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Doxorubicin (DOX) has received widespread attention as a broad-spectrum
antitumor drug. However, it has been a recognized challenge that long-term
DOX injections can lead to severe cardiotoxicity. There are numerous
interventions to DOX-induced cardiotoxicity, and the most cost-effective is
phytochemicals. It has been reported that phytochemicals have complex and
diverse biological properties, facilitating the mitigation of DOX-induced
cardiotoxicity. DOX-induced cardiotoxicity has numerous pathological
mechanisms, and the nod-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome-mediated cardiomyocyte pyroptosis is one of them.
This review initially presents an overview of the pathological mechanisms that
underlie cardiotoxicity induced by DOX. Subsequently, we present a
comprehensive elucidation of the structure and activation of the
NLRP3 inflammasome. Finally, we provide a detailed summary of
phytochemicals that can mitigate DOX-induced cardiotoxicity by influencing
the expression of the NLRP3 inflammasome in cardiomyocytes.
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1 Introduction

Doxorubicin (DOX) is recognized for its remarkable antitumor efficacy (Agudelo et al.,
2014; Xu et al., 2024). However, it is essential to acknowledge that extended administration
of DOX can result in significant organ damage, particularly affecting the heart (Carvalho
et al., 2009;Wu et al., 2022; Zhao et al., 2023). Available clinical data suggests that prolonged
administration of DOX leads to reduced left ventricular ejection fraction (LVEF),
arrhythmias and in severe cases, even heart failure (Lipshultz et al., 2002; Volkova and
Russell, 2011; Milano et al., 2014; Gupta et al., 2019; Tan et al., 2021; Yun et al., 2021;
Harding et al., 2023; Hu et al., 2023; Zhu M. et al., 2024). Recent epidemiologic data
indicates that the toxicity of DOX on the heart increases with dose, with a probability of
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heart failure exceeding 40% for patients when the cumulative dose
reaches 700 mg/m2 (Gianni et al., 2008; Curigliano et al., 2016). This
highly morbid and lethal disease imposes a significant strain on the
family of patient and society. Therefore, it is urgent to find
appropriate ways to intervene in DOX-induced cardiotoxicity.

Contemporary treatments for DOX-induced cardiotoxicity
mainly involve clinical drugs (Zilinyi et al., 2018). Although their
efficacy is unquestionably assured, most patients cannot afford the
high cost, while long-term administration can lead to adverse effects.
Currently, there are several studies indicating that phytochemicals
can enhance cardiovascular health (Ditano-Vázquez et al., 2019;
Wen et al., 2024). Moreover, numerous investigations have
confirmed the potential efficacy of this cost-effective medication
in mitigating DOX-induced cardiotoxicity (Abushouk et al., 2017).

DOX-induced cardiotoxicity encompasses various pathological
processes, with the nod-like receptor family pyrin domain-
containing 3 (NLRP3) inflammasome-mediated cellular pyroptosis
being among them and currently one of the most extensively
researched (Rawat et al., 2021; Yang et al., 2022). It has been
extensively documented that many phytochemicals can reduce
DOX-induced cardiotoxicity by affecting the NLRP3 inflammasome
and thereby ameliorating cardiomyocyte pyroptosis. This review will
summarize and discuss this aspect in detail.

When screening the core literature, we used the following search
terms: (((heart*) OR (cardia*) OR (myocardi*) OR
(cardiomyocyte*) OR (cardiomyoblast*) OR (cardiomyopathy)
OR (H9c2) OR (cardiotoxicity)) AND ((Doxorubicin) OR
(DOX))) AND ((NLRP3) OR (nucleotide-binding oligomerization
domain-like receptor protein 3)). Using this search strategy, we
screened out all research articles that included phytochemicals.

2 The overview of doxorubicin-induced
cardiotoxicity: from the perspective of
pathological mechanisms

Recent studies have been devoted to digging deeper into the
pathological mechanisms of DOX-induced cardiotoxicity. Although
there has been significant progress, there are still many controversial
contents. In this section, we will condense the pathological
mechanisms of DOX-induced cardiotoxicity based on the
contents of the existing literature.

The first pathological mechanism we will discuss is oxidative stress
(Songbo et al., 2019). According to the available studies, DOX can
induce oxidative stress in cardiomyocytes in three manners. At the very
beginning, DOX can damage the “energy supply centers” in
cardiomyocytes, i.e., mitochondria, which can cause the
accumulation of reactive oxygen species (ROS) (Octavia et al., 2012).
Second, DOX can induce ROS production by affecting Fe2+ homeostasis
in cardiomyocytes (Sangweni et al., 2022). Finally, DOX can also
promote ROS accumulation in cardiomyocytes by increasing
nicotinamide adenine nucleotide phosphate (NADPH) oxidase,
which in turn induces oxidative stress injury in cardiomyocytes
(Priya et al., 2017). Multiple programmed cell deaths are also
significant for DOX-induced cardiotoxicity (Christidi and Brunham,
2021). Cardiomyocyte apoptosis is one of them (Qu et al., 2022). Two
pathwaysmainly participate inDOX-induced cardiomyocyte apoptosis.
The first is the endogenous pathway (i.e., the mitochondrial pathway),

in which DOX can lead to DNA fragmentation by disrupting the outer
mitochondrial membrane (OMM) in cardiomyocytes, which can cause
the leakage of cytochrome C (Cyt C), which recruits caspase-9 and in
turn activates caspase-3 and induces its translocation to the nucleus
(Kitazumi and Tsukahara, 2011). The exogenous apoptotic pathway is
mainly closely linked to the activation of caspase-8. DOX can activate
caspase-3/7 by activating caspase-8, which in turn leads to the
development of cardiomyocyte apoptosis (Font-Belmonte et al.,
2020). Cardiomyocyte ferroptosis is also one of them (Tai et al.,
2023). Available evidence suggests that DOX can induce
cardiomyocyte ferroptosis by inducing a massive accumulation of
Fe2+, thereby disrupting iron homeostasis within cardiomyocytes
(Zhao et al., 2023). Meanwhile, excessive Fe2+ accumulation induces
the Fenton Reaction, which leads to a massive accumulation of lipid
peroxides, causing secondary damage (Koppenol, 2001; Kaźmierczak-
Barańska et al., 2020; Ai et al., 2021). Cellular autophagy, a particular
form of programmed cell death, also participates in DOX-induced
cardiotoxicity (Shabalala et al., 2017). In addition, the induction of
cellular inflammation is also an important factor in myocardial injury
caused byDOX (Vitale et al., 2024). According to relevant reports, DOX
can induce the expression of pro-inflammatory factors [e.g., interleukin-
1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), etc.], which
induces myocardial cell inflammation (El-Agamy et al., 2019; Li
et al., 2019). Of course, many other pathological mechanisms are
involved besides the above. For example, DOX can induce
endoplasmic reticulum dysfunction in cardiomyocytes, leading to the
accumulation of unfolded or misfolded proteins, which in turn induces
endoplasmic reticulum stress injury (Sun et al., 2024). DOX also causes
damage to mitochondria in cardiomyocytes, leading to mitochondrial
dysfunction (Wu et al., 2022). The pathological mechanism of DOX-
induced cardiotoxicity may also be related to epigenetic, Ca2+ overload
and disturbed energy metabolism (Chen et al., 2017; Rawat et al., 2021;
Dantas et al., 2022).

Notably, cellular pyroptosis mediated by NLRP3 inflammasome
has received much attention, and many reports suggest that DOX-
induced cardiotoxicity is intimately linked to the activation of
NLRP3 inflammasome-mediated cardiomyocytes pyroptosis.
Therefore, our review will target NLRP3 inflammasome-mediated
cardiomyocyte pyroptosis and provide insights into phytochemicals
to ameliorate DOX-induced cardiotoxicity. Figure 1 illustrates the
pathological processes of DOX-induced cardiotoxicity.

3 The structure and activation of
NLRP3 inflammasome

Nucleotide-binding structural domains Leucine-rich repeat
proteins (NLRs) constitute a family of pattern recognition
receptors (PRRs) predominantly engaged in innate immune
defense mechanisms, responding to various damage-associated
molecular patterns (DAMPs) and pathogen-associated molecular
patterns (PAMPs) (Singh and Jha, 2018; Xia et al., 2023). Notably,
there are four subgroups within the NLR family: NLRA, NLRB,
NLRC, and NLRP (Xia et al., 2023). Activated NLRPs can form
inflammasomes, of which the NLRP3 inflammasome is
representative (Wicherska-Pawłowska et al., 2021; Xia et al.,
2023). Available reports suggest that the NLRP3 inflammasome
comprises three parts: NLRP3 (sensor), apoptosis-associated
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speckle-like protein (ASC) (adaptor) and caspase-1 (effector) (Li S.
et al., 2021). Nucleotide-binding and oligomerization domain
(NACHT), C-terminal leucine-rich repeats (LRRs) and an
N-terminal pyrin domain (PYD) are the three primary
components of NLRP3 (Platnich and Muruve, 2019; Yi, 2020; Li
S. et al., 2021; Xia et al., 2023). ASC contains two domains: one at the
N-terminal end, the PYD, and the other, the C-terminal caspase
recruit domain (CARD) (Platnich andMuruve, 2019; Yi, 2020). Pro-
caspase-1 possesses a three-part structure comprising a CARD at the
N-terminal, p10 at the C-terminal and p20 centrally located
(Platnich and Muruve, 2019; Yi, 2020).

The NLRP3 inflammasome rests by forming a double-loop
structure (Andreeva et al., 2021). The NLRP3 inflammasome
cannot be activated by the basal level of NLRP3 (Sharma and
Kanneganti, 2021). Based on the available studies, it is found that
the activation of NLRP3 inflammasome mainly relies on two
different signals (Sharma and Kanneganti, 2021; Toldo et al.,
2022; Xia et al., 2023). The first is the “priming” signal (Xia
et al., 2023). This signal is mainly involved by a variety of PRRs
(toll-like receptors (TLRs) as well as multiple cytokine receptors,
including the TNF receptor and the IL-1 receptor), which recognize

PAMPs and DAMPs, thereby triggering the nuclear translocation of
nuclear factor kappa B (NF-κB), which in turn induces the
transcription of NLRP3, IL-1β and IL-18 (Sharma and
Kanneganti, 2021; Toldo et al., 2022; Xia et al., 2023). This is
immediately followed by the “triggering” signal (Sharma and
Kanneganti, 2021; Toldo et al., 2022; Xia et al., 2023). This signal
allows for the oligomerization of NLRP3 through the NACHT, and
the PYD in NLRP3 is primarily responsible for connecting with the
PYD in the ASC. This interaction, in turn, makes it easier for the
ASC to bind to pro-caspase-1, ultimately forming the
NLRP3 inflammasome (Ludlow et al., 2005; Tattoli et al., 2007;
Kumar et al., 2009; Rathinam et al., 2012; Latz et al., 2013; Lu et al.,
2014; Motta et al., 2015; Toldo et al., 2015; Yin et al., 2015; Murphy
et al., 2016; Yang et al., 2016; Pavillard et al., 2017; Arterbery et al.,
2018; Komada et al., 2018; Li et al., 2018; Toldo and Abbate, 2018;
Hausmann et al., 2020; Mezzaroma et al., 2021). At the same time,
pro-caspase-1 undergoes cleavage, resulting in the release of active
caspase-1. This released caspase-1 then activates pro-IL-1β, pro-IL-
18 and gasdermin-D (GSDMD) (Toldo et al., 2022). The formation
of membrane pores by activated N-terminal GSDMD (NT-
GSDMD) leads to the release of IL-1β and IL-18 from the

FIGURE 1
The main pathological mechanisms of doxorubicin-induced cardiotoxicity. Doxorubicin-induced cardiotoxicity involves multiple pathological
mechanisms. The main can include oxidative stress, apoptosis, ferroptosis, pyroptosis, autophagy, inflammation, endoplasmic reticulum stress,
epigenetics, Ca2+ overload, disturbed energy metabolism and mitochondrial dysfunction (Created with BioRender.com).
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intracellular space, which ultimately leads to the induction of cellular
pyroptosis (Shao et al., 2007; Liu et al., 2016; Toldo and Abbate,
2018; Abbate et al., 2020). “Triggering” signal is induced by many
factors, such as ion flow (K+ efflux, Na+ influx), adenosine
triphosphate (ATP), pore-forming toxins, particulate matter,
silica crystals, etc. (Sharma and Kanneganti, 2021). Figure 2
illustrates the activation pathway of the NLRP3 inflammasome.

4 Phytochemicals ameliorate
doxorubicin-induced cardiotoxicity by
inhibiting NLRP3 inflammasome-
mediated cardiomyocyte pyroptosis

There are numerous reports on phytochemicals ameliorating
DOX-induced cardiotoxicity. He et al. has shown that
phytochemical could ameliorate DOX-induced cardiotoxicity by

modulating cardiomyocyte autophagy (He et al., 2021). Lin et al.
demonstrate that phytochemical could ameliorate DOX-induced
cardiotoxicity by affecting cardiomyocyte oxidative stress (Lin and
Wang, 2023). NLRP3 inflammasome-mediated pyroptosis of
cardiomyocytes is a significant pathological mechanism of DOX-
induced cardiotoxicity. Therefore, in this section, based on the
available literature, we will classify and summarize which
phytochemicals can ameliorate DOX-induced cardiotoxicity by
inhibiting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis. Table 1 provides a detailed summary of this section.

4.1 Polyphenol

Polyphenols are organic compounds distinguished by many
phenolic units and are extensively found in diverse plants
(Salucci et al., 2017; Tian et al., 2021). There are numerous

FIGURE 2
The activation process of NLRP3 inflammasome. The activation of NLRP3 inflammasome depends on two main signals. First is the “priming” signal.
This signal is primarily mediated by a variety of PRRs, including TLRs. These receptors recognize PAMPs or DAMPs, thereby triggering the nuclear
translocation of NF-κB. This process subsequently induces the transcription of NLRP3, IL-1β, and IL-18. The next is the “triggering” signal. The signal
promotes NLRP3 oligomerization and NLRP3 interacts with ASC. ASC binds to pro-caspase-1 to form the NLRP3 inflammasome. Pro-caspase-1 is
cleaved into active caspase-1, which activates pro-IL-1β, pro-IL-18 and GSDMD. Activated NT-GSDMD formsmembrane pores, releasing IL-1β and IL-18
and inducing pyroptosis. This signal is triggered by factors like ion flow (K+ efflux, Na+ influx), ATP, pore-forming toxins, particulate matter and silica
crystals (Created with BioRender.com). (PRRs, pattern recognition receptors; PAMPs, pathogen-associated molecular patterns; DAMPs, damage-
associated molecular patterns; TLRs, toll-like receptors; NF-κB, nuclear factor kappa B; IκK, IkappaB kinase; IL-1β, interleukin-1beta; NLRP3, nod-like
receptor family pyrin domain-containing 3; ASC, apoptosis-associated speckle-like protein; GSDMD, gasdermin-D; ATP, adenosine triphosphate; P2X7,
purinergic 2X7).
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reports that polyphenols can be involved in relieving DOX-induced
cardiotoxicity by modulating multiple biological functions (Gu et al.,
2015; Yi et al., 2024). Based on the available literature, four

polyphenolic phytochemicals could ameliorate DOX-induced
cardiotoxicity by inhibiting NLRP3 inflammasome-mediated
cardiomyocyte pyroptosis.

TABLE 1 Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte pyroptosis.

Phytochemical

Category Name PubChem
CID

Molecular
formula

Structure Intervention
does

Intervention
route

Polyphenol Curcumin 969516 C21H20O6 100, 200, 400 mg/kg
for

16 days

IG

10 μM for 24 h N/A

Resveratrol 445154 C14H12O3 320 mg/kg/day for
5 weeks

PO

Honokiol 72303 C18H18O2 2.5, 5 μM for 24 h N/A

(Continued on following page)
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4.1.1 Curcumin
Curcumin is a bright yellow polyphenolic compound isolated

and extracted from turmeric, which has significant anti-
inflammatory and anti-oxidative stress properties (Vollono et al.,
2019; Ms et al., 2020; D’Andurain et al., 2023). Available studies
suggest its crucial function in mitigating DOX-induced
cardiotoxicity. According to a report, curcumin could reduce

inflammation and oxidative stress in cardiomyocytes, thereby
ameliorating DOX-induced cardiotoxicity (Ibrahim Fouad and
Ahmed, 2022). Interestingly, an existing report suggests that
curcumin’s amelioration of DOX-induced cardiotoxicity is also
strongly associated with its inhibition of NLRP3 inflammasome
(Yu et al., 2020). This study has shown that DOX has a number of
negative effects on the heart, including a decrease in heart weight, an

TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Phytochemical

Category Name PubChem
CID

Molecular
formula

Structure Intervention
does

Intervention
route

Amentoflavone 5281600 C30H18O10 20 mg/kg N/A

20 μM for 24 h N/A

Flavonoid Myricetin 5281672 C15H10O8 5, 25, 50 mg/kg/day
for 1 week

PO

Pinocembrin 68071 C15H12O4 5 mg/kg every other
day for 4 weeks

IP

1 μM for 48 h N/A

Dihydromyricetin 161557 C15H12O8 100, 200 mg/kg/day
for 6 weeks

PO

50 μM for 24 h N/A

(Continued on following page)
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TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Phytochemical

Category Name PubChem
CID

Molecular
formula

Structure Intervention
does

Intervention
route

Hyperoside 5281643 C21H20O12 15, 30 mg/kg/day for
7 days

PO

100, 200 μM for 48 h N/A

Calycosin 5280448 C16H12O5 50 mg/kg every other
day for 4 weeks

IP

20 μg/mL for 1 h N/A

Calycosin 5280448 C16H12O5 50, 100 mg/kg for
7 days

IP

50, 100, 200 μM
for 24 h

N/A

Cynaroside 5280637 C21H20O11 10, 50 mg/kg/day for
9 days

IP

Terpenoid Carnosic acid 65126 C20H28O4 40 mg/kg/day for
4 weeks

PO

20 μM for 24 h N/A

(Continued on following page)
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TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Phytochemical

Category Name PubChem
CID

Molecular
formula

Structure Intervention
does

Intervention
route

α-Bisabolol 252403102 N/A 25 mg/kg twice 1 day
for 5 days

PO

Andrographolide 5318517 C20H30O5 25, 50 mg/kg/day for
17 days

IG

5, 10 μM for 24 h N/A

Nerolidol 5284507 C15H26O 50 mg/kg/day for
5 weeks

PO

Polysaccharide Polyguluronic
acid

481148167 N/A N/A 12.5, 25, 50 mg/kg for
2 weeks

IP

12.5, 25, 50 μg/mL
for 24 h

N/A

Fuzi
polysaccharide

N/A N/A N/A 50, 100, 200 mg/kg
for 14 days

IG

Saponin Astragaloside IV 13943297 C41H68O14 40 mg/kg for 4 weeks IG

(Continued on following page)
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TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Phytochemical

Category Name PubChem
CID

Molecular
formula

Structure Intervention
does

Intervention
route

Astragaloside IV 13943297 C41H68O14 20 mg/kg/day for
5 days/week for

6 weeks

IG

1 μM for 72 h N/A

Other small
molecule

compounds

Fraxetin 5273569 C10H8O5 40, 80 mg/kg/day for
1 week

IG

Betaine 247 C5H11NO2 50, 100, 200 mg/kg
once a day for

2 weeks

PO

Model Signaling
pathway

Intervention
outcome

References

In Vivo/In Vitro Animal/Cell Intervention
does

Intervention
route

In vivo Kunming mice 3 mg/kg every other day
with a cumulative dosage

of 24 mg/kg

IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

HW/BW ↑;
CK, LDH, AST ↓;

Pumping function of the
heart ↑;

Cardiac contractility ↑

Yu et al. (2020)

In vitro H9c2 2 μM for 24 h N/A

In vivo C57BL/6J mice 4 mg/kg for 3 weeks IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Blood pressure ↓;
The area of perivascular

fibrosis ↓;
Myocardial tissue

damage ↓

Maayah et al. (2021)

In vitro H9c2 0.1 μM for 48 h N/A TXNIP/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Cardiomyocyte
mortality ↓

Huang et al. (2020)

In vivo C57BL/6J mice 3 mg/kg every other day
for 2 weeks

IP STING/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Cardiomyocytemortality
↓;

Pumping function of the
heart ↑;

Hemodynamics ↑;
CK-MB, LDH, BNP ↓;

Myocardial tissue
damage ↓;

The area of myocardial

Fang et al. (2023)

In vitro Primary ventricular
cardiomyocytes

1 μM for 24 h N/A

(Continued on following page)
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TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Model Signaling
pathway

Intervention
outcome

References

In Vivo/In Vitro Animal/Cell Intervention
does

Intervention
route

fibrosis ↓;
Myocardial pathologic

hypertrophy ↓

In vivo C57BL/6J mice 15 mg/kg for 1 time IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

cTnI, AST, BNP, LDH ↓;
TC, TG ↓;

Myocardial tissue
damage ↓;

The area of myocardial
fibrosis ↓

Li et al. (2024)

In vivo C57BL/6J mice 20 mg/kg for 1 time IV Nrf2/SIRT3/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Pumping function of the
heart ↑;

Myocardial tissue
damage ↓;

The area of myocardial
fibrosis ↓;

CK, LDH ↓;
Cardiomyocyte
mortality ↓

Gu et al. (2021)

In vitro H9c2 1 μM for 48 h N/A

In vivo SD rats 2.5 mg/kg/week for
6 weeks

IV SIRT1/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Cardiomyocytemortality
↓;

The area of myocardial
fibrosis ↓;

Myocardial pathologic
hypertrophy ↓;

Pumping function of the
heart ↑

Sun et al. (2020)

In vitro H9c2 5 μM for 24 h N/A

In vivo C57BL/6J mice 3 mg/kg every other day
with a cumulative dosage

of 12 mg/kg

IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Cardiomyocytemortality
↓;

Myocardial pathologic
hypertrophy ↓; cTnT,
CK, CK-MB, LDH ↓;

Pumping function of the
heart ↑

Wei et al. (2023)

In vitro Rat primary
cardiomyocytes

1 μM for 48 h N/A

In vivo C57BL/6J mice 5 mg/kg for 4 weeks IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Pumping function of the
heart ↑;

The area of myocardial
fibrosis ↓;

Myocardial tissue
damage ↓;

Cardiomyocyte
mortality ↓

Zhang et al. (2022)

In vitro H9c2 1 μM for 24 h N/A

In vivo Kunming mice 15 mg/kg for 1 time IP SIRT1/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Cardiomyocytemortality
↓;

AST, LDH ↓;
Myocardial tissue

damage ↓

Zhai et al. (2020)

In vitro H9c2 5 μM for 24 h N/A

In vivo C57BL/6J mice 5 mg/kg/week for 3
weeks

IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

ALP, AST, LDH, CK-MB
↓;

Myocardial tissue
damage ↓;

Myocardial pathologic
hypertrophy ↓;

ANP, BNP, Myh7, cTnT,
cTnI, Actc1 ↓

Zou et al. (2024)

In vivo C57BL/6J mice 5 mg/kg/week for
3 weeks

IP Nrf2/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Pumping function of the
heart ↑;

HW/TL ↓;
The area of myocardial

fibrosis ↓;
Myocardial tissue

damage ↓;
CK-MB, cTnT, LDH ↓;

Cardiomyocyte
mortality ↓

Hu et al. (2023)

In vitro Neonatal rat ventricular
myocytes

1 μM for 24 h N/A

In vivo Wistar rats 12.5 mg/kg IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Body weight ↑;
CK, LDH ↓;

Hemodynamics ↑

Nagoor Meeran et al.
(2023)

(Continued on following page)
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increase in blood levels of the biomarkers of myocardial injury like
creatine kinase (CK), lactate dehydrogenase (LDH), aspartate
transaminase (AST) and cardiac troponin I (cTnI) and a
noticeable impact on the efficiency and contractility of the
cardiac pumping function. Further experiments show that DOX

can dramatically raise the production of NLRP3 inflammasome and
proteins associated with cell pyroptosis, including caspase-1, IL-1β
and IL-18, in the myocardium. This indicates that the cardiac injury
induced by DOX is likely associated with the triggering of the
NLRP3 inflammasome and its subsequent mediation of cellular

TABLE 1 (Continued) Phytochemicals ameliorate doxorubicin-induced cardiotoxicity by affecting NLRP3 inflammasome-mediated cardiomyocyte
pyroptosis.

Model Signaling
pathway

Intervention
outcome

References

In Vivo/In Vitro Animal/Cell Intervention
does

Intervention
route

In vivo C57BL/6J mice 3 mg/kg every other day
for 10 days

IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Cardiomyocytemortality
↓;

Pumping function of the
heart ↑;

CK, LDH, CK-MB, cTnT
↓;

Myocardial tissue
damage ↓

Liu et al. (2024)

In vitro H9c2 1 μM for 24 h N/A

In vivo Wistar rats 2.5 mg/kg for 5 weeks IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

CK, LDH, Troponin-T,
Troponin-I ↓;
Body weight ↑;

HR, SAP, DAP, MAP ↑;
HW/BW ↑;

The area of myocardial
fibrosis ↓

Meeran et al. (2021)

In vivo C57BL/6J mice 10 mg/kg for 1 time IP Peli1/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Cardiomyocytemortality
↓;

LDH ↓;
Myocardial tissue

damage ↓

Zhang et al. (2023)

In vitro HL-1 1 μM for 24 h N/A

In vivo Kunming mice 2.5 mg/kg for 12 days IP NLRP3 inflammasome-
mediated cardiomyocyte
pyroptosis/IL-6/STAT3-
mediated cardiomyocyte

apoptosis

Pumping function of the
heart ↑;

CK-MB, LDH, NT-pro
BNP ↓;

Myocardial tissue
damage ↓

Xiong et al. (2024)

In vivo C57BL/6J mice Every other day with a
cumulative dosage of

28 mg/kg

IP Nrf2/NLRP3
inflammasome-mediated

cardiomyocyte
pyroptosis

Pumping function of the
heart ↑;

CK-MB, LDH, BNP,
cTnI ↓;

The area of myocardial
fibrosis ↓;

Myocardial pathologic
hypertrophy ↓;
HW/BW ↑

Chen et al. (2023)

In vivo C57BL/6J mice 4 mg/kg/week for 4
weeks

IP SIRT1/AMPK or AKT/
NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Pumping function of the
heart ↑;

CK-MB, LDH ↓;
Myocardial tissue

damage ↓

Tian et al. (2024)

In vitro H9c2 1 μM for 24 h N/A

In vivo Wistar rats 4 mg/kg for twice/week
for 2 weeks

IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

Pumping function of the
heart ↑;

The area of myocardial
fibrosis ↓;

Myocardial tissue
damage ↓;

CK-MB, LDH, Troponin
I, NT-pro BNP ↓

Kabel et al. (2021)

In vivo NMRI mice 2.5 mg/kg for 15 mg/kg IP NLRP3 inflammasome-
mediated cardiomyocyte

pyroptosis

CK-MB, LDH, Troponin
I ↓;

Myocardial tissue
damage ↓

Mohammadpour et al.
(2024)

IG, intragastrical administration; IP, intraperitoneal injection; N/A, not applicable; NLRP3, the Nod-like receptor family pyrin domain-containing 3; HW, heart weight; BW, body weight; CK,

creatine kinase; LDH, lactate dehydrogenase; AST, aspartate transaminase; PO, per os; TXNIP, thioredoxin-interacting protein; STING, stimulator of interferon genes; CK-MB, creatine kinase-

myoglobin; BNP, brain natriuretic peptide; cTnI, cardiac troponin I; TC, cholesterol; TG, triglycerides; IV, intravenous injection; Nrf2, nuclear factor erythroid-2-related factor 2; SIRT3, sirtuin

3; cTnT, cardiac troponin T; ALP, alkaline phosphatase; ANP, atrial natriuretic peptide; Myh7, myosin heavy chain 7; Actc1, actin alpha cardiac muscle 1; TL, tibia length; HR, heart ratio; SAP,

systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; Peli1, pellino 1; STAT3, signal transducer and activator of transcription 3; IL-6, interleukin 6; AMPK,

AMP-activated protein kinase; AKT, protein kinase B.
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pyroptosis in the myocardium. After curcumin intervention, the
severe cardiac damage caused by DOX is significantly reversed, and
the expression of NLRP3 inflammasome and its downstream-
mediated cellular pyroptosis-associated proteins are significantly
reduced. This suggests that curcumin’s amelioration of DOX-
induced cardiotoxicity may connect to its inhibition of
NLRP3 inflammasome and cardiomyocyte pyroptosis. How does
curcumin affect DOX-induced expression of NLRP3 inflammasome
in cardiomyocytes? Unfortunately, this article does not explore this.
However, the effects of curcumin on DOX-induced expression of
ROS as well as the phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT)/mammalian target of the rapamycin (mTOR)
signaling pathway in cardiomyocytes are also examined in this
study. Is there a link between curcumin’s altered expression of
NLRP3 inflammasome and ROS or PI3K/AKT/mTOR signaling
pathway? This will hopefully be confirmed in future studies.
Meanwhile, it is noteworthy that there are no clinical reports on
the amelioration of DOX-induced cardiotoxicity by curcumin,
which may be attributed to its lower oral utilization (Maiti et al.,
2007; Chen et al., 2015).

4.1.2 Resveratrol
Resveratrol, a polyphenolic compound, is present in various

plants, including grapes and peanuts, is known for its substantial
anti-oxidant and anti-aging capabilities and is essential in the
treatment of numerous cardiovascular illnesses (Petrovski et al.,
2011; Zhang et al., 2021). A recent report demonstrates that
resveratrol significantly reduces ferroptosis in cardiomyocytes,
thereby ameliorating DOX-induced cardiotoxicity (Chen L. et al.,
2024). Interestingly, available evidence suggests that resveratrol can
also reduce the severity of cardiac damage caused by DOX by
suppressing the NLRP3 inflammasome and cardiomyocyte
pyroptosis (Maayah et al., 2021). The study shows that DOX
significantly increases blood pressure in mice, induces
perivascular fibrosis in the myocardium and severely affects the
normal structure of the myocardium. This may be due to the
activation of NLRP3 inflammasome and the proteins related to
cellular pyroptosis, IL-1β and IL-18. The intervention of resveratrol
could well reverse the above pathological effects and significantly
reduce the DOX-induced activation of NLRP3 inflammasome and
downstream cellular pyroptosis-related proteins. This suggests that
resveratrol can significantly ameliorate DOX-induced
cardiotoxicity, and this effect may be attributed to the inhibition
of NLRP3 inflammasome and downstream cellular pyroptosis-
related proteins in cardiomyocytes. However, is there some link
between NLRP3 inflammasome and ferroptosis regulated by
resveratrol in DOX-induced cardiotoxicity? We propose a novel
idea, that whether resveratrol can influence ferroptosis by
influencing the expression of NLRP3 inflammasome in DOX-
induced cardiomyocytes? This question is still unanswered.
However, it has been shown that a significant upstream-
downstream relationship between NLRP3 inflammasome and
ferroptosis has also been reported (Hacioglu, 2024; Yuan et al.,
2024; Zhang et al., 2024). Therefore, there is a theoretical basis for
speculating that resveratrol can also affect DOX-induced ferroptosis
in cardiomyocytes by influencing the expression of
NLRP3 inflammasome, and thus ameliorating DOX-induced
cardiotoxicity. Meanwhile, there are no clinical studies on

resveratrol ameliorating DOX-induced cardiotoxicity, and
resveratrol’s solubility may explain why. Resveratrol has been
reported to have a low solubility of 0.005 mg/mL in water, and
its chemical structure is unstable when exposed to the intestine and
stomach, which leads to its inefficient utilization after oral
administration (Francioso et al., 2014; Robinson et al., 2015).

4.1.3 Honokiol
Honokiol, a polyphenolic small molecule compound stemming

from the bark of Magnolia officinalis, exhibits many effects,
including anti-allergic and anti-anxiety, and is crucial in the
treatment of cardiovascular disorders (Munroe et al., 2010;
Guillermo et al., 2012; Wang et al., 2018; Liu et al., 2023). A
recent report shows that honokiol can significantly ameliorate
DOX-induced mitochondrial damage, thereby attenuating DOX-
induced cardiotoxicity (Pillai et al., 2017). Another study shows
honokiol could ameliorate DOX-induced cardiotoxicity by
modulating NLRP3 inflammasome-mediated cardiomyocyte
cellular pyroptosis (Huang et al., 2020). This study demonstrates
that DOX significantly reduces cardiomyocyte viability and
promotes senescence-related proteins such as p16INK4A and p21.
This suggests that DOX can increase cardiomyocyte mortality by
inducing cardiomyocyte senescence. Further experiments
demonstrate that DOX significantly induces the expression of
thioredoxin-interacting protein (TXNIP) and
NLRP3 inflammasome and its downstream-mediated cellular
pyroptosis proteins, such as casapse-1 and IL-1β, in
cardiomyocytes. This demonstrates that DOX can also lead to
cardiomyocyte death by inducing cardiomyocyte pyroptosis.
Honokiol’s intervention significantly ameliorates DOX-induced
cellular senescence and NLRP3 inflammasome-mediated cellular
pyroptosis. Further experiment overexpressing TXNIP shows that
the function of honokiol disappears. This demonstrates that the
function of honokiol is closely related to TXNIP and that honokiol
attenuates DOX-induced cellular senescence and
NLRP3 inflammasome-mediated cellular pyroptosis by inhibiting
TXNIP. However, it is noteworthy that this study attributes DOX-
induced cardiomyocyte senescence to NLRP3 inflammasome-
mediated cellular pyroptosis. We think this is inappropriate.
Because the study does not modulate NLRP3 inflammasome to
detect cardiomyocyte senescence, it is impossible to determine
whether NLRP3 inflammasome-mediated cellular pyroptosis is
upstream of cellular senescence.

4.1.4 Amentoflavone
Amentoflavone is a polyphenol compound derived from

Selaginella tamariscina (Ma et al., 2024). Available studies have
demonstrated that amentoflavone has significant anti-inflammatory
and anti-apoptotic properties and is essential in ameliorating several
cardiovascular diseases (Qin et al., 2018; Li W. W. et al., 2021). A
study has demonstrated that amentoflavone ameliorates DOX-
induced cardiotoxicity by attenuating NLRP3 inflammasome-
mediated cellular pyroptosis (Fang et al., 2023). This study
demonstrates that DOX significantly affects the pumping
function and hemodynamics of the heart, as well as significantly
inducing cardiac hypertrophy and myocardial fibrosis, with
damaging effects on the structure of myocardial tissue. The study
also shows that DOX significantly increases blood levels of the
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markers of myocardial damage, creatine kinase-myoglobin (CK-
MB) and LDH. The emergence of these pathologies may be closely
associated with increased NLRP3 inflammasome and their
downstream-mediated cellular pyroptosis proteins such as
caspase-1 and GSDMD, IL-1β and IL-18. This experiment further
shows that DOX promotes stimulator of interferon genes (STING)
expression. Interestingly, amentoflavone intervention significantly
reverses various myocardial pathologic injuries caused by DOX and
significantly reduces NLRP3 inflammasome-mediated cellular
pyroptosis-related proteins and STING. This suggests that the
mechanism of amentoflavone in ameliorating DOX-induced
cardiotoxicity may be closely related to its inhibition of
NLRP3 inflammasome and its downstream-mediated
cardiomyocyte pyroptosis. Further experiments overexpressing
STING reveal that the effect of amentoflavone disappears and
NLRP3 expression is significantly elevated. This suggests that
amentoflavone ameliorates DOX-induced cardiotoxicity by
inhibiting STING and, thus, NLRP3 inflammasome, inhibiting
cardiomyocyte pyroptosis.

4.2 Flavonoid

Flavonoids are a category of vital phytochemicals characterized
by polyphenolic structures, frequently found in a variety of plants,
fruits, and vegetables as secondary metabolites (Martínez-Coria
et al., 2023; Yi, 2023). In recent years, reports on flavonoid
phytochemicals ameliorating DOX-induced cardiotoxicity have
gradually increased. In the following section, we will summarize
six different flavonoid phytochemicals ameliorating DOX-induced
cardiotoxicity by inhibiting NLRP3 inflammasome-mediated
cardiomyocyte pyroptosis.

4.2.1 Myricetin
Myricetin, a flavonoid phytochemical, is frequently present in

various natural plants, especially prunes (Song et al., 2021).
According to numerous preclinical investigations, myricetin
serves multiple biological purposes and is essential in the
amelioration of cardiovascular-related diseases (Zhang et al.,
2018; Zhu J. et al., 2024). A study has shown that myricetin can
ameliorate DOX-induced cardiotoxicity by modulating
NLRP3 inflammasome-mediated cardiomyocyte cellular
pyroptosis (Li et al., 2024). This study describes in detail that
DOX significantly increases the release of myocardial injury
markers such as cTnI, AST, brain natriuretic peptide (BNP) and
LDH in the blood and increases the levels of cholesterol (TC) and
triglycerides (TG) in the blood. Pathological staining experiments
prove that DOX could significantly damage the structure of
myocardial tissue and induce the development of myocardial
fibrosis. Further experiments demonstrate that DOX significantly
induces NLRP3 inflammasome-mediated cellular pyroptosis in
myocardial tissues (derived from increased NLRP3, ASC and
caspase-1). However, the above pathology is significantly
reversed, and the expression of NLRP3 inflammasome and their
mediated cellular pyroptosis proteins in cardiomyocytes are
significantly reduced after the intervention of low, medium and
high doses of myricetin. Therefore, this study implies that
myricetin’s effect in mitigating DOX-induced cardiotoxicity is

likely associated with its inhibition of NLRP3 inflammasome and
cardiomyocyte pyroptosis. It is crucial to acknowledge that there are
no clinical cases concerning the amelioration of DOX-induced
cardiotoxicity by myricetin, and we believe that based on the
broad pharmacological effects of myricetin, future studies should
gradually validate their association in clinical studies.

4.2.2 Pinocembrin
Pinocembrin is a flavonoid phytochemical found mainly in

Euphorbia, Sparattosperma leucanthum and Pinus heartwood
(Rasul et al., 2013). Its widespread pharmacological activity in
the anti-cardiovascular disease has been well studied (Li C. et al.,
2021). In a study of DOX-induced cardiotoxicity, Gu et al. (2021)
find that DOX could significantly affect the pumping function of the
heart and can lead to the development of fibrosis and myocardial
tissue damage. The study also shows that DOX can increase the
release of CK-MB and LDH, markers of myocardial damage, in the
blood. Further experiments demonstrate that DOX could inhibit the
nuclear translocation of nuclear factor erythroid-2-related factor 2
(Nrf2) and activate the downstream sirtuin 3 (SIRT3)/
NLPR3 signaling pathway, which in turn can induce the
expression of cellular pyroptosis proteins, such as caspase-1 and
GSDMD-N, and ultimately lead to myocardial pyroptosis. In
contrast, pinocembrin significantly reverses DOX-inhibited
Nrf2 nuclear translocation, thereby inhibiting the SIRT3/
NLPR3 signaling pathway and its downstream-mediated cellular
pyroptosis proteins, and thus ameliorating DOX-induced
cardiotoxicity. Nevertheless, it is pertinent to acknowledge that
the relationship between SIRT3 and NLRP3 inflammasome is not
demonstrated in this study, and we are aware that many studies have
demonstrated that SIRT3 is located upstream of
NLRP3 inflammasome. However, it is illogical to conclude the
above results directly in this study because SIRT3 is not
modulated to detect the expression level of NLRP3 inflammasome.

4.2.3 Dihydromyricetin
Dihydromyricetin is a flavonoid phytochemical widely found in

Ampelopsis grossedentata (Wang et al., 2023). One recent study
suggests it serves a crucial function in attenuating DOX-induced
cardiotoxicity (Sun et al., 2020). As this research demonstrates, DOX
can significantly induce myocardial damage, myocardial fibrosis and
pathological cardiac hypertrophy. In the meanwhile, the pumping
function of the heart is also significantly affected. Additional
experimental evidence suggests that myocardial injury may be
associated with the induction of NLRP3 inflammasome and
cellular pyroptosis. The intervention of dihydromyricetin
significantly reverses the above pathology and inhibits the
induction of NLRP3 inflammasome and cellular pyroptosis.
Interestingly, the study further explores how dihydromyricetin
can affect the expression of NLRP3 inflammasome in
cardiomyocytes. This study finds that DOX can significantly
inhibit the expression of SIRT1, while the expression of SIRT1 is
significantly elevated after dihydromyricetin intervention, and the
effect of dihydromyricetin is found to disappear after silencing
SIRT1. This demonstrates that dihydromyricetin can inhibit the
induction of NLRP3 inflammasome by activating the expression of
SIRT1 in cardiomyocytes, thereby inhibiting cardiomyocyte
pyroptosis and ultimately attenuating DOX-induced
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cardiotoxicity. Notably, it has been found that dihydromyricetin has
a low oral utilization and short half-life, which significantly affects its
use in the clinic (Wang et al., 2023).

4.2.4 Hyperoside
Hyperoside is a flavonoid phytochemical found in various plants

such as Hypericum monogynum (Hypericaceae), Crataegus
pinnatifida (Rosaceae) and Polygonum aviculare (Polygonaceae)
(Xu et al., 2022). One available evidence has demonstrated its
crucial role in interfering with DOX-induced cardiotoxicity (Wei
et al., 2023). This study suggests that DOX significantly promotes
cardiac hypertrophy in mice and facilitates the release of myocardial
injury biomarkers, such as cardiac troponin T (cTnT), CK, CK-MB
and LDH, in the blood, as well as affecting the pumping function of
the heart. Subsequent investigations indicate that the cause of
myocardial injury may be closely related to the activation of
NLRP3 inflammasome and its downstream-mediated cellular
pyroptosis. Intervention with hyperoside significantly reverses
these pathologies and simultaneously reduces the expression of
NLRP3 inflammasome and its downstream-mediated cellular
pyroptosis in cardiomyocytes. Therefore, this study concludes
that the mechanism of hyperoside intervention in DOX-induced
cardiotoxicity may be intricately linked to its suppression of
NLRP3 inflammasome and its downstream-mediated cellular
pyroptosis. It is worth noting that in this study, hyperoside is
administered to mice by gavage. Yuan et al. have examined the
impact of hyperoside of different modes of administration on rats,
and they have found that the bioavailability of hyperoside in rats is
significantly low following gavage administration and that
intraperitoneal injection (IP) and intravenous administration (IV)
are the best ways to promote the absorption and utilization of
hyperoside in the body (Yuan et al., 2021).

4.2.5 Calycosin
Calycosin, a flavonoid phytochemical, is derived mainly from

the root of Astragalus membranaceus and a typical phytoestrogen
(Han et al., 2018; Deng et al., 2021). Current studies have shown that
calycosin has multiple biological functions and is essential in
ameliorating several cardiovascular diseases (Pan et al., 2020). A
recent study shows that calycosin could ameliorate DOX-induced
cardiotoxicity through the inhibition of NLRP3 inflammasome-
mediated cardiomyocyte pyroptosis (Zhang et al., 2022). This
study shows that DOX significantly damages the pumping
function of the heart and induces cardiac fibrosis. Further
experiments demonstrate that DOX increases
NLRP3 inflammasome and their downstream-mediated
cardiomyocyte pyroptosis. Intervention with calycosin reverses
these pathologies and reduces NLRP3 inflammasome-mediated
pyroptosis in cardiomyocytes. Therefore, this study concludes
that the amelioration of DOX-induced cardiotoxicity by calycosin
may be closely related to the inhibition of NLRP3 inflammasome in
cardiomyocytes. Another study further explores the association
between calycosin and NLRP3 inflammasome in cardiomyocytes
(Zhai et al., 2020). They demonstrate that the SIRT1 inhibitor
significantly promotes the expression of NLRP3 inflammasome in
cardiomyocytes, whereas calycosin significantly promotes
SIRT1 expression in cardiomyocytes. Therefore, the study
suggests that calycosin may inhibit the expression of

NLRP3 inflammasome in cardiomyocytes by promoting the
expression of SIRT1, thereby inhibiting cardiomyocyte pyroptosis
and ameliorating DOX-induced cardiotoxicity. Unfortunately, there
are fewer pharmacokinetic studies on calycosin, and most of the
current studies are on the co-metabolism of calycosin in
combination with other drugs, so the metabolic process for
calycosin can only be derived by speculating on its composition
(Deng et al., 2021).

4.2.6 Cynaroside
Cynaroside is a flavonoid phytochemical distributed in the

honeysuckle plant, and it has potential biological properties such
as anti-inflammatory, anti-oxidant and anti-pyroptosis (Zou et al.,
2024). A study demonstrates that cynaroside could inhibit DOX-
induced cardiomyocyte death by affecting the expression of the
NLRP3 inflammasome (Zou et al., 2024). This study shows that
DOX can significantly induce structural damage in mouse
myocardial tissue and promote the release of myocardial damage
markers alkaline phosphatase (ALP), AST, LDH and CK-MB in the
blood. Further experiments demonstrate that the myocardial
damage caused by DOX is partly due to the activation of
NLRP3 inflammasome in cardiomyocytes and its downstream-
mediated cardiomyocyte pyroptosis. The intervention of
cynaroside significantly reverses the above pathologic effects, and
this reversal may result from the inhibition of
NLRP3 inflammasome and their downstream-mediated
pyroptosis in cardiomyocytes.

4.3 Terpenoid

Terpenoids are the biggest class of compounds in natural
products, predominantly derived from plants (Huang et al.,
2012). The biological functions of terpenoids are well
documented. Here, we will summarize four different terpenoids
that ameliorate DOX-induced cardiomyocyte pyroptosis, thus
improving myocardial injury by affecting the expression of
NLRP3 inflammasome in cardiomyocytes.

4.3.1 Carnosic acid
Carnosic acid, a phenolic diterpenoid, is found in Lamiaceae

plants, including Rosemary (Rosmarinus officinalis L.) (Chen X.
et al., 2024). Available evidence suggests its crucial role in
intervening in cardiovascular-related diseases (Sahu et al., 2014;
Zhang et al., 2019). One study demonstrates that carnosic acid could
mitigate DOX-induced cardiomyocyte death by suppressing
NLRP3 inflammasome in cardiomyocytes (Hu et al., 2023). The
study shows that DOX significantly induces cardiac pumping
dysfunction, disrupts normal myocardial structure and induces
myocardial fibrosis in mice. It also promotes the release of
biomarkers that indicate damage to the myocardium, such as
CK-MB, LDH, and cTnT, in the blood. Subsequent research has
shown that DOX-induced cardiotoxicity may be intricately linked to
the activation of the NLRP3 inflammasome and its facilitation of
cardiomyocyte pyroptosis proteins, including caspase-1, IL-1β, and
IL-18. This study also shows that DOX significantly inhibits the
expression of Nrf2 and its downstream anti-oxidative stress-related
proteins, heme oxygenase-1 (HO-1). Interestingly, intervention with
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carnosic acid significantly reverses the above pathology, in which the
suppression of NLRP3 inflammasome and cellular pyroptosis may
have an indispensable role. To explore how carnosic acid could
suppress NLRP3 inflammasome, the study silences Nrf2 and finds
that the therapeutic effect of carnosic acid disappears after silencing
Nrf2. This suggests that carnosic acid ameliorates DOX-induced
cardiotoxicity by activating Nrf2 expression in cardiomyocytes,
thereby inhibiting the expression of NLRP3 inflammasome and
their downstream cellular pyroptosis. It is crucial to recognize that
although many natural compounds possess significant
pharmacological capabilities, they may also elicit severe side
effects or hazardous responses under certain circumstances, with
carnosic acid serving as a pertinent example. Several evidences have
been targeted to explore the toxic effects of carnosic acid and have
demonstrated the presence of acute, chronic, hepatic and renal
toxicity of carnosic acid (Dickmann et al., 2012; Wang et al.,
2012; Liu et al., 2017). Therefore, the cytotoxicity of carnosic acid
must be taken into account when using.

4.3.2 α-Bisabolol
As a monocyclic sesquiterpene alcohol, α-Bisabolol is the

primary source of Matricaria chamomilla, and available evidence
has suggested that it is present in large quantities of medicinal plants’
essential oils (McKay and Blumberg, 2006; Eddin et al., 2022). The
biological functions of α-Bisabolol have been validated, and many
studies have demonstrated its ameliorative and palliative effects in
various cardiovascular diseases (Meeran et al., 2018; Nagoor Meeran
et al., 2019). One study has demonstrated that α-Bisabolol can
ameliorate DOX-induced cardiomyocyte death by modulating the
expression of NLRP3 inflammasome in cardiomyocytes (Nagoor
Meeran et al., 2023). This study shows that DOX significantly
increases the blood levels of myocardial injury markers such as
CK and LDH and significantly affects the cardiac hemodynamics in
rats. Further experiments demonstrate that DOX significantly
increases the expression of NLRP3 inflammasome and its
downstream-mediated cell pyroptosis-associated proteins, such as
caspase-1 and IL-18, in cardiomyocytes. This suggests that the cause
of the above myocardial injury by DOXmay be closely related to the
activation of NLRP3 inflammasome in the myocardium.
Intervention of α-Bisabolol can significantly reverse the above
effects. This suggests that the mechanism of α-Bisabolol in
ameliorating DOX-induced cardiotoxicity is partly related to the
inhibition of NLRP3 inflammasome-mediated cellular pyroptosis.
Like carnosic acid, α-Bisabolol has toxic effects. Toxic reactions such
as sedation, ataxia, dyspnea and affective blunting have been
demonstrated after oral α-Bisabolol overdose (Api et al., 2020;
Eddin et al., 2022). Therefore, the intervention dosage of α-
Bisabolol is an issue that must be focused on in future
clinical studies.

4.3.3 Andrographolide
Andrographolide, a labdane diterpene, is mostly sourced from

Andrographis paniculata, exhibiting a diverse array of
pharmacological effects (Burgos et al., 2020). One available
evidence suggests that andrographolide can mitigate DOX-
induced cardiotoxicity (Liu et al., 2024). The study claims that
DOX induces cardiomyocyte death and promotes the expression
of markers of myocardial damage, CK-MB and LDH, in the blood of

mice, as well as affecting the pumping function of the heart. Further
experiments demonstrate that myocardial injury caused by DOX is
closely related to the activation of NLRP3 inflammasome in
cardiomyocytes. Andrographolide significantly reverses these
pathologies, inhibiting NLRP3 inflammasome and their
downstream-mediated cellular pyroptosis in cardiomyocytes.
This, therefore, suggests that the mechanism of andrographolide
in ameliorating DOX-induced cardiotoxicity has a profound
connection with the suppression of NLRP3 inflammasome and
their downstream-mediated cellular pyroptosis in cardiomyocytes.

4.3.4 Nerolidol
Nerolidol, a sesquiterpene alcohol, is naturally present in the

essential oil of a variety of plants (Lapczynski et al., 2008; Ferreira
et al., 2012; Chan et al., 2016). One available evidence suggests that
nerolidol has an effect that interferes with DOX-induced
cardiotoxicity (Meeran et al., 2021). This study demonstrates that
DOX could induce the release of myocardial damage markers CK,
LDH and Troponin-T/I in the blood while inducing cardiac fibrosis
in mice. Further experiments show that these pathologic effects are
closely linked to the activation of NLRP3 inflammasome and their
mediated cellular pyroptosis. This study demonstrates that nerolidol
can effectively reverse the pathology caused by DOX, and this effect
may be intimately connected to its capacity to diminish the
expression of the NLRP3 inflammasome and cellular pyroptosis
in cardiomyocytes. It is encouraging that the toxic effects of
nerolidol are low and that none of the doses used are sufficient
to cause severe toxic effects (Chan et al., 2016). Therefore, many
translational clinical studies should be on the agenda based on
the doses used.

4.4 Polysaccharide

Polysaccharides are an important class of biomolecules,
consisting of more than 10 monosaccharide molecules condensed
by dehydration, and are widely distributed in nature (Zhou and
Huang, 2021). Polysaccharides have extensive array of biological
characteristics, such as anti-oxidant, anti-viral and anti-
inflammatory, and available evidence also suggests that they also
play a critical role in ameliorating DOX-induced cardiotoxicity
(Chen F. and Huang G., 2018; Chen L. and Huang G., 2018; Liu
et al., 2018; Wang et al., 2022). Here, we will summarize two
different polysaccharides based on the existing studies that affect
the NLRP3 inflammasome, thereby ameliorating DOX-induced
cardiomyocyte pyroptosis and consequently ameliorating
myocardial injury.

4.4.1 Polyguluronic acid
Polyguluronic acid, a polysaccharide from alginate, has several

biological effects, such as anti-inflammatory and anti-oxidants (Dun
et al., 2015; Bakhtiari et al., 2019). The evidence suggests its crucial
role in intervening in DOX-induced cardiotoxicity (Zhang et al.,
2023). This study shows that DOX can induce cardiomyocyte death,
significantly affect the normal structure of myocardial tissue in mice
and promote the release of LDH, a marker of myocardial injury, in
the blood. This phenomenon may be closely related to the activation
of NLRP3 inflammasome and its downstream-mediated casapse-1
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and GSDMD proteins. Polyguluronic acid could reverse the above
pathologic effects and significantly reduce the expression of
NLRP3 inflammasome and cardiomyocyte pyroptosis. To
investigate how polyguluronic acid reverses the expression of
NLRP3 inflammasome, the study finds that DOX significantly
activates the expression of Pellino1 (Peli1), while polyguluronic
acid significantly inhibits its expression. However, the pathology
of cardiomyocytes is found to be significantly reduced after
Peli1 inhibition. This suggests that polyguluronic acid may
ameliorate cardiomyocyte injury by inhibiting the expression of
Peli1, which in turn inhibits the expression of
NLPR3 inflammasome, which in turn inhibits cardiomyocyte
pyroptosis.

4.4.2 Fuzi polysaccharide
Fuzi polysaccharide is a water-soluble polysaccharide

compound derived from Fuzi and has a variety of biological
effects (Yan et al., 2010). Available studies have shown its
significant contribution to the treatment of cardiovascular
diseases (Liao et al., 2013). A report of DOX-induced
cardiotoxicity has demonstrated that fuzi polysaccharide could
ameliorate DOX-induced cardiomyocyte death by modulating the
expression of NLRP3 inflammasome in cardiomyocytes (Xiong
et al., 2024). This study shows that DOX can significantly reduce
cardiac contractile function and induce the expression of myocardial
damage biomarkers, including CK-MB and LDH, in the blood of
mice. The study also implies that the activation of the
NLRP3 inflammasome in cardiomyocytes may be strongly
connected with the cause of myocardial injury and intervention
with fuzi polysaccharide significantly reverses the above pathologic
effects and reduces the expression of NLRP3 inflammasome and
their mediated pyroptosis in the myocardium. Interestingly, the
study further reveals that DOX can significantly stimulate the
expression of IL-6 while suppressing the expression of signal
transducer and activator of transcription 3 (STAT3). IL-6/
STAT3 signaling pathway-mediated apoptosis has been
demonstrated (Zhou et al., 2021). Therefore, this study suggests
that the cause of myocardial injury by DOX may be through
activation of NLRP3 inflammasome and, thus, activation of
cardiomyocyte pyroptosis, which, in turn, activates the IL-6/
STAT3 signaling pathway and thus causes apoptosis. Fuzi
polysaccharide ameliorates DOX-induced cardiotoxicity by
blocking the above pathway. However, we think that this study
does not detect the association between cellular pyroptosis and the
IL-6/STAT3 signaling pathway, and it is inappropriate to connect
the two directly. Subsequent experiments should detect the
expression of the IL-6/STAT3 signaling pathway after cellular
pyroptosis has been regulated and then make a
corresponding judgment.

4.5 Saponin

Saponins, amphiphilic compounds, are composed of
carbohydrates and either triterpenoid or steroid aglycone
moieties, frequently discovered in herbal and conventional
medicines (Juang and Liang, 2020). The biological functions of
saponins have been well studied, and saponins have been found

to have a very important potential in intervening in cardiovascular-
related diseases (Liu et al., 2014; Sun et al., 2016; Yao et al., 2022).
Astragaloside IV, a saponin extracted from A. membranaceus
Bunge, is rich in biological activities (Zhou et al., 2023). Two
available evidences suggest that astragaloside IV carries a
significant amount of weight in attenuating DOX-induced
cardiotoxicity (Chen et al., 2023; Tian et al., 2024). One study
shows that DOX can significantly induce pump dysfunction and
promote fibrosis of myocardial tissue in mice. It also could induce
the release of biomarkers that indicate injury to the myocardium,
such as CK-MB, LDH and cTnI in the blood. Further experiments
show that DOX can also induce the expression of
NLRP3 inflammasome and cardiomyocyte pyroptosis.
Intervention with astragaloside IV significantly reverses these
pathologies and significantly reduces the expression of
NLRP3 inflammasome and their mediated cell pyroptosis-
associated proteins in cardiomyocytes. Notably, the study further
explores the association between astragaloside IV and
NLRP3 inflammasome in cardiomyocytes and finds that DOX
can significantly inhibit the expression of Nrf2 and its
downstream anti-oxidant-associated protein Ho-1, which is
significantly reversed by astragaloside IV intervention. Therefore,
this study concludes that astragaloside IV could inhibit ROS
production in cardiomyocytes by activating Nrf2, thereby
attenuating the expression of NLRP3 inflammasome and
preventing cardiomyocyte pyroptosis. However, this study does
not experimentally validate the relationship between Nrf2 and
NLRP3, which is a shortcoming. Of course, another report on
astragaloside IV further explores how astragaloside IV inhibits
the expression of NLRP3 inflammasome in cardiomyocytes (Tian
et al., 2024). This study shows that DOX can significantly inhibit
SIRT1 expression, which is significantly elevated after astragaloside
IV intervention. However, the pharmacologic effect of astragaloside
IV is found to be lost after SIRT1 is inhibited. This suggests that
astragaloside IV works by activating SIRT1, which in turn inhibits
NLRP3 inflammasome, thus inhibiting cardiomyocyte pyroptosis.
Interestingly, the study also examines the expression of AMP-
activated protein kinase (AMPK) and AKT in cardiomyocytes
and demonstrates that both AMPK and AKT are located
downstream of SIRT1 and that astragaloside IV inhibits
cardiomyocyte pyroptosis by activating SIRT1, which in turn
activates either AMPK or AKT, which in turn inhibits the
expression of the NLRP3 inflammasome in cardiomyocytes, and
thereby inhibits cardiomyocyte pyroptosis, which in turn ameliorate
DOX-induced cardiotoxicity. However, since neither AMPK nor
AKT are modulated in this study to assess their effect on SIRT1 or
NLRP3, this conclusion may be premature.

4.6 Other small molecule compounds

In addition to polyphenols, flavonoids, terpenoids,
polysaccharides and saponins phytochemicals, several small
molecule compounds do not fall into the above categories that
can also ameliorate DOX-induced cardiotoxicity by affecting the
NLRP3 inflammasome in cardiomyocytes. We will elaborate here.
First, fraxetin. Fraxetin is a coumarin phytochemical with a variety
of biological functions (Robe et al., 2021). In a study of DOX-
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induced cardiotoxicity, fraxetin is reported to ameliorate DOX-
induced cardiomyocyte pyroptosis by affecting the expression of
NLRP3 inflammasome in cardiomyocytes (Kabel et al., 2021). The
study reports that DOX significantly increases the levels of
myocardial injury markers such as CK-MB, LDH, cTnI and NT-
pro BNP in the blood in rats, while significantly affecting the
pumping function of the heart and inducing myocardial fibrosis.
Further experiments demonstrate that DOX significantly activates
the expression of NLRP3 inflammasome in cardiomyocytes. The
above pathological effects are significantly reversed by high and low
doses of fraxetin, which also reduces the expression of
NLRP3 inflammasome in cardiomyocytes. This suggests that the
impact of fraxetin in mitigating DOX-induced cardiotoxicity may be
closely related to its inhibition of NLRP3 inflammasome-mediated
cell pyroptosis. Another report is about betaine. There is a report
that betaine, as a type of alkaloid, can also ameliorate DOX-induced
cardiomyocyte pyroptosis by affecting NLRP3 inflammasome in
cardiomyocytes (Mohammadpour et al., 2024). This study shows
that DOX significantly induces the release of markers of myocardial
injury, such as CK-MB, LDH and Troponin I, in the blood while
affecting the structure of myocardial tissue. Further experiments
show that these pathological effects are intimately connected to the
activation of the NLRP3 inflammasome in cardiomyocytes, which
are significantly reversed by the intervention of betaine, which is
intricately associated with the suppression of the
NLRP3 inflammasome in cardiomyocytes.

5 Future and perspective

This review focuses on NLRP3 inflammasome-mediated
pyroptosis in myocardial cells and details the amelioration of
DOX-induced cardiotoxicity by various phytochemicals. This
work comprehensively delineates the several pathological
pathways behind DOX-induced cardiotoxicity, including
oxidative stress, programmed cell death, inflammation and
endoplasmic reticulum stress, as informed by recent studies.
Subsequently, we provide a comprehensive overview of the
NLRP3 inflammasome. Finally, based on the existing findings, we
summarize in detail that a variety of phytochemicals ameliorate
DOX-induced cardiotoxicity by affecting NLRP3 inflammasome-
mediated cardiomyocyte pyroptosis.

However, combined with existing research, they have several
shortcomings. Primarily, the majority of current research on
phytochemicals to mitigate DOX-induced cardiotoxicity has been
confined to preclinical investigations and has not progressed to
clinical trials. However, combined with our research in the field, the
necessary clinical translation is worth pursuing. Second, during
phytochemical interventions, different doses may play different
roles. In many of the studies, only an experimental dose is set
up, which will seriously undermine an in-depth exploration of the
biological functions of the phytochemical. Third, according to the
existing reports, we find that some studies claim that phytochemicals
such as curcumin and resveratrol belong to pan-assay interference
compounds (PAINS). In other words, these phytochemicals can
interfere with various reactions (not based on a specific interaction
between compound molecules and proteins) in the experiment to
achieve a “positive” result. These phytochemicals can seriously affect

the output of the experimental results. Therefore, experiments with
these phytochemicals should be repeated several times to prevent
“false-positive” results.

Regarding the above, we call for the collaboration of additional
pertinent researchers to implement systematic experimental design
and analysis, as well as to develop an effective evaluation system,
thereby enhancing the utilization of phytochemicals for the benefit
of patients afflicted by DOX-induced cardiotoxicity.
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