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Lung cancer, the second leading cause of cancer mortality, requires the
development of novel therapeutic strategies due to emerging drug resistance
and toxicity. With this objective, the present work explored the therapeutic
potential of R. graveolens leaf extracts against EGFR_T790M-mediated drug
resistance in NSCLC. To this end, we evaluated the functional and therapeutic
potential of a panel of polar and non-polar solvent extracts using various in vitro
assay systems. Among the extracts tested, EAE exhibited superior kinase
inhibitory activity, which was more pronounced against the EGFR_T790M
mutant phenotype. Accordingly, EAE exhibited a favorable cytotoxicity profile
and potent growth inhibition of EGFR_T790M-positive NSCLC cells, as evident
from its superior IC50 values in this cell type. Flow cytometry analysis further
validated its inhibitory effects on the cell cycle and, well-supported by the data
from the TUNEL assay, suggested induction of apoptosis in EAE-treated cells in a
dose-dependent manner. Finally, mechanistic studies in EAE-treated cells
showed that these outcomes were due to concentration-dependent inhibition
of EGFR phosphorylation at Tyr1068 and Tyr1173. Importantly, this inhibition was
consistently more pronounced in H1975 cells expressing the EGFR_T790M
mutant phenotype. Further, pull-down assays, followed by mass spectrometry
analysis, identified the most promising molecules within EAE. Together, the study
highlighted the therapeutic potential of EAE from the leaves of Ruta graveolens
for treating EGFR_T790M-mediated drug resistance in lung cancer.
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1 Introduction

Cancer is the second leading cause of death globally after
cardiovascular disease. It is responsible for high mortality, with an
estimated 9.7 million deaths in 2022 (Bray et al., 2024). Recent research
suggests that lung cancer is the most frequently diagnosed cancer
worldwide. It accounts for nearly 2.5 million new cases annually and
represents 12.4% of all cancers. With approximately 1.8 million deaths,
it is the leading cause of cancer-related fatalities, accounting for 18.7%of
all cancer deaths (Bray et al., 2024). Histopathologically, lung cancer is
classified into SCLC and NSCLC (Spira, 2004). SCLC is defined by its
inclination for early metastases and a rapid doubling time, with a 5-year
survival rate of only 3% of patients (Simon and Wagner, 2003). Any
epithelial lung cancer other than the SCLC is called NSCLC. It accounts
for ~85–90% of all lung cancers, with an overall 5-year survival rate in
15%–17% of patients (Siegel et al., 2023). Mutations in the intracellular
tyrosine kinase (TK) domain of EGFR have been reported in the
pathogenesis of several humanmalignancies, includingNSCLC (Hirsch
and Bunn, 2009; Inamura et al., 2010). Further, EGFR acts as a
biomarker and a coherent target for treating NSCLC (Politi and
Lynch, 2012).

Mutations in the EGFR kinase domain increase its catalytic
activity and act as oncogenic drivers. Function-enhancing mutations
in the EGFR gene are more prevalent in exons 18–21, which span the
TK domain (Hodoglugil et al., 2013). The most effective approach in
NSCLC therapy is targeting the EGFR signaling using TK inhibitors
(TKI) (Bartholomew et al., 2017; Shah and Lester, 2020; Zhang et al.,
2024; Zhou et al., 2009). Several TKIs were designed against mutant
EGFR, among which erlotinib, gefitinib, afatinib, and osimertinib
received FDA approval (Nan et al., 2017) (Figure 1). Patients who
are initially responsive to EGFR TKIs eventually acquire resistance
after 10–16 months of clinical benefit (Herst and Berridge, 2013).
Moreover, 20%–30% of NSCLC patients show poor clinical response
to EGFR TKIs (Wang et al., 2016). Median progression-free survival
after the initiation of TKI treatment among NSCLC patients is about
10 months (Poh et al., 2024). This has been attributed to acquired
drug resistance caused by mutations in the EGFR_TK, primarily the
EGFR_T790M mutation (Ting et al., 2019). The EGFR_T790M
mutation confers resistance to first-generation TKIs by increasing
the affinity of TK for ATP, thereby competing out TKIs.
Osimertinib, an FDA-approved third generation TKI, has potent
inhibitory activity against EGFR_T790M-positive NSCLC but is
associated with several adverse events, including an increased risk
of cardiovascular diseases (Nishino andHatabu, 2017). Further, high
treatment costs and development of resistance against Osimertinib
due to C797Smutation in EGFR (Guo et al., 2023; Thress et al., 2015;
Song et al., 2016) limit its clinical use. Accordingly, there is an urgent
need to develop novel therapeutics against NSCLC that comprehend
the intratumoral EGFR heterogeneity, overcome TKI resistance, and

cause milder or no adverse effects in the treated population. Natural
products, such as plant secondary metabolites, possess tyrosine kinase
inhibitory properties (Baier and Szyszka, 2020) and are promising
candidates against drug-resistant EGFR kinases. Among the various
natural sources explored in the literature, Ruta graveolens has
demonstrated broad medical applications in treating multiple
disorders, including lung cancer (Varamini, Soltani, and Ghaderi,
2009). A previous study by Fadlalla et al. reported that R. graveolens
extract suppressed cancer cell proliferation by activating DNA damage
pathways and inhibiting Akt activation (Fadlalla et al., 2011). Another
study of R. graveolens extract showed the induction of cell death in
glioblastoma cells and neural progenitors, but not neurons, through
AKT and ERK 1/2 Activation (Gentile et al., 2015). Given that AKT and
ERK are intermediate effectors of EGFR, we hypothesized that R.
graveolens extracts may possess anti-EGFR kinase activities. We also
sought to determine the specificity of these extracts for the drug-
resistant EGFR_T790M mutant.

Ruta graveolens L. [Rutaceae] commonly known as rue or herb-
of-grace, belongs to the Rutaceae family and is native to the Balkan
Peninsula (Spence and Spence, 2023). Sterols of R. graveolens
showed anticancer activity in the human lung cancer (A549) cell
line with 81% inhibition at 100 μg/mL (Baker et al., 2017) and in the
human epidermoid carcinoma (A431) cell line (Aherne andO’Brien,
2000; Réthy et al., 2006). Ruta graveolens is known for its analgesic
and anti-inflammatory properties and has shown potential for
selectively sensitizing cancer cells to apoptosis while sparing
normal cells (Jinous, 2012). Among the metabolites reported so
far in the literature, R. graveolens contains a diverse range of
bioactive metabolites, including furanocoumarins, carotenoids,
anthraquinone, furanoquinolones, and alkaloids (Kuzovkina,
Al’terman, and Schneider, 2004; Hale et al., 2004; Eickhorst,
DeLeo, and Csaposs, 2007). Rutin, which was first isolated from
its leaves, and quercetin are the active flavonoids of R. graveolens
(Pathak et al., 2003). Among these, psoralens, a subgroup of
furanocoumarins, are well known for their ability to induce DNA
interstrand cross-links upon exposure to ultraviolet (UV) light (DE
RIE et al., 1995; Vogelsang et al., 1996).

Based on the available literature, this study aimed to identify
bioactive molecules from the leaves of R. graveolens with targeted
efficacy against drug-resistant EGFR_T790M mutant lung cancer.
Accordingly, the study (Figure 2) investigated the effectiveness of
various solvent extracts of leaves from R. graveolens against the
EGFR_T790M drug-resistant phenotype of NSCLC. Among all the
solvent extracts, EAE exhibited higher potency for the EGFR_
T790M mutant phenotype. Mechanistically, EAE inhibited EGFR
phosphorylation at Tyr1068 and Tyr1173, suggesting its action
within the EGFR kinase domain. Pulldown assays followed by
mass spectrometry analysis identified specific inhibitors unique to
EGFR_T790M.

2 Materials and methods

2.1 Cloning, expression, and purification of
recombinant EGFR_WT and EGFR_T790M

Human EGFR_TK coding for the target region (residues 696-
1022) was amplified from the human EGFR Addgene vector (Cat

Abbreviations: EAE, Ethyl Acetate Extract; EGFR, Epidermal Growth Factor
Receptor; EGFR_TK, EGFR Tyrosine Kinase (wild-type); EGFR_T790M,
Substitution of threonine (T) with a methionine (M) at position 790 of exon
20 of EGFR; SCLC, Small-Cell Lung Cancer; NSCLC, Non-Small Cell Lung
Cancer; TKI, Tyrosine Kinase Inhibitors; FDA, Food and Drug Administration;
DMSO, Dimethyl Sulfoxide; TUNEL, Terminal deoxynucleotidyl transferase
[TdT] dUTP Nick-End Labeling.
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#11011) and cloned into pFastBac HT-B plasmid with N-terminal
6X-His-tag (pF-EGFR_WT696-1022) (Greulich et al., 2005). The
EGFR_T790M mutant (pF-EGFR_T790M) was generated from
this clone using the mutant primers by site-directed mutagenesis.
Recombinant clones were transpositioned into DH10Bac cells
harboring bacmid DNA to generate recombinant Bacmid DNA.
Purified recombinant EGFR_TK and EGFR_T790M bacmids were
transfected into Sf21 cells, and the recombinant viruses were rescued
from the harvested culture supernatants. Plaque-purified
recombinant virus clones were used to infect fresh monolayers of
Sf21 cells to produce virus stocks for large-scale virus cultures.
Infected cell pellets produced in high-density ExpiSf9™ cells were
lysed in the reaction/storage buffer containing 25 mM Tris, 150 mM
NaCl, 5 mM BME pH 8.0, and 10% Glycerol. The recombinant
EGFR_TK and EGFR_T790M proteins were purified using a 2-stage
purification method involving Ni-NTA affinity column
chromatography followed by size-exclusion chromatography with
16/600 75 PG column (GE). The purity of the recombinant proteins

was confirmed by PAGE and Western blot. Purified proteins were
stored at −80°C in the storage buffer described above.

2.2 Cell cultures

Given the commercial unavailability of a cell line harboring only
the EGFR_T790M mutation, the H1975 cell line (ATCC Cat #CRL-
5908), that harbors T790M/L858R mutations, was used as a suitable
alternative to determine the efficacy of plant extracts against EGFR_
T790M(Chen et al., 2023; El Kadi et al., 2018; Liu et al., 2021; Liu
et al., 2020; Walter et al., 2013; Zhao et al., 2015; Zou et al., 2013).
A431 cell line overexpressing the EGFR_WT (Merlino et al., 1984),
A549 (kRAS Lung Cancer) (Giard et al., 1973) and Jurkat
(T4 Lymphoma, EGFR Negative) (Abraham and Arthur, 2004)
cell lines were kind gifts from Prof. Deepak Sehgal’s laboratory
(Shiv Nadar University, Noida, India), whereas H1299 (nRAS-
driven lung cancer) (Ohashi et al., 2013) cell line was a kind gift

FIGURE 2
Graphical abstract illustrating the methodology and the bioactivity of EAE of Ruta graveolens against drug-resistant EGFR-mediated NSCLC.

FIGURE 1
Chronological development of EGFR tyrosine kinase inhibitors.
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from Dr. Prabhat Malik (AIIMS, New Delhi, India). All the cell lines
were maintained as per the suppliers’ recommendations.

2.3 Preparation of Ruta graveolens
leaf extracts

The R. graveolens plant used in this work was cultivated and
preserved at the Applied Secondary Metabolite Laboratory nursery
at the Centre for Rural Development and Technology, IIT Delhi,
India. Initially, Online flora (https://indiaflora-ces.iisc.ac.in/
FloraKarnataka/herbsheet.php?id=3979&cat=1) was used to
identify the plant. Further, the identity was confirmed by Dr.
Sampat Kumar, Lecturer in Biology (Taxonomist), Davangere
Government Pre-university College, Karnataka, India, and Dr.
Hariprasad P., Associate Professor, CRDT, IITD, Delhi, India.
The specimen is maintained in the Applied Secondary Metabolite
lab, IIT Delhi, with voucher no. CRDT/ASM/179-WP. The above-
ground portion of the mature plants was removed in June and July
2022 before the blossoming using a sterilized stainless-steel knife.
The leaves of the gathered plant specimens were excised from stems
using a sterile surgical blade. The leaf samples were desiccated in a
hot air oven at 40°C ± 2°C for 48 h and coarsely pulverized using a
mechanical blender (Prestige Stylo mixer grinder, 750 w, India).
Fifty grams of the powder were placed in a thimble and subjected to
solvent extraction using a Soxhlet apparatus with a processing
capacity of 500 mL. The metabolites in the pulverized powder
were extracted successively using six solvents in order of
increasing polarity: hexane, chloroform, ethyl acetate, acetone,
methanol, and water. Briefly, Soxhlet was operated at 45 °C for
hexane, chloroform, and ethyl acetate and run for 6 h for each
solvent. In the case of acetone, methanol, and water, the heating was
maintained at 50°C and ran for 10 h. At reduced pressure, the solvent
extracts were concentrated with a rotary evaporator (Hahn vapor,
HS-2005S, 200–240 V, Korea). The water bath temperature and
vacuum pressure for hexane (45°C, 60 mmHg), chloroform (45°C,
60 mmHg), ethyl acetate (45°C, 60 mmHg), acetone (45°C,
80 mmHg), methanol (50°C, 80 mmHg) and water (50°C,
40 mmHg) was set. The condenser temperature was set to 4°C
for all solvents used. Subsequently, the remaining solvents were
eliminated by spreading the samples as a thin layer on a glass plate
and placing them in a vacuum oven (Thermo Scientific, Model–Lab
Line, 3618-1CE) set at −90 kPa, 40°C ± 2°C for 24 h. The desiccated
extracts were reconstituted in dimethyl sulfoxide (DMSO) at
500 mg/mL concentration for further use.

2.4 Kinase assay

The kinase activity of purified EGFR_TK and EGFR_T790M
mutant protein was assayed using the ADP-Glo kinase assay kit
(#V9102 Promega, Madison, WI) (A. Wang et al., 2017) according
to a previously optimized protocol (Aiebchun et al., 2021; Bajaj et al.,
1987; Bernas and Dobrucki, 2002; Brignola et al., 2002) In a 32 μL
reaction volume. Peptide C (RAHEEIYHFFFAKKK), a substrate for
EGFR, (Engel et al., 2013) was purchased from Pepmic Co. Ltd.,
China. Concentrations of the EGFR variants, the peptide substrate,
and the ATP were optimized (Supplementary Figure S1) for a

reaction time of 60 min at 37°C. Optimized conditions were used
to set up the kinase reactions, followed by adding ADP-Glo reagent
for 40 min to deplete all the unused ATP, leaving only the ADP
produced from the phosphorylation reaction. Next, 16 μL per
reaction of the kinase detection reagent was added to convert
ADP to ATP, and, subsequently, luminescence was measured at
560 nm (SpectraMax i3x Multi-Mode Microplate Reader). The data
was plotted to calculate respective IC50 values for different extracts
using the GraphPad Prism v9.3.1.

2.5 Cell viability assay

Semi-quantitative colorimetric MTT assays were performed to
determine cell viability and cytotoxicity of the plant extracts. The
assay involved seeding ~104 cells per well of a 96-well culture plate
and incubating the same at 37°C in a CO2 incubator to produce
~80% confluent cell monolayers. Serial dilutions of plant extracts
and DMSO vehicle control were prepared using the same dilution
factor. Untreated control cells were treated with media only. All
cells, including controls, were then incubated for 48 h. After 48 h of
incubation, 100 μL of MTT reagent at 0.45 mg/mL was added per
well and incubated for 4 h. Next, 100 μL DMSO was added to
dissolve the formazan crystals over 2 h of incubation. The plates
were read at 570 nm, background absorbance was subtracted, and
the data was analyzed to determine the percent cell viability in
treated versus untreated cells. Cell viability data was plotted against
extract concentrations, and the IC50 values were derived from the
dose-response curves.

2.6 Microscale thermophoresis
binding assay

A Microscale thermophoresis assay was set up to determine the
binding affinity of the selected extracts for EGFR_TK and EGFR_
T790M kinases. Briefly, 200 nM of purified EGFR and its variant
were fluorescently labeled with red Tris-NTA his-tag labeling dye
(Nano temper Technologies, United States) as recommended. The
mixture was kept in the dark for 30 min, followed by centrifugation
at 15,000 × g for 10 min at 4°C. Two-fold serial dilutions of the
extract were mixed, each with 200 nM of fluorescently labeled
protein at a 1:1 ratio. MST was run on the Monolith
NT.115 instrument at an ambient temperature of 25°C, with
instrument parameters set to 50% LED and medium MST power.
The samples were loaded into capillaries and placed inside the
capillary tray of Monolith NT.115 MST instrument (nano temper
technologies). The data generated for each extract, a protein
combination from triplicate samples, was analyzed using
Monolith NT.115 analysis software (Nanotemper Technologies).

2.7 Flow cytometry assays

Cell viability and induction of apoptosis were analyzed by flow
cytometry using Alexa fluor 488 Annexin-V/Dead cell apoptosis kit
(Cat # 13241, Invitrogen). For this, ~3 × 105 cells were plated in each
well of a 6-well plate to form sub-confluent monolayers and then
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treated with the selected plant extracts at pre-determined
concentrations. Cells only, as untreated controls, were treated
with media, whereas the vehicle controls had media
supplemented with DMSO in the same proportion as the extracts
and incubated for 48 h. After removing the culture supernatant, cells
were treated with trypsin-EDTA, and the cell pellets were obtained
by centrifugation. Cells were resuspended in Annexin binding buffer
containing Annexin-V-Alexafluor 488, as described in the kit.
Similarly, cell cycle inhibition by the selected plant extracts was
analyzed using the Propidium Iodide (PI) reagent (Himedia SKU:
ML067) according to the manufacturer’s protocol. The data was
analyzed and plotted using CytExpert 2.5 software (Accuri
Cytometers) and FloJo v10.0.

2.8 TUNEL [terminal deoxynucleotidyl
transferase (TdT) dUTP Nick-end
labeling] assay

The assay was performed using “Dead Cell Apoptosis Kit with
Annexin V Alexa Fluor™ 488 and Propidium Iodide (PI) (Cat#
V13241)”. Measurement of DNA fragmentation in apoptotic cells
relies on TdT-mediated attachment of fluorescently labeled
deoxynucleotides to the 3′-OH terminus of DNA breaks. For
this, cells were seeded in a 6-well plate at ~3 × 105 cells per well,
grown to sub-confluency, and then treated with a predetermined
concentration of the selected plant extract(s). Plates were incubated
in a CO2 incubator for 48 h, monolayers rinsed with 1× Dulbecco’s
PBS (DPBS), fixed in 4% paraformaldehyde for 25 min at 4°C, again
rinsed twice with PBS and permeabilized with PBS-T containing
0.2% Triton X-100. Subsequently, cells were equilibrated at 37°C in a
humid chamber for 60 min with TdT, and the reactions were
terminated by adding 2× SSC, followed by three PBS rinses to
remove excess fluorescein-12-dUTP. Necrotic cells were PI-labelled
(#ML067 Himedia), while the live cells were labeled with DAPI for
15 min, followed by a rinse with nuclease-free water. Slides were
mounted using one drop of anti-fade solution (Molecular Probes,
Cat. #S7461) and analyzed under a fluorescence microscope for
AlexFluor™ 488 at 520 nm, for PI at >620 nm and DAPI at 460 nm.
All the images were captured on a Nikon Ti2E A1R MP Laser
Scanning Confocal Microscope at a magnification of ×20 (Plan
Apochromat 20X/0.75 NA).

2.9 Immunoblotting

Cells treated with/without EAE and lysed with RIPA buffer
(#R0278, Sigma), were subjected to sonication for 2 min, and then
centrifuged at 15,000 × g for 15 min at 4°C. The supernatant was
collected and quantified using Bradford reagent (# 5000006 Bio-
rad). Equal concentrations of proteins were resolved on 12% SDS-
PAGE, transferred onto PVDF membranes (#IPVH00010 Merck),
and treated with 5% non-fat milk powder in PBS-T. Primary
antibodies were used at 1:1,000, while the peroxidase-conjugated
anti-rabbit and anti-mouse IgG antibodies were used at 1:
3,000 dilution (Bio-Rad). The blots were developed using the
Chemiluminescent HRP Substrate (ECL kit, Bio-Rad). Antibodies
used in the immunoblot assay were precision mouse anti-EGFR

(#VMA00982 Bio-Rad), phosphor-EGFR (Tyr1068) [1092]
(#AF3045, Affinity Biosciences), phosphor-EGFR (Tyr1173)
[1197] (#AF3048, Affinity Biosciences), Goat-α-rabbit
(#64524573, Bio-Rad), α-mouse (#32430, Bio-Rad), and Rabbit-α-
GAPDH (#VPA00453, Bio-Rad) antibodies. Finally, using ImageJ,
blots were subjected to densitometry analysis to quantify EGFR
phosphorylation.

2.10 Pull-down assay and mass
spectrometry analysis

2.10.1 Pull-down assay
To identify metabolites in EAE that specifically bound to EGFR_

T790M and EGFR_TK, a pulldown experiment was performed
using a 0.2 ml column containing 50 µl Ni-NTA resin. The
column was washed with deionized water and three column
volumes of binding buffer (50 mM Tris-HCl, pH 8.0; 150 mM
NaCl; and 2 mMDTT). Then, 200 µg of purified EGFR-TK and, in a
separate experiment, 200 µg of purified EGFR_T790M were loaded
onto the column and incubated with rotation for 2 hours at 4°C.
Unbound protein was removed with a wash buffer. Subsequently,
200 µg of plant extract (EAE) was added to the column and
incubated overnight with constant rotation at 4°C. The following
day, the column was washed five times with wash buffer, and the
molecules bound to the protein were eluted with 100 µL of 50 mM
citrate buffer, pH 3.0. The eluted plant extract fractions were
lyophilized and used for mass spectrometry analysis.

2.10.2 LC-MS/MS analysis
The lyophilized plant extracts from the pull-down assay were

reconstituted in 400 µL of methanol and filtered through a 0.22 µm
syringe filter before being injected into the LC-MS. The LC-ESI-
HRMS and MS/MS analysis of plant extracts were carried out on
Orbitrap Exploris 120 mass spectrometer (Thermo Fisher Scientific,
United States) coupled to Vanquish UHPLC (Thermo Fisher
Scientific, United States). An autosampler introduced an injection
volume of 10 µL of the sample into the mass spectrometer. The
chromatographic separation was achieved using the Aquity UHPLC
BEH C18 column (50 × 2.1 mm × 1.7-µm, M/s. Waters India Pvt.
Ltd.), column temperature: 40°C and auto-sampler temperature:
7°C. A two-component mobile phase was used at a flow rate of
0.4 mL/min, where 0.05% formic acid in ultrapure water was used as
mobile phase A and 0.05% formic acid in acetonitrile was used as
mobile phase B, respectively. The optimized gradient program was
set as follows: (time in min/% of Mobile phase B) 0–2/2, 2–10/98,
10–17/98, 17–20/2, and 20–22/2.

Mass spectral data was acquired in both the positive and
negative ionization modes using the Heated-electrospray
ionization (H-ESI) as an ionization source. The typical MS
conditions were: the capillary voltage was set at 3500 V and
2500 V for positive and negative ionization modes, respectively;
nitrogen (N2) gas was used as the sheath gas and auxiliary gas, and
their flow was maintained at 50 (Arbitrary value) and 10 (Arbitrary
value), respectively. The ion transfer tube and vaporizer
temperatures were set at 300°C and 350°C, respectively; the CID
gas pressure was set at 1.5 mTorr. The mass spectrometer was
operated in full scan mode with data-dependent MS2 (ddMS2)
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acquisition. The full scan parameters are: scan range (m/z)
75–1,000, orbitrap resolution 60,000, RF lens (%) 70, and
profile data acquisition. The ddMS2 parameters were as
follows: isolation window (m/z) 2, collision energy type-
normalized, HCD collision energies (%) were kept at 20, 30,
and 40 eV, orbitrap resolution was set to 15,000 (FWHM),
centroid-acquisition data type, peak filters: intensity threshold
2. e5, singly charged charge state, dynamic exclusion duration =
5 s. The acquired raw data was further processed using
Compound Discoverer (v3.3, Thermo Fisher Scientific) for
untargeted metabolite identification. Identification was based
on accurate mass, retention time, and MS/MS spectral
matching against online databases (ChemSpider, mzCloud,
mzVault, MassList, HMDB). The resulting table (m/z,
retention time, ion adduct, peak intensity) was refined by
removing redundant ions, duplicates, and ions with CV >
15%. Finally, chromatograms (Supplementary Figures S2A,B,
S3A,B, S4A,B) and MS/MS spectra quality were manually
inspected to ensure accurate metabolite identification.

2.11 Statistical analyses

For statistical analyses, experimental data for each point was
obtained from at least three replicates and represented as data
mean ± standard deviation. The IC50 concentrations of the
extracts were derived by modeling the data sets using a non-
linear regression model. Statistical significance between different
experimental groups was calculated by performing two-way
ANOVA, paired t-tests, and one sample t-test. A p-value
of <0.05 is considered significant in all the experiments. All the
statistical analyses were performed using the built-in statistical
methods available in GraphPad Prism version 9.3.1. (GraphPad,
United States).

3 Results

Lung Cancer remains one of the significant challenges to
combat, especially with the development of drug resistance,
including EGFR_T790M mutation. This study is focused on
finding plant-based therapeutic solutions to overcome the
EGFR_T790M mediated drug resistance in NSCLC. In this
direction, extracts from R. graveolens have been shown to
target EGFR signaling pathways through ERK/AKT inhibition.
Accordingly, in the present study, a variety of solvent extracts
from R. graveolens were prepared by standard Soxhlet extraction
methods. Subsequently, recombinant EGFR variants were
produced using the Baculovirus expression system, followed by
the development of kinase-inhibition assays. From these assays,
potential extracts having specificity for the EGFR_T790Mmutant
were identified and characterized in cell-based assays for various
anticancer properties to establish the mode of action as well as to
identify potential bioactive molecules mediating inhibition of
EGFR phosphorylation.

3.1 EAE and acetone extract shows
selectivity for EGFR_T790M mutant kinase

EGFR_TK and EGFR_T790M variant Bacmid clones were used
to transfect Sf21 cells, recombinant viruses rescued and plaque-
purified. Purified clones of each variant were used to produce
recombinant proteins from high density ExpiSf9™ cultures. The
2-stage purification process yielded ~8 mg/L of kinases (Figure 3).
The two recombinant EGFR variants were used to optimize the
kinase inhibition assays. Optimal reaction conditions for both
variants were determined to be 4 μM enzyme, 200 μM substrate,
and 500 μM ATP, incubated at 37°C for 1 hour (Supplementary
Figure S1). Next, the kinase inhibitory activity of different solvent
extracts against the recombinant EGFR variants was investigated
under optimized reaction conditions. All the solvent extracts
exhibited notable but variable inhibitory activities against the two
EGFR variants compared to the vehicle control. Of note, the EAE
exhibited potent inhibitory activity against both the EGFR variants.
Importantly, its activity against the EGFR_T790M was at least 3.4-
fold higher than that against the EGFR_TK. Acetone extract also
exhibited similar, but lesser, inhibitory activity against the two EGFR
variants compared to the EAE. While the results from these assays
suggested superior selectivity of EAE against the EGFR_T790M,
both EAE and acetone extract were considered for further cell-based
biological characterization. All other extracts that exhibited higher
selectivity against EGFR_TK were excluded from further
investigations. Relative inhibition of enzyme activities by different
plant extracts against wtEGFR_TK and EGFR_T790M, and their
corresponding IC50 values are shown in Figures 4 A-C. The 3.4-fold
higher inhibitory effect of EAE against the EGFR_T790M mutant
compared to that against the EGFR_TK, which highlights the
selectivity of EAE for the mutant EGFR, is presented in Figure 4D.

FIGURE 3
Purified EGFR_TK and EGFR_T790M proteins (A) Coomassie-
stained 12% SDS-PAGE (B) Immunoblot with anti-His (1:3,000 dilution)
antibody, (C) Immunoblot with anti-EGFR-TK-specific mAb (1:
1,000 dilution).
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3.2 EAE is specific against drug-resistant
lung cancer cell line

Cell-based assays were performed on different lung cancer
cell types and in non-lung cancer cell lines to investigate the
biological activity of the selected extracts. EAE and Acetone
extract reduced cell viability in a dose-dependent manner in
H1975 (EGFR_T790M+), A431 (wtEGFR), H1299 (nRAS-
driven Lung Cancer), and A549 (kRAS-driven Lung Cancer)
cell lines compared to the non-cancerous EGFR-negative Jurkat
cell line (T-lymphocyte) (Figure 5). Notably, EAE demonstrated

selective inhibition of EGFR-positive lung cancer cells (Figures
5A–D), and no significant inhibition, even at higher extract
concentrations, of the EGFR-negative Jurkat cells was observed
(Figure 5E). Like EAE, acetone extract was also effective against
all the EGFR-positive cell types except against the A549 cell line.
Importantly, with the p-value of < 0.0001, the inhibitory activity
of acetone extract on the EGFR_WT-positive A431 cell line
(IC50 = 61.9 μg/mL) was significantly superior to that of EAE
(IC50 = 196.7 μg/mL) (Figure 5B). However, it was equally
effective against the EGFR-negative non-lung cancer Jurkat
cell line, suggesting its non-specific cytotoxicity against all

FIGURE 4
The kinase-inhibitory potential of different solvent extracts against EGFR variants. Dose-response curves were generated from the titration data, and
their respective IC50 values were derived using GraphPad Prism v.9.3.1. In each graph, the X-axis represents the concentration of the extract in a linear
scale. In contrast, the Y-axis represents the percentage of cell viability (0–100). (A) Inhibition of EGFR_TK activity, (B) Inhibition of EGFR_T790M activity,
(C) Bar-graph representation of the IC50-values of each solvent extract against the two EGFR variants. (D) Bar-graph representation of the IC50-
values of EAE and Acetone extract. Here, we show the superior selectivity of EAE exhibiting a 3.4-fold difference between the kinase activities of EGFR_TK
and EGFR_T790M. The data shown here represents three independent experiments, and the error bars represent the standard deviation. A p-value
of <0.05 is considered significant for all statistical analyses. (n = 3).

FIGURE 5
MTT assay showing cytotoxic effects of EAE and Acetone extract on various cell lines. Dose-response curves (X-axis: extract concentration; Y-axis:
% cell viability) and IC50 values (calculated using GraphPad Prism v.9.3.1) are shown for (A) H1975, (B) A431, (C) A549, (D) H1299, (E) Jurkat cells. (F) Table
summarizes IC50 values. Data are mean ± SD from three experiments (p < 0.05). (n = 3).
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cell types (Figure 5E). These results together suggest superior
inhibition of EGFR-positive lung cancer cell types by the
EAE and its preferential selectivity for the EGFR_T790M
mutant phenotype over the acetone extract. Their respective
IC50 is given in Figure 5F. EAE exhibited 3-fold more potent
inhibitory activity against the EGFR_T790M mutant (IC50:
53.3 μg/mL) compared to EGFR_WT (IC50: 196.7 μg/mL)
(Figure 5F), suggesting the presence of an enriched
bioactive content in EAE that is more specific against the
EGFR_T790M mutant. While acetone extract [IC50: 73.9 μg/
mL (EGFR_T790M) vs 61.9 μg/mL (EGFR_WT)] showed
inhibitory activities against both EGFR variants, the
difference in their effective concentrations was relatively
lower compared to EAE. In addition, the acetone extract
exhibited nonspecific inhibition in EGFR-negative Jurkat
cells. Hence, Acetone extract was excluded, and EAE was
selected for further experiments.

3.3 EAE exhibits a strong binding affinity for
the mutant EGFR

The MST analysis of ligand-protein interactions provides
information on the binding strength between them by
analyzing the movement of biomolecules over a temperature
gradient. This temperature gradient influences the molecular
properties, such as the interacting partners’ charge, size,
hydration shell, and conformations. Accordingly, binding
affinities of EAE with the purified EGFR_TK and EGFR_
T790M were determined. The data from triplicate experiments
was used to plot the dose-response curves, and the statistical
significance of the differences in binding kinetics was calculated
using the unpaired t-test with an error margin of 5% (p < 0.05).
Interestingly, EAE showed stronger interaction with the EGFR_
T790M variant with a Kd value of 0.670 µg compared to EGFR_
TK, which had a Kd value of 1.01 µg (Figure 6). The results
obtained here are well aligned with those from the kinase
inhibition assay.

3.4 EAE treatment enhances induction
of apoptosis

Since IC50 values for EAE in different cell types ranged between
50–200 μg/mL, all future studies used 100 μg/mL and 200 μg/mL of
EAE. Accordingly, different cell types used in this study were treated
with/without 100 μg/mL or 200 μg/mL of EAE for 48 h and
subsequently stained with Annexin V/PI. Post-staining flow
cytometry analysis revealed a higher rate of apoptosis in EAE-
treated cells compared to untreated or vehicle-treated cells
(Figure 7). Consistent with the preliminary findings in this study,
EAE treatment resulted in a higher percentage of H1975 (EGFR_
T790M mutant) cells exhibiting the apoptotic phenotype than
A431 cells (EGFR_WT) in a dose-dependent manner.
Accordingly, ~39.8% of H1975 cells were positive for the
apoptotic phenotype compared to ~13% of A431 cells at 100 μg/
mL EAE treatment, which increased to ~45.6% in H1975 cells
compared to ~32.1% of A431 cells at 200 μg/mL (Figures 7A,B).
Notably, EAE induces apoptosis in EGFR_T790M cells without
progressing to necrosis, while higher doses have less effect on
H1975 cells, highlighting its selective apoptotic effect. Contrary to
its effects on H1975 and A431 cell types, EAE had a variable impact
on the other two lung cancer cell lines, A549 and H1299 (Figures
7C,D). Apoptosis was observed in 10% of A549 cells and 44.6% of
H1299 cells treated with 100 μg/mL EAE, compared to 41.4% of
A549 cells and 49.7% of H1299 cells treated with 200 μg/mL.
Interestingly, irrespective of the EAE dosage, no detectable
transition from apoptotic to necrotic phenotype was observed in
either A549 or H1299 cells (0.42% at 100 μg/mL vs. 0.20% at 100 μg/
mL) compared to untreated cells (Figures 7C,D). These results
suggest that apoptosis induction was dose-dependent in
A549 and H1299 cells. However, only A549 cells exhibited
necrotic phenotype, which was also dose-dependent.

Selective induction of apoptosis in cells expressing EGFR genes
after EAE treatment was further confirmed by TUNEL assay. After
48 h EAE treatment with 100 μg/mL and 200 μg/mL, H1975 cells
showed a notable increase in staining intensity, indicative of
apoptotic activity, compared to untreated and vehicle-treated
cells (Figure 8A). Similarly, untreated or vehicle-treated
A431 cells hardly showed any staining. However, they showed
notable, albeit relatively less compared to that in H1975 cells,
TUNEL-positivity after EAE treatment in a dose-dependent
manner (Figure 8B). Similar to that in the H1975 and A431 cells,
A549 cells too showed an increase in TUNEL-positive cells only after
the EAE treatment (Figure 8C). On the other hand, control
H1299 cells showed intense staining. This staining increased
marginally upon EAE treatment (Figure 8D). Overall, these
results in different lung cancer cell types agree with the flow
cytometry data discussed above on the apoptotic state.

3.5 EAE selectively induces G1/G0 phase cell
cycle arrest in H1975 cells

All four lung cancer cells were treated with DMSO (vehicle) or
100 or 200 μg/mL of EAE for 48 h and analyzed for cell cycle stages
by flow cytometry. Data from vehicle-treated cells were compared to
those from EAE-treated cells. Irrespective of the cell type, EAE

FIGURE 6
MST analyses of protein-ligand interactions. Two-fold serial
dilutions of EAE were incubated with EGFR_TK and EGFR_T790M
protein, and the reactions were analyzed on the Monolith
NT.115 instrument. The mean of the % normalized fluorescence
[FNorm (%), Y-axis] for the two EGFR proteins calculated from triplicate
experiments was plotted against the EAE concentrations (X-axis) to
generate the dose-response curves and to derive the Kd values. Error
bars represent the standard deviation between the three experimental
data sets. (A) MST binding curve of EGFR_TK with EAE, and (B) MST
binding curve of EGFR_T790M with EAE. (n = 3).
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treatment increased the number of cells captured at the G1/
G0 phase, which was dose-dependent (Figure 9A). These results
suggest that EAE treatment generally causes cell cycle arrest at the
G1\G0-phase. However, the effect is relatively more specific to cells
expressing the EGFR_T790M mutant phenotype, as none of the
other cell types exhibited the trend observed with the H1975 cell line
(Figures 9B–D).

3.6 EAE inhibits EGFR phosphorylation at
Tyr1068/1173 and affects EGFR-
mediated signaling

Since EGFR phosphorylation is associated with tumor
progression, we used Tyr1068/1092 and Tyr1173/1197 as
reference sites. These sites were used to study the effect of EAE
treatment on phosphorylation and its subsequent effects on the

EGFR signaling cascade. Total cell lysates after 48 h EAE treatment
were subjected to immunoblotting using mAb specific to
unphosphorylated EGFR and phosphorylated EGFR at Tyr1068/
1092 and Tyr1173/1197. Phosphorylated and unphosphorylated
EGFR levels were normalized to the total EGFR, with basal
expression as the reference. All four lung cancer cells consistently
expressed the EGFR, but the levels of EGFR phosphorylated at
Tyr1068/1092 and Tyr1173/1197 varied between cell types (Figures
10A–D). H1975 cells exhibited a notable reduction in EGFR
phosphorylation at both the tyrosine residues in response to both
concentrations of EAE (Figure 10A). In contrast, the other three cell
types responded differently (Figures 10B–D). However, a general
decreasing trend in EGFR phosphorylation is observed across the
cell types. It may be noted that inhibition of Tyr1068/
1092 phosphorylation leads to the arrest of the EGFR pathway
early during the signaling cascade. In contrast, inhibition of
Tyr1173/1197 phosphorylation leads to the arrest during the later

FIGURE 7
(A)H1975, (B) A431, (C) A549, (D)H1299 Cells. The Bar graph on the left and their corresponding four quadrant on the right side, shows the effects of
EAE treatment on the induction of apoptotic phenotype and their progression to the necrotic phenotype in different cell types. Different cell types were
treated with/without EAE for 48 h, stained with AnnexinV and PI, and analyzed by flow cytometry. Cells positive for the necrotic phenotype were gated in
Q1, those in the late apoptotic state were gated in Q2, those in the early apoptotic state in Q3, and healthy cells in Q4. Data was plotted using the
GraphPad Prism v9.3.1. Statistical significance was analyzed using the in-built statistical methods. A p-value of <0.05 was considered significant,
indicating a p < 0.0001. The plotted data shown here represent three independent experiments, and the error bars represent the standard deviation
between them. (n = 3).
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signaling phases. Accordingly, the more decisive influence of EAE
on H1975 cells can be attributed to its dual and more potent effects
at both the tyrosine phosphorylation sites in a highly dose-
dependent manner. In other cell types, the influence of EAE was
weaker, which may be explained by its inhibitory effects
predominantly on one of the two tyrosine phosphorylation sites.

3.7 Binder molecules specific to EGFR_
T790M in EAE

To identify the chemical composition of EAE, mass
spectrometry analysis was carried out on the whole extract
isolated in Ethyl acetate (Supplementary Figures S2A,B). This
analysis revealed that EAE comprises several classes of bioactive
molecules, such as alkaloids, polyketides, coumarins, terpenoids,
flavonoids, quinolines and other classes. The distribution of the top
85 most abundant molecules (Supplementary Mass Spectrometry
Data), categorized by molecular class, is illustrated in a pie chart
(Figure 11A). To identify specific bioactive molecules within EAE
that bind to EGFR_T790M, pull-down assays followed by mass
spectrometry analysis were conducted (Supplementary Figures
S3A,B), using EGFR_TK (Supplementary Figures S4A,B) as a
background control. Following this analysis, molecules common
to both the EGFR variants were subtracted to identify binder
molecules unique to the EGFR_T790M. From this analysis, we
identified 30 molecules having an MS/MS match above 80%, of
which 6 molecules were found to have drug-like properties as
determined by Swiss-ADME analysis. The chemical structures
and the molecular information of these molecules are illustrated
in Figure 11B. These include Balticol F, 4,7,8-trimethoxyfuro [2,3-b]
quinoline, Communesin A, Talaroenamine D, Thailanstatin A, and
Chryxanthone B, which have shown the critical ADME properties
and are presented in Supplementary Table S1.

4 Discussion

The present study investigated the kinase inhibitory activities
of different solvent extracts from the leaves of R. graveolens against
EGFR_TK and EGFR_T790M mutant. Our results from the
kinase-inhibition assays suggested that the EAE was relatively
more effective against the mutant, highlighting its selectivity
against the drug-resistant NSCLC. Some of the studies in the
published literature have explored the therapeutic potential of
synthetic molecules targeting the EGFR_T790M(X. Tang et al.,
2021; Zhou et al., 2009). Osimertinib, a third generation TKI, have
shown such prominent effectiveness (Zhou et al., 2009; Nishino
and Hatabu, 2017; Planchard et al., 2015; Song et al., 2016; Goss
et al., 2016; Wu et al., 2018). However, the development of
resistance and off-target effects made them less effective,
necessitating exploring alternative or complementary
therapeutic strategies. Unfortunately, while a plethora of
information exists on synthetic molecules or purified natural
compounds, to the best of our knowledge, studies showing the
activity of plant extracts against EGFR_T790M using in vitro
kinase inhibition assays are lacking. The specificity of EAE for
the mutant EGFR was further established through cell-based
experiments. Here, while EAE treatment led to a decrease in the
viability across different cell types, the effect was relatively more
pronounced in H1975 cells that express the EGFR_T790Mmutant.
Further, there was dose-dependency in the EAE-mediated
cytotoxicity in H1975 cells. This further substantiated our claim
that the EAE selectively inhibits drug-resistant NSCLC cells more
effectively than their wild-type counterparts. Solvent extracts from
medicinal plants rich in various bioactive molecules, like
flavonoids, alkaloids, etc., have been shown to modulate EGFR-
signalling pathways and subsequently cause cell cycle arrest and/or
regression of cancer growth (Chun et al., 2013; Wang et al., 2018).
In this context, our findings are in line with the existing literature

FIGURE 8
Shows TUNEL staining, indicative of apoptotic state, in different lung cancer cell types. Cells were treated with the selected concentrations (100 and
200 μg) of EAE and stained using the TUNEL assay kit. Different treatment variables are represented on the left. Blue-stained cells in the image represent
DAPI staining, and those stained green represent FITC or TUNEL signal. The representative images from one of the three TUNEL assays are shown.
TUNEL-positive cells among the fluorescently-stained cells are indicatedwith an arrow. (A)H1975 cells, (B)A431 cells, (C) A549 cells, (D)H1299 cells.
(n = 3).
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on the potential ability of the plant extracts to exert selective
inhibitory effects on the EGFR_T790M (Tang et al., 2021).

About the mechanism of inhibition, the flow cytometric analysis
presented here suggested that the EAE treatment induced cell cycle
arrest at the G1 phase. This cell cycle arrest indicates the EAE-
mediated antiproliferative effect of EAE and is in complete
agreement with the observed reduction in viability. Further, EAE
treatment increased apoptosis, as evidenced quantitatively by
Annexin/PI assay and qualitatively by TUNEL assay. The whole
R. graveolens extract has been used in other cancer cells to
understand its anticancer properties and it was found to induce
apoptosis by interfering with p53, AKT pathways and causing the
cell cycle arrest at G2/M phase (Wu et al., 2022). Studies were
conducted on different lung cancer cell lines, including H1975 cells,
in which ethanol extract of Scutellaria baicalensis and triterpenes
extracted from H. diffusa effectively induced apoptosis by
inactivating STAT3 in EGFR-TK-resistant cells (Park et al.,
2021). These studies reveal that the active metabolite from plant

extracts can combat different cancers, including drug-resistant lung
cancer, and cause apoptosis. Our results suggested that the EAE
treatment causes cell cycle arrest, inhibiting cell proliferation, and
activating programmed cell death in drug-resistant NSCLC cells.
This is consistent with previous studies, where alkaloid and
polyphenolic compounds in medicinal plant extracts induced
increased apoptosis (Ge et al., 2023; Elkady, 2013; Ratheesh,
Sindhu, and Helen, 2013; Stalikas, 2007). These findings further
support the multi-target therapeutic ability of natural products in
cancer therapy. Next, to investigate the molecular basis for EAE-
mediated inhibition of cell cycle arrest and/or activation of
apoptosis, western blot analyses were performed on lysates
prepared from EAE-treated cells. Here, dose-dependent
suppression of phosphorylation at Tyr1068 and Tyr1173 residues
of EGFR_TK was demonstrated, which was relatively higher and
consistent between the experimental replicates in EAE-treated
H1975 cells. These results were in order of the previous study by
Wang et al. (2018), Liu and Gao (2020), Jiang et al. (2017), Qin et al.

FIGURE 9
Shows the inhibitory effects of EAE on the cell cycle in different cell types. Cells were left untreated (cell control) or treated with DMSO (vehicle
control) or EAE at 100 or 200 μg for 48 h and stained with PI. Cell suspensions were then analyzed on the flow cytometer and quantitated based on the
cell cycle phase. These experiments were performed in triplicates, and representative data from one of the replicate experiments is presented here. Cells
at the G1/G0, S, and G2/M phases of the cell cycle are colored differently, and their percentages in the total cell population in the sample are
indicated. (A)H1975 cells, (B) A431 cells, (C) A549 cells, (D)H1299 cells. Figure (Bar graphs) also shows themean percentages of cells at different cell cycle
phases with their respective standard deviations between the triplicate assay data, plotted as a bar graph against the treatment type using Cytoflex
software Cytxpert 2.5. A two-sample t-test was performed to estimate the statistical significance, and a p-value < 0.05 is considered significant. *, p <
0.05; **, p < 0.005; ***, p < 0.0001. (n = 3).
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(2020), showing EGFR and pEGFR 1068 inhibition, Tang et al.
(2016), Perera et al. (2005), van Rosenburgh et al. (2022) shown
p1173 inhibition. The inhibition of EGFR phosphorylation at these
sites agrees with a better inhibitor of EGFR_T790M.

Previous studies have shown that phosphorylated EGFR at
Tyr1068 plays a crucial role in (i) recruitment of growth factor
receptor-bound protein 2 (GRB2), an adapter protein (Okutani
et al., 1994; Rojas et al., 1996; Yamauchi et al., 1997), which is
pivotal in the activation of the Ras-MAPK signaling pathway in
response to epidermal growth factor (EGF) (Sebastian et al., 2006),
and (ii) serves as a docking site for proteins with the SH2 domain of
signal transducer and activator of transcription 3 (STAT3) (Shao
et al., 2003). Similarly EGFR phosphorylated at Tyr1173 facilitates
the binding of SHC protein (Okabayashi et al., 1994). So it is well-
established that the inhibition of phosphorylation at these key sites
effectively disrupts EGFR signaling, thereby the viability and
proliferation of NSCLC cells (Tang et al., 2021; Wang et al.,
2018; Ma et al., 2020; Liu and Gao, 2020; Jiang et al., 2017; Qin
et al., 2020; Tang et al., 2016; Perera et al., 2005; van Rosenburgh
et al., 2022), Also, inhibition of phosphorylation of EGFR_TK was
reported after treatment with plant-derived bioactive metabolites,
like curcumin (Starok et al., 2015; Zhen et al., 2014), resveratrol
(Wang et al., 2020), etc.

Further, pull-down assays using EGFR_TK and EGFR_T790M
in the presence of EAE, followed by mass spectrometric analyses of
the metabolic content, were performed to identify metabolite
content unique to the mutant EGFR. Analysis of the data
suggested the identification of a variety of bioactive metabolites
belonging to different classes of phytochemicals, including alkaloids,
polyketides, etc. Computational analyses of these metabolites for
drug-like properties enabled us to refine the list of metabolites,
which have now formed the basis for further investigation and
validation of their therapeutic potential. Prior literature has also
reported on the selective kinase inhibitory potential of these
secondary metabolites, further validating our study outcomes

(Gowtham et al., 2024; Marston, 2011). Sambo et al., have shown
the effective inhibition of kinase activity and in vitro downregulation
of protein kinases in lung cancer cell lines by identifying known
anticancer metabolites of Ziziphus mucronata (Sambo et al., 2025).

Ruta graveolens is a well-studied plant against various ailments
such as infectious diseases, neurological disorders, inflammatory
diseases, cardiovascular diseases, gastrointestinal diseases, metabolic
diseases, dermatological conditions, etc .,(Ratheesh et al., 2013;
Jinous, 2012; Eickhorst et al., 2007). It is rich in alkaloids,
flavonoids, coumarins, and essential oils, which are known to
exert antimicrobial, anti-inflammatory, antioxidant, and
anticancer properties (Jinous, 2012). With specific regard to
cancer treatment, extracts from at least four of the above-cited
Ruta species have been investigated for their potential against colon
cancer, breast cancer, lung cancer, leukemia, etc., (Fadlalla et al.,
2011; Gentile et al., 2015; Varamini, Soltani, and Ghaderi, 2009;
Richardson et al., 2016; Pathak et al., 2003; Arora and Tandon, 2015;
Pushpa et al., 2015; Schelz et al., 2016; Fuselier et al., 2023).
Mechanistic studies attributed their anticancer potential to the
efficient induction of apoptosis, inhibition of cell proliferation,
and induction of oxidative stress (Gentile et al., 2015; Freyer
et al., 2014). Among Ruta species, R. graveolens has been
extensively investigated as cancer therapeutics, including in
clinical trials (Gentile et al., 2015; Freyer et al., 2014). In one
such trial, Ruta was given with Ca3(PO4)2 to treat brain cancers,
particularly gliomas. As part, respective brain cancer cells were
treated with the Ruta extracts ex vivo and injected into human
patients. This resulted in complete regression of tumors in six out of
seven glioma patients (Pathak et al., 2003).

The present study’s findings strongly supported the therapeutic
potential of EAE from R. graveolens in treating NSCLC, particularly
in those carrying the EGFR_T790M mutation. The multiple
inhibitory mechanisms exerted by EAE from R. graveolens,
including cell cycle disruption, apoptosis induction, and direct
inhibition of EGFR phosphorylation, highlight its promise as a

FIGURE 10
Immunoblot analysis of EGFR phosphorylation inhibition in various cell lines treated with EAE. Panel shows: (A) H1975 cells, (B) A431 cells, (C)
A549 cells, (D) H1299 cells. Cells were untreated or treated with DMSO (vehicle control) or EAE (100 and 200 μg) for 48 h. Cell lysates were analyzed for
EGFR, phospho-EGFR (Tyr1068/1092 and Tyr1173/1197), and GAPDH (loading control) by immunoblotting. The experiment was performed in triplicates,
so the densitometry analysis, represented as bar graphs with error bars, showed significant inhibition of EGFR phosphorylation in all cell lines
following EAE treatment compared to control expression of EGFR across all cell lines. (n = 3).
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natural anticancer agent. Future studies should focus on isolating
and characterizing the active metabolites from the EAE
preparation from the leaves of R. graveolens to refine and
enhance their efficacy as EGFR_T790M mutant-specific
NSCLC therapeutics. Additionally, in vivo studies and clinical
evaluations are warranted to translate the findings of this study
into potential treatment strategies for patients with drug-
resistant NSCLC cancer. The alignment of our results with
prior research on plant-based kinase inhibitors highlights the
growing relevance of natural products in anticancer
drug discovery.
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