR and curcumol-RPS6KA1 complexes.
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EC, one of the most common malignancies of the female
reproductive system, has shown an upward trend in both incidence
and mortality worldwide in recent years, with this trend being more
pronounced in developed countries (Crosbie et al., 2022; Feng et al., 2024;
Mahdy et al., 2025; Makker et al., 2021). Obesity is considered a major
risk factor for EC, as it leads to elevated estrogen levels, which in turn
increase the risk of the disease. Developed countries such as the
United States, those in Europe, and Australia report higher incidences
of EC, with the incidence in the United States being approximately
25.7 per 100,000 people (Brooks et al., 2019; Crosbie et al., 2022; Feng
et al., 2024; Mahdy et al., 2025; Makker et al., 2021). This is primarily
associated with factors such as obesity, late marriage, delayed
childbearing, and the use of hormone replacement therapy. In
developing countries like China and India, while the overall incidence
remains lower, it is rising due to changes in lifestyle, increasing obesity
rates, and the growing aging population (Feng et al., 2024; Global
Nutrition Target Collaborators, 2025; Olufadewa et al., 2021).

Natural small molecule drugs that are cost-effective, have good
therapeutic outcomes, and exhibit minimal side effects have become
a pressing need for patients with EC. The aim of this study is to
uncover the molecular mechanisms of curcumol in the treatment of
EC through multi-omics analysis.

A total of 148 curcumol-related targets were identified from the
integration of five commonly used databases. Following a
comprehensive screening, 2,516 DEGs related to EC were selected.

After combining the datasets, 29 shared targets were identified. GO-BP
analysis revealed that these 29 curcumol-EC targets were enriched in
pathways such as nuclear receptor-mediated steroid hormone signaling,
protein phosphorylation, and negative regulation of transcription by
RNA polymerase II. This suggests that the curcumol-EC targets are
involved in steroid hormone signaling and the regulation of gene
expression. GO-CC and MF analyses confirmed these findings.
KEGG pathway analysis further demonstrated that the 29 curcumol-
EC targets were enriched in cancer-related pathways.

Through integrative analysis using univariate regression,
LASSO-Cox regression, and multivariate Cox regression, PGR
and RPS6KA1 were identified as core targets involved in
curcumol’s anti-cancer effects in EC. The PGR gene encodes four
isoforms of the progesterone receptor, which are involved in the
regulation of gene expression and influence cellular proliferation
and differentiation in target tissues (Giangrande et al., 2000).
Depending on the isoform, the progesterone receptor can
function either as a transcriptional activator or repressor
(McDonnell et al., 1994). It also recruits the corepressor
NCOR2 and activates SRC-dependent MAPK signaling upon
hormone stimulation (Wen et al., 1994). The RPS6KA1 gene
encodes the ribosomal protein S6 kinase alpha-1, which
positively regulates the activation of the AKT/NF-κB pathway in
hepatocellular carcinoma tumorigenesis (Zhou et al., 2024).
Additionally, RPS6KA1 acts as an oncoprotein in acute myeloid

FIGURE 8
Core target regulatory network. (A) Transcription factor-core target network diagram: green represents the core targets, and orange represents the
transcription factor. (B) ceRNA network diagram of core genes: green represents the core targets, purple represents the miRNAs, and yellow represents
the lncRNAs.
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FIGURE 9
Immunoinfiltration. (A) Immune expression heatmap showing the differential expression of 22 immune cell types between the EC and control
groups. (B) Immune cell correlation heatmap illustrating the relationships between 22 immune cell types; red indicates positive correlation, blue indicates
negative correlation, with color intensity representing the strength of correlation. (C) Box plot of immune expression demonstrating the differences in the
expression of 22 immune cell types between the EC and control groups. P < 0.05 indicates statistical significance, with smaller P values reflecting
greater differences in expression between the groups. (D) Correlation between PGR and 22 immune cell types. (E) Correlation between RPS6KA1 and
22 immune cell types.
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leukemia, promoting disease progression (Guo et al., 2024). It has
also been identified as a mediator of resistance to venetoclax/
azacitidine, and the inhibition of RPS6KA1 may serve as a
strategy to prevent or overcome resistance in the treatment of
acute myeloid leukemia (Weidenauer et al., 2023; Yu et al., 2021).

HPA validation results collectively indicated that lower expression
levels of PGR and higher expression of RPS6KA1were associated with
increased ECmortality. GSEA enrichment analysis revealed that PGR
and RPS6KA1 were upregulated in metabolic pathways related to
matter and energy, while downregulated in developmental and
cancer-related pathways.

To further explore the interactions between curcumol and its
core targets, PGR and RPS6KA1, molecular docking and molecular
dynamics simulations were performed. Curcumol demonstrated
strong binding affinity to both PGR and RPS6KA1, confirming
these as its action targets in the anti-EC effect.

To investigate the potential mechanisms of PGR and RPS6KA1 in
EC treatment, regulatory RNAs were explored, and a potential
regulatory network was predicted. MAZ was identified as a
regulator of both PGR and RPS6KA1. Additionally,
KCNQ1OT1 and chr22-38_28785274–29006793.1 were found to
jointly regulate PGR and RPS6KA1 through various miRNAs,
contributing to the pathogenesis of EC.

Immunoinfiltration analysis revealed that M0 macrophages and
Tregs were highly expressed in EC, while resting mast cells and γδ
T cells were present at lower levels. PGR showed the strongest
positive correlation with Tregs and the highest negative correlation
with resting NK cells. RPS6KA1 was most positively associated with
neutrophils and most negatively associated with M1 macrophages.
These findings suggest that PGR and RPS6KA1 play potential roles
in EC treatment by modulating various immune cells.

This article explores the potential targets and mechanisms of
curcumol in the treatment of EC using multi-omics approaches.
However, the lack of in vivo and in vitro experimental data limits the
direct validation of curcumol’s therapeutic effects on EC, thereby
hindering the clinical translation of the research findings.
Consequently, our next phase of research will focus on providing
clear experimental evidence of curcumol’s therapeutic effects on EC
through cell-based and animal studies, while also elucidating the
underlying molecular mechanisms involved.

5 Conclusion

This study employed network pharmacology, data mining, and
machine learning to integrate curcumol and EC targets. R and online
databases were used to identify core targets. These core targets were
validated through network pharmacological approaches, molecular
docking, molecular dynamics simulations, ceRNA network analysis,
clinical sample staining, and immunoinfiltration analysis. The potential
molecular mechanisms by which curcumol influences EC treatment
were then explored. Our findings offer valuable insights for in vitro
studies on curcumol’s efficacy in treating EC and identify key targets for
clinical applications in EC therapy. Through multi-omics analysis, we
conclude that curcumol exerts its anticancer effects primarily through
the core targets PGR and RPS6KA1 in the treatment of EC.
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